MODELING AND PROPAGATION OF NOISE OF
A WIND TURBINE PROJECT IN THAILAND

NATTAPAT CHAROENTANGPRASERT

A Thesis Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Engineering in Industrial Systems
and Environmental Engineering
Suranaree University of Technology
Academic Year 2022



LUUDNADIHAZNITNIZNYAIVDWFYINLAANIN
Tasen1snaiuanlulsewndlne

WLFANT LRSYAIUSLETS

3%mﬁwus‘ﬁu‘ﬂudawﬁwaamsﬁnmmwé’ngmﬂ‘%muﬁuuﬁmnsiumammmﬁmeﬁm
#MY1IYAAINTIUTZUUGAE N TULATA I EEY
wImgdsnalulaggsuni
Unsfinen 2565



MODELING AND PROPAGATION OF NOISE OF
A WIND TURBINE PROJECT IN THAILAND

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Master’s Degree

Thesis Examining Committee

(Assoc. Prof. Boonchai Wichitsathian)
Chairperson

(Assoc. Prof. Netnapid Tantemsapya)
Member (Thesis Advisor)

(Dr. Chatpet Yossapol)
Member "

(Prof. Dr. Watinee Thavorntam)

Member

(Assoc. Prof. Dr. Chatchai Jothiyangkoon) (Assoc. Prof. Pornsiri Jongkol)
Vice Rector for Academic Affairs and Dean of Institute of Engineering
Quality Assurance



v W

igAMT RS YAUTELAS Y WUUTIABIALNITNTENUAIVOUALINLANINLATING
Aauasludssndlneg
D19155MUSNWN: 599FNENT19159 ATLUATUAE FuLAUNSNEG, 111 Wt

AAARy: LHEITUNIUINAIAUAL/ SEUUENTAUNANNANERS/ WNUFITUNIW/ wuuT1aes
NsYWNeLEeITuNIY/ SPSS MODELER

12

Msfnudiifgusrasdifiotinsgsinnnssedvendssnniaiuaulufiufivumy
yuuvlunang fusenideaniiovesUsamelneg nnsaaunuiidssuasianuuyhunedes
unuidssgnassdulagldssuvansaumagdmandannsensinag ArccGlS 105 warldisnis
U38aN00A1Y 9 UL kriging Lne3LAsevigladia (geostatistical analyst) seRuLdesiildiie
asausniidsagaiiudeyausssndnaud we 2561 §1 w2564 S1uau 40 Muis Tagsey
youansufaiuamduszey 800 ws wenannil sedudesldsunsifununvananid
anaiasgiudsdnluifiielineinnuuandsseninassdudedurisainansiulas
naeAuleeldisnisineidadfuuunegeurinasiUssuis useAuLE eiuansgIudes
FUMY kuvIasiwedsssunuiaulagldsonduas IBM SPSS Modeler seaudstuag
Toyaanmeinialigniann 5 wididunan 3 Tu anveuwanisudviuaudusyes 400
wnstuiieviongTuoean AnN1INALIIIABIAINGANDIAY 5 JULUU AB kUUT1809CHAID
WUUIIaRY CART wuUBdY (Linear) seuudszamiisy (Neural network) Laskuudnass
wuumssamlaea (Ensemble) fuusildiduyadeyalunisimuiuuudiass fe szazma
e auEiau fianisan gumgll Anudy wareudy Sane3iugniuFeuiieuiiian
Fane3fuimnzaniigalagnisUszifiuna

Tnenadnsionuuuiidssuandfifuinsydudesduiiuiifiogodeagseving 45 fs
60 1nTLuate) Tuiluiivhiufsiuangussing 45 8 70 103iuate) uasluiiufinunsnssuey
sewIn4 40 4 55 Wadluate) wan1msanindildananidnmainsedudessmludAuanali
wiwdnszaudedungdrunngiusenideddegsening 41.5 81 87.6 wduale) warly
myjthunengJueenileaniloagszning 29.9 fis 81.8 WATLUAGL) 1ANUUANAINTENINNTEAY
Aeodlugaaainansukasnansdueseiveddey naniswssuiisuseauidesdiTaldiu
upsgrudsasununuiwasusuiilndoudldsunsdudassiudsduiinasfuiundien
wuzianesrnisewistelan (World Health Organization) nadws#iléannuwuuiueides
sumunussiudsszdudodilndfviuauwesnuinsydudesiifnduldsusninaan
Aanssuvesyudlnoinnglutiatuazfudinainiinennsenas naanmsisuidiey
§ane3unui1 wuusiaes Ensemble gnfigavdndumadad inuizaniigaain
N15+US e UL oUm 78 R MAE hag RMSE 911N157S2988ULUUTIa04 Ensemble



WUU Cross validation WU31 MAE wae RMSE daumnseaiuil $ouas 5.89 way 10.08
WAR9ILUUTIERY Ensemble TailAinnns Overfitting
nansAnwansliiiuinsasesiduuwmasiidadswdnd soradutiadodee
qunmvastnlugumiladidsdaflrudndulunsuiuugnsmuaudsieanuas
muqm:é’uLﬁaaluaq"lummgm‘[ﬂasﬁ’ﬁﬁdamﬁ"m%’aqmmm’l*&'ﬁagaﬂ”Lﬁaswﬁyuﬁ

nindudesmurunazansysiunaiuides

41971 3Y3MNTAWIA DY aellatetnAnw é@%rﬂ?fﬁ'“ ey

2

&

UnnsAnw 2565 a8ilaTee1TeNUS N




NATTAPAT CHAROENTANGPRASERT: MODELING AND PROPAGATION OF NOISE
OF A WIND TURBINE PROJECT IN THAILAND
THESIS ADVISOR: ASSOC. PROF. NETNAPID TANTEMSAPYA, 111 PP.

Keyword: WIND TURBINE NOISE/ GEOGRAPHIC INFORMATION SYSTEMS/ NOISE MAP/
NOISE PREDICTION MODEL, SPSS MODELER

This study analyzes wind turbine noise propagation in a rural area of northeast
Thailand by developing noise maps and a noise prediction model. Noise maps were
generated using geographic information systems (GIS) from ArcGIS 10.5 software,
performed by the kriging interpolation method on geostatistical analyst. Noise levels
were measured annually from 2018 to 2021 at 40 locations, extending 800 meters from
the wind farm boundary to create the noise maps. Additionally, noise levels were
collected from automated sound monitoring stations to differentiate between daytime
and nighttime periods using independent sample t-tests and were compared with noise
standards. The noise prediction models were developed using IBM SPSS Modeler
software. Noise levels and ambient meteorological conditions were measured at 5-
minute intervals for three days, extending 400 meters from the wind farm boundary in
the northeast direction. Four individual models (CHAID, CART, Linear, and Neural
network) and their ensemble were developed and compared. The models' inputs
included distance, time, wind speed, wind direction, temperature, humidity, and
pressure, with the output being the equivalent sound level.

The results from the noise maps showed that noise levels in residential areas
ranged from 45 to 60 dB(A), in the wind farm area from 45 to 70 dB(A), and the
agriculture area from 40 to 55 dB(A). The results from the monitoring stations indicated
that noise levels in the southeast village ranged from 41.51 to 87.56 dB(A) and in the
northwest community from 29.90 to 81.82 dB(A). Daytime noise levels were found to
be significantly higher than nighttime noise levels. Comparing the measured noise
levels with standards revealed that roadside communities were exposed to
unacceptable noise levels at night according to the World Health Organization (WHO)
recommendations, with traffic identified as a significant source of noise annoyance.
The results from the noise prediction model showed that field measurements
indicated that sound levels were higher closer to the wind turbines, particularly in

the morning and evening, which indicates the influence of human activity.
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The Ensemble model was identified as the most suitable technique based on
the evaluation of R?, MAE, and RMSE, providing RMSE (10.08%) and MAE (5.89%)
during cross-validation for training and testing.

The analytical results revealed that traffic was the primary noise source,
potentially posing health risks to villagers, emphasizing the need for mitigation
measures to improve noise control. Decision-makers can utilize this information to
identify areas requiring mitigation measures and minimize the nuisance of

noise pollution.
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Chapter |

INTRODUCTION

1.1  Statement of Problem

Thailand's energy consumption has been increasing in recent vyears.
The electricity demand rises by an average of 4.8% annually from 2011 to 2015
(Tunpaiboon, 2021). Because of this problem, the Thailand government developed an
alternative energy development plan in 2015, “AEDP2015” (Department of Alternative
Energy Development Efficiency, 2015), and updated in 2018 “AEDP 2018- 2037”
(Department of Alternative Energy Development Efficiency, 2020). AEDP 2018-2037 was
developed and focused on promoting energy production within the full potential of
domestic renewable energy resources, aiming to increase Thailand's renewable energy
production by 30% in 2037. Wind energy is one of the renewable energies promoted
by AEDP 2018-2037, where the production capacity target was set to 3.0 GW. Since
starting AEDP, the production capacity has increased from 224.5 MW in 2014 to 1,027
MW in 2019. In the lower northeastern region of Thailand, the potential area for the
wind farm is located at the elevated edge on the western side of the Korat plateau,
which is in Nakhon Ratchasima and Chaiyaphum Province. Wind speed in the area
ranges from 3 to 8 m/s, generating electricity at rate of 50 to 100 W/m? (Chancham et
al., 2014). Huai Bong Sub-District, Dankhuntod District, Nakhonratchasima Province, is a
potential area for wind farms, with three wind farms in the area.

The wind turbine is a device used to generate wind energy that converts kinetic
energy from the wind into electricity. While wind turbines generate clean energy,
annoyance, and health effects caused by wind turbine noise have drawn much
attention from the public. There are two types of noise sources generated by wind
turbines; 1) aerodynamic noise from the trailing edge of blades, inflow-turbulence
noise, and airfoil self-noise, and 2) mechanical noise from generators and gearboxes
(Kondili & Kaldellis, 2012, p. 515). Fyhri and Aasvang (2010) reported significant
relationships between noise annoyance and sleeping problems, potentially affecting
human health such as dizziness, anxiety, and depression. Michaud et al. (2018)
reported that visual and auditory annoyance such as noise, blinking lights, shadow
flicker, visual impacts, and vibrations was increased significantly with increasing wind

turbine noise levels.



One of the wind farms in Huai Bong Sub-District locates close to the community
(proximately 500 meters). The vicinity community complained about the effect of wind
turbine noise such as annoyance, sleep disturbance, dizziness, and headache from this
wind farm. The wind farm had installed two real-time online sound level monitoring
stations at 500 m southeast and east of the boundary. However, sound level
monitoring is not covering all vicinity community areas. Noise mapping is a technique
used to create a visual representation of sound levels across a specific geographic area.
It provides an effective means of assessing noise and understanding its distribution in
areas where sensitive land use is a concern. This modern approach to evaluating noise
levels facilitates the planning and implementation of strategies to mitigate the
detrimental effects of noise pollution (Oyedepo et al., 2019; Pandya, 2003). To
investigate the impact of noise from the wind farm over a large area, noise maps were
utilized. These noise maps were generated using interpolation techniques such as IDW,
kriging, and spline. ArcGIS Desktop 10.5 software was employed to develop noise maps.

Additionally, the noise prediction model is one option for investigating sound
levels using machine learning. Machine learning is a powerful tool that uses algorithms
to enable systems to learn patterns from data to make predictions (Madhavan, 2019).
It has been widely used in applications of environmental pollution such as air pollution
(Athanasiadis et al., 2003), water pollution (Bellinger et al., 2017), and noise pollution
(Adulaimi et al., 2021; Singh et al,, 2021). However, most of the studies in Machine
Learning focus on noise pollution related to traffic, while there is insufficient research
on wind turbines noise pollution. Data mining helps find patterns and predict noise.
The systematic measurement of the sound level, wind speed, wind direction,
temperature, moisture, and air pressure to an accumulation of extensive data in time
series form. Building the models allows for investigating noise processes over various
factors that prepare forecasts for noise levels. In this study, the noise prediction model
was performed using the IBM SPSS Modeler 14.1 as a data mining and analytics software
application. Using software to model statistics of various variables related to sound
level with different algorithms. It was used to model the prediction as a neural net,
linear regression, KNN algorithm, SVM, C&RT, and CHAID models, and they ranked each
candidate model and scored to find the best analysis.

As mentioned above, there are many studies about the potential impacts of
wind turbine noise on the community. However, the wind turbine sound level
exposure model prediction of this site has yet to be done. Thus, this research aims to
study the potential effect of wind farm noise on the community at 800 m. radius from

the boundary of the wind farm. The results can be utilized to predict the sound level



of wind turbines and the propagation of wind turbine noise, providing valuable
guidance for future research. Moreover, the findings from this study will contribute to

the development of future noise regulations for wind turbines in Thailand.

1.2  Objective
The objectives of this study are;
1. To study the propagation of wind turbine noise by generating a noise map.

2. To investigate sound level with a noise prediction model.

1.3  Study area
The wind farm is in Huai Bong Sub- District, Dankhuntod District, Nakhon
Ratchasima Province in Thailand. The study area is 800 m. radius from the boundary

of the wind farm, as shown in Figure 1.1.

1.4  Scope and limitations

The scope and limitations of this study are;

1. The study confines to investigating the noise of wind turbines at 800 m.
radius from the boundary of the wind farm.

2. The field measurement collects a sound level, measurement location,
wind speed, wind direction, temperature, and humidity.

3. The noise prediction model was generated with several simplifying
assumptions, including that wind turbines are aerial sources of noise and
reflections are ignored. The model is representative of flat or constantly
sloping terrain and does not consider the effects of terrain features such

as hills, trees, and buildings that can influence sound propagation.

1.5 Expected Outcome
The results can be explained a wind turbine noise propagation and predict wind

turbine noise level. In addition, it can be a guide for further study.
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Chapter II

LITERATURE REVIEWS

2.1 Sound
2.1.1 Sound definition

Sound is a phenomenon produced by any object that is vibrating and
transmitted through the medium as a pressure wave (sound wave). The number of
vibrations or cycles per second is called Hertz (Hz). The range of sound frequencies
that humans can be heard is approximately 20 to 20,000 Hz (Fahy & Thompson, 2015)

2.1.2 Basic properties of sound wave characteristics

A sound wave is a mechanical wave propagating through a medium;
sound waves are characterized by amplitude, frequency, wavelength, and velocity
(Hansen, 2001).

1) Amplitude (Py) is the measure of the maximum displacement of
particles in the medium from their resting position as the wave passes through. It
changes in a single period of the sound wave. It determines the pitch of the sound.
The amplitude is expressed in Pascal (Pa).

2) Frequency (f) is the number of oscillations or cycles of the wave in
a single period of the sound wave. Pressure variation cycles per unit of time or cycles
per second; the frequency is expressed in Hertz (Hz).

3) Wavelength (A) is the distance of the pressure wave traveled during
one cycle on the wave that is in phase, and the wavelength is expressed in the unit of
length such as meter (m) or nanometer (nm).

4) Velocity (c) is the speed of sound propagation. The sound velocity in
air is 343 m/s at 20°C and 1 atm, and the velocity is expressed in the unit of length
per unit of time, such as meter/second (m/s).

2.1.3 Decibel scale and sound pressure level (SPL)

The sound level depends on the specific measure of sound, such as
intensity, pressure, and power. It can be expressed as sound pressure level (SPL), which
is the pressure of the sound wave, or as sound intensity level (SIL), which is the power
of the sound wave per unit area, or as sound energy level (SEL), which is the total
energy of the sound wave. These sound-level formulas result in decibels (dB),

a logarithmic unit that references value (Long, 2014)
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Sound pressure is measured (in Pa)

Reference sound pressure (2x107 Pa) for air.

Sound intensity level (SIL) is calculated by
measurizng the sound intensity of a sound

wave.

10 logyg (I/1p) (eq.2)
Sound intensity is measured (in Pa)

Reference sound intensity (1 pW/m?)

Sound energy level (SEL) is calculated by
measuring the sound power of a sound wave.

10 logio (E/Eo) (eq.3)
Sound energy being measured (in Pa)

Reference sound energy (102 J)

The decibel readings are based on an exponential scale of sound

pressure levels with a reference sound pressure. A 10 dB(A) increase in sound means

10 time-intensity greater. The sound level of common sounds rating in units of decibels

is shown in Table 2.1.

Table 2.1 Decibel rating of common sounds

Sound pressure level (dB(A)) Sound description
188 Apollo lift-off, close
150 Jet engine, 10 ft away
140 Pain threshold
130 Warning siren
125 Chain saw
120 Discomfort threshold Thunder
115 Max under federal law
110 Very loud music
105 Loud motorcycle or lawn mower
100 Very loud Pneumatic air-hammer
90 The cockpit of light planes, heavy truck
85 Average street traffic
80 Lathe, milling machine, loud singing
75 Vacuum cleaner, dishwasher
70 Average radio, noisy restaurant
65 Annoying




Table 2.1 Decibel rating of common sounds (Continued)

Sound pressure level (dB(A)) Sound description
60 Normal conversation, air conditioner
50 Light traffic, the average office
40 Library, quiet office
30 Quiet room in the home, audible whisper
20 Electric clock, the faint whisper
10 Barely detectable Rustle of leaves

0 Hearing threshold
Note: From Field and Long (2018).

2.1.4 Frequency weighting

The combination of different frequencies contributes to the overall
sound. The weighting networks are used to evaluate frequency-weighting scales of the
overall sound level in a sound measuring system (Hansen, 2001). The frequency-
weighting scales are specified in IEC 60651, an international standard that sets out the
methods for measuring sound pressure levels by frequency response curves for each
weighting scale. The standard defines the A, B, and C frequency-weighting scales, and
the sound level corrections for several weighing scales are shown in Figure 2.1.

The A-weighting: It is the most commonly used weighting widely for
measuring environmental noise levels. The A-weighting applies a filter like a response
of the human ear, which reduces the contribution of lower and higher frequency
sounds that the average person cannot hear.

The B-weighting: It is designed to capture the effects of low-frequency
sounds on structures and is used in building acoustics to measure the impact of noise
on buildings.

The C-weighting: It is designed to capture the effects of high-frequency
sounds on speech intelligibility and is used in audio engineering to measure the

frequency response of audio equipment.

2.1.5 Sound measurement
The principle of sound measurement in this study follows the guidance
note on noise assessment of wind turbine operations at EPA Licensed Sites (NG3).
NG3 is a guidance note published by the environmental protection agency (EPA).
It focuses on developing a standardized noise impact assessment methodology and
assesses the impact of wind energy proposals on noise-sensitive locations (McAleer &
McKenzie, 2011).



Measurement equipment: The basic equipment for continuous sound
measurement is the sound level meter (SLM). The sound level meter is a handheld
instrument with a self-contained kit and a precision microphone. The microphone
responds to changes in air pressure from sound waves. The sound level meter
standards class is specified by tolerance and accuracy and has Class 1 and Class 2.

1. the tolerance limits of Class 1 at the 1,000 Hz are +/- 1.9 dB(A)

2. the tolerance limits of Class 2 at the 1,000 Hz are +/- 2.2 dB(A)

Measurement positions: The measurement positions should be taken
at the nearest noise- sensitive location affected by wind turbine noise.
The measurement should avoid noise reflection impact by monitoring positioned at
least 3.5 m away from the reflecting surface and high 1.2 to 1.5 m from the typical
surface.

Measurement periods: The measurement periods should be a
minimum of 50 ten-minute intervals for one week in a wind direction downwind from

the turbine to the noise-sensitive location.
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Figure 2.1 Frequency-weighting scales
from University of Alberta Faculty of Engineering (2020).



2.2 Noise
2.2.1 Noise definition

Noise is a sound defined as unwanted, annoying, unpleasant loud such
as a distant train, whistle, or a neighbor's barking dog in the middle of the night. It can
cause health problems, such as sleep disturbance, poorer work and school

performance, hearing impairment, etc. (World Health Organization, 2010).

2.2.2 Noise categories
Noise can be considered a type of complex sound. Complex sounds
are characterized by having multiple frequencies and varying amplitudes over time.
They can be categorized into three main groups based on their sources: anthrophony,
geophony, and biophony (Servick, 2014). Anthrophony refers to sounds produced by
human activity. Geophony refers to sounds produced by non-living elements of the
environment, particularly seophysical processes. Biophony refers to sounds produced

by wildlife and other living organisms.

2.2.3 Common types of environmental noise

The common types of environmental noise encompass a wide range of
sources that can contribute to noise pollution. World Health Organization (2022)
defines environmental noise as unwanted sounds or a set of sounds that causes
annoyance or has adverse health effects. Here are some examples of the sources that
generate environmental noise:

Transport: This category includes noise generated by various modes of
transportation, such as road vehicles, trains, airplanes, and ships.

Industrial activities:  Industrial operations,  including factories,
manufacturing plants, and machinery, can generate significant noise.

Construction  sites: Construction activities involving heavy machinery,
equipment, and tools can create high noise levels.

Public works and services: Noise can arise from public works and
services such as road repairs, maintenance activities, and utility services.

Cultural, sporting, and leisure activities: These activities can involve
noise sources such as music from clubs, concerts, and festivals.

Neighborhood: Noise in residential areas can come from various sources.
Outdoor sources may include heat pumps, motorized gardening equipment, and
construction activities in nearby areas.

2.2.4 Effect of noise on human health
Environmental noise can have a range of detrimental effects on human

health, affecting physical and psychosocial well-being (Bechtel & Churchman, 2003).
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The physical effects of noise pollution include hearing damage,
as continuous exposure to loud noise can lead to hearing loss or impairment.
Sleep disturbances are also common, as noise during nighttime disrupts sleep patterns
and can result in sleep deprivation, fatigue, and impaired cognitive function during the
day. Exposure to excessive noise triggers a stress response in the body, elevating heart
rate, blood pressure, and stress hormone levels, which can contribute to chronic
health issues. High background noise levels can also interfere with effective
communication, causing increased stress and frustration in social interactions.
The psychosocial effects of noise pollution can impact mental and emotional well-
being. Continuous noise exposure can cause annoyance and irritation, decreasing
overall satisfaction with the environment and quality of life. Living in noisy
environments can contribute to chronic psychological stress, resulting in reduced
mental well-being. Noise distractions can impair concentration, productivity, and
performance in tasks that require focus and attention. Furthermore, noise pollution
can disrupt social activities and community interactions, diminishing the quality of

social interactions and community cohesion (World Health Organization, 2022).

2.2.5 Noise Standards and Regulations
At present, there are no common international noise standards or
regulations. The World Health Organization (WHO) has developed Environmental noise
guidelines with recommended noise levels for protecting human health from
environmental noise from various sources. Thailand and other countries have
established standards for noise pollution from different activities for the daytime and
nighttime, as shown in Table 2.2.

Table 2.2 Noise level standards of some given countries

Industrial Commercial Residential
Country/Organization
Day Night Day Night Day Night

Australia' 55 55 55 45 45 35
India’ 75 70 65 55 55 45
Japan' 60 50 60 50 50 40
Thailand? 80 80 - - 70 70
United States of America 70 60 60 50 55 a5
World Health Organization® 65 65 55 55 53 45

Note: ! Chauhan and Pande (2010)
2 Notification of the National Environment Committee Issue 15 BE 2540,
(1997), The Standard of Generic Sound Level

> Hurtley (2009)
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2.3  Wind Turbine Noise

2.3.1 Anatomy of a wind turbine

The wind turbine consists of four main elements: nacelle, rotor, tower,
and footing (NSW Wind Energy Handbook, 2002).

Rotor: The rotor consists of a hub and blades with a shaft connecting
them to the gearbox and generator. Wind turbines have three aerodynamically
designed blades made of materials such as carbon fiber or fiberglass. These blades are
optimized to maximize energy generation while minimizing noise. In fixed-speed
turbines, the blade angle adjusts automatically to maintain a constant rotation speed,
while variable-speed turbines rotate faster with increasing wind speeds. The rotor's
primary function is to capture the wind's energy and convert it into mechanical energy
for electricity generation. Blades may exceed 30 meters in length, siving a rotor
diameter of 60 to 80 meters.

Nacelle: The nacelle is a large housing structure at the top of the tower.
The gearbox and generator contain houses that convert the wind's kinetic energy into
mechanical energy. The nacelle is typically designed to be aerodynamic and is
responsible for connecting the rotor and the tower.

Tower: The tower is the tall structure that supports the entire wind
turbine. It provides the necessary height to capture the stronger, more consistent wind
speeds available at higher altitudes. Their height varies with the generator's size and
the blades' length, and the large generators may have towers as high as 100 meters.

Footing: The footing of a wind turbine is a large concrete slab buried
underground, typically with a diameter of 7-12 meters or more and a depth of 1-2
meters.

2.3.2 Source of wind turbine noise

When the wind flows past a wind turbine, the blades take the kinetic
energy from the wind and rotate. The rotation speed of the wind turbine depends on
wind speed and the specific design of the turbine. As the blades move through the air,
this movement primarily produces noise. The sources of noise emitted from wind
turbines operation can be divided into two categories; 1) Mechanical noise and 2)
Aerodynamic noise (Kondili & Kaldellis, 2012)

1) Mechanical noise: Mechanical noise is noise that originates from the
structure of the wind turbine and is emitted from its surfaces. It is caused by various
mechanical components within the turbine, such as the gearbox, generator, yaw drives,
cooling fans, and auxiliary equipment. This noise is generated by their relative motion,

mechanical rotation, and the dynamic response between these components.
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2) Aerodynamic noise: Aerodynamic noise is the noise produced due
to the airflow interacting with the turbine blades. It occurs when the wind passes over

the turbine's rotating blades, generating noise as a byproduct of this aerodynamic

interaction.
Wind
direction Blade
Mechanical brake
Gear box

— - Nacelle ~-g-—
Hub \ Generator
1 Pivoting system
_E Tower Hub height
! Transformer
Footing | (
Y

W 4

f ; Underground electric cables

Figure 2.2 The main components of a wind turbine
from Nastase (2017)

2.3.3 Wind turbine noise characteristics

Wind turbine noise can be generated from four types of noise (Tonin,
2012). The types of noise are 1) tonal, 2) broadband, 3) low frequency, and 4)
impulsive.

1) Tonal: Tonal is a discrete frequency noise generated by wind turbine
components such as meshing gears. The tonal interaction with a rotor blade surface
or unsteady flows is non-aerodynamic instability. It is often associated with the blade
passing frequency, which depends on the blades' number and rotational speed. Tonal

noise can manifest as a steady, like a hum or a whine.
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2) Broadband: Broadband is a continuous distribution noise with
frequencies greater than 100 Hz. It is an interaction of wind turbine blades with
atmospheric turbulence. The aerodynamic interaction between the blades and the air
generally causes broadband noise from wind turbines.

3) Low frequency: Low frequency is a noise with frequencies ranging
from 20 to 100 Hz. It is associated with downwind rotors turbines. It is often described
as a deep rumbling or vibrating sound.

4) Impulsive: Impulsive is short acoustic impulses or thumping sounds
that vary in amplitude with time. These noise events can be caused by factors such as
blade interactions with turbulent air, changes in wind conditions, or mechanical
impacts within the turbine.

2.4 Noise Propagation

Wind turbine noise propagation refers to how the sound generated by wind
turbines spreads and travels through the surrounding environment.

2.4.1 Factors affecting wind turbine noise propagation.

As wind turbines operate, they emit noise that can travel varying
distances and be influenced by factors such as distance, atmospheric conditions,
terrain, and the presence of barriers.

Distance: The distance between the wind turbine and the receiver
affects the intensity of noise propagation. As sound waves travel further away from the
source, leading to a decrease in noise levels. This phenomenon is known as sound
attenuation. The inverse square law states that sound intensity decreases by
approximately 6 dB for each doubling distance from the sound source (Gray PhD, 2000).
The wind turbine generates a noise level that becomes equal to the background noise
level when the wind speed is approximately 12 m/s and when the distance exceeds
100 m from the receiver (Katinas et al., 2016).

Wind Speed: Wind speed plays a significant role in wind turbine noise
propagation. Higher wind speeds can increase the aerodynamic interactions between
the wind and the turbine blades. This interaction can increase turbulence and higher
rotor speeds, generating greater noise. The equivalent continuous sound level is highly
correlated with the average rotor speed of a wind turbine (Sugimoto et al., 2008).

Wind Direction: The direction from which the wind is blowing can
influence the path and dispersion of wind turbine noise. Sound waves tend to travel
downwind more efficiently, following the wind flow. Wind direction affects the noise

levels experienced in different directions. The average sound level in cross-wind
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directions is lower than in upwind and downwind directions; the noise level is
predicted within 1-2 dB in different wind directions (Oerlemans & Schepers, 2009).

Temperature: Temperature inversions, where a layer of warm air is
trapped above cooler air near the ground, can increase noise propagation for sources
near the ground. The increasing speed of sound in warmer air within the inversion layer
allows sound waves to propagate more efficiently, potentially amplifying noise
audibility (Zhou et al., 2013).

Terrain and noise barriers: Terrain features, such as hills, valleys, or
vegetation, can cause sound waves to be reflected, diffracted, or absorbed. Natural or
man-made barriers can significantly impact noise propagation from wind turbines.
These barriers can block, deflect, or partially absorb sound waves. Typical terrain and
noise barriers tend to absorb energy from incident acoustic waves and reflective
properties of the surface (Attenborough, 2002).

Air absorption: When sound travels through the air, it gets absorbed due
to two main reasons: molecular relaxation and air viscosity. Molecular relaxation is the
transition of a molecule going from an excited energy level to a lower excited level.
High-frequency sounds are absorbed more than low-frequency sounds because their
waves are shorter. The absorption occurs because of the friction between air particles
as the sound wave moves through the air. The absorption depends on the temperature
and humidity of the atmosphere (Pantazopoulou, 2010).

Ground surface conditions: When the sound hits the ground, the
acoustic energy loss depends on the reflection coefficient of the surface. Sound waves
lose some of their energy through reflection on hard surfaces, resulting in attenuation.

(Pantazopoulou, 2010).

2.4.2 Noise propagation calculation

Noise propagation calculation involves analyzing the spread of sound
waves and how sound pressure changes with distance in a medium, typically air. This
includes considering the sound intensity at any distance from the source and applying
the inverse square law calculation for sound, where sound pressure decreases
proportionally to the square of the distance.

Sound intensity at any distance from the source

Sound intensity (1) represents sound power per unit area. As the distance
from the source increases, the sound intensity decreases since the sound power
spreads out over a larger surface area. The sound intensity at any distance from the

source can be calculated using the equation 4.
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P p (eq.4)
A T oanr’
When P = Power of the source (in W)
A =  the surface area through which the sound

waves pass. (in m?)
Inverse square law calculation for sound
The Inverse square law for sound attenuation describes how sound
intensity diminishes with distance. It is inversely proportional to the square of the
distance from its source. This law demonstrates that sound intensity decreases
significantly as the distance from the source increases. The sound intensity can be

calculated using the equation 5.

D, ’ (eq.5)
I = | —

DZ

When Iy = Sound intensity at a desired distance (in W/m?).
Iy = Sound intensity at a reference distance
(in W/m?).

D, = Desired distance (in m).
D, = Reference distance (in m).

Sound propagation is emitted from a source in all directions, spreading
out in a spherical manner. As the sound waves travel, the sound pressure level
decreases with increasing distance according to the inverse square law. The sound

pressure level can be calculated using the equation 6.

Lo - L, -10Log, 2r’) (eq.6)
When Lo = Sound pressure level at a particular distance
from the source (in dB(A)).
Ly = Sound pressure level of the source (in dB(A)).
r = the distance from the sound source (in m).

The ISO 9613-2 “Acoustics — Attenuation of sound during propagation
outdoors - Part2: General method of calculation” (ISO, 1996) is standard that provides
guidelines for calculating the attenuation, or reduction, of sound as it propagates
outdoors. It can be applied to different sound sources and covers the major mechanics
of sound attenuation (Blanchard & Samanta, 2019).

Le(DW) is the equivalent continuous downwind octave band sound
pressure level at a receiver location and is calculated for each point source in

downwind conditions based on equation 7 (ISO, 1996).
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When Lx(DW)

Lw =

Dc =
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Lw + Dc - A (eq.7)
the equivalent of continuous downwind sound
pressure levels at receiver locations (in dB(A)).

the sound levels produced from the source (in

dB(A)).

the directivity correction, the index of the

sound levels propagates into solid angles

(in dB(A)).

attenuation during propagation from the source

to the receiver (in dB(A)).

The attenuation term (A) in equation 7, which accounts for the decrease

in sound intensity over distance, is determined by equation 8 (International

Organization for Standardization, 1996).

A =
When Agiv =
Aatm =

P
o
Q

I

Adiv + Aatm + Ag + Avar + Anmisc (eq.8)
the attenuation due to geometrical divergence

the attenuation due to atmospheric absorption

the attenuation due to the ground effect

the attenuation due to a barrier

the attenuation due to miscellaneous other

effects (noise propagating through buildings).

Laf(DW) is the equivalent continuous A-weighted downwind sound

pressure level that can be calculated by summing the contributing time mean square

sound pressures calculated according to equations 7 and 8 for each point sound

source, as specified by equation 9 (International Organization for Standardization,

1996).

Ls (DW)
When n

J

e

n 8 s .
10|og {Z[zloov]{m (IJ)+Af(J)} :I} (qu)

(=D [ (j=D
the number of contributions i (sources and
paths)
the index indicating the eight-standard
octave-band mid-band frequencies from 63
Hz to 8kHz.
the denotes the standard A-weighting.

2.4.3 Regulations of noise from Wind turbine source

The international regulations for noise from wind turbines are not very

uniform across different countries, although there are some general similarities among
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many countries. The noise levels produced by each wind turbine generator tend to
increase as the wind speed at the site increases. Additionally, the background noise
often rises under such conditions, which can overlap with the noise generated by the
wind turbine. The regulations of noise from wind turbine sources across different
countries were obtained from a study conducted by Licitra and Fredianelli (2013).

United Kingdom, The ETSU-R-97 standard sets noise limits for wind
turbines based on a combination of fixed and derived limits. The fixed limit During the
daytime, the noise limit can vary within the range of 35 to 40 dB, and during nighttime,
it is set at a minimum of 43 dB Lago, while the derived limit considering the background
noise levels and adds 5 dB.

France, The Decret 2006-1099 of 2006 provides guidance and
regulations regarding the measurement and management of environmental noise. The
existing guidance specifies that any new noise generated by wind turbines should not
exceed the existing noise level by more than 5 dB during the day and 3 dB at night.

Germany, the noise limits are based on different areas. In industrial
areas, the noise limit is 65 dB(A) during daytime and 50 dB(A) during nighttime. In
residential areas, the noise limit is 50 dB(A) during daytime and 35 dB(A) during night.

Netherlands, the Dutch regulation published in 2001 provides guidelines
for environmental management, including noise limits dependent on wind speed. At
a wind speed of 12 m/s, the noise limit is 50 dB(A) during the daytime, 45 dB(A) during
evenings and 40 dB(A) during nighttime.

New Zealand, the wind turbine noise should not exceed the
background sound level by more than 5 decibels or a level of 40 dB Lag (10 minutes).
However, for locations classified as sensitive areas, the noise limit is further reduced
to 35 dB Lag (10 minutes) to ensure minimal disturbance.

South Australia and New South Wales (Australia), The predicted
equivalent noise level, evaluated at all relevant receivers for each integer wind speed
from cut-in to rated power of the wind turbines, should not exceed 35 dB(A) or exceed
the background noise by more than 5 dB(A).

Denmark, the noise limits for wind turbines are determined based on
wind speed and land use. In outdoor living areas located no more than 15 meters from
open countryside, the noise limit is 44 dB(A) at a wind speed of 8 m/s and 42 dB(A) at
a wind speed of 6 m/s. In noise-sensitive land use areas, the noise limit is lower, set
at 39 dB(A) at a wind speed of 8 m/s and 37 dB(A) at a wind speed of 6 m/s.

Canada, the noise limits for wind turbines are determined based on

wind speed and land use. In urban areas, the noise limit ranges from 45 to 51 dB(A),
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while in rural areas, it ranges from 40 to 51 dB(A). These limits depend on wind speeds
within the range of 6 to 10 m/s at a height of 10 meters.

Thailand, the "Announcement of the Energy Regulatory Commission
Regarding the Determination of Distance for Wind Power Generation Projects and
Installed Capacity for Wind Power Generation Operators" provides regulations on sound
impact that the maximum allowable noise level must not exceed 10 dB(A). This
requirement is specified in the announcement of the National Environmental
Committee, Version 29 (B.E. 2550), and aligns with the IEC 61400-11 standard. The
measurement is taken from the land area of the nearest residential dwelling or house

within the community.

2.5 GIS noise mapping

GlIS-based mapping has expanded in popularity in recent vyears, with
applications in nearly every field and increased geographic data availability. It has been
widely and successfully used in environmental impact studies to assess the impact of
spatial phenomena such as soil pollution, air pollution, and noise on the environment.
Noise mapping has been applied in several sites using GIS, such as urban planning,
public health (Moteallemi et al., 2017; Oyedepo et al, 2019; Tsai et al,, 2009)
transportation planning (Forouhid et al., 2023), and industrial noise control (Bozkurt,
2021).

GIS software is a powerful tool to create maps that visualize information about
the noise characteristics and their variations in the surrounding environment (Alam,
2011). Interpolation is the most important technique for noise mapping, and it can be
used to develop contours of noise levels (Yilmaz & Hocanli, 2006). The interpolation
technique takes into consideration the acoustic behavior of the topographical region.
Noise contour maps can be created to show the variations in environmental noise at
different times of the day in urban areas. GIS can be used to create noise contour
maps that help identify areas with high noise intensity and traffic noise. It also highlights
the zones most affected by noise pollution. To achieve accurate noise mapping, a
clear methodology can be followed, which involves the following steps:

2.5.1 Global posting system data collection

Various methods can be used to collect precise GPS data, depending
on factors such as the survey objectives, required accuracy, available equipment, and
logistical considerations. Common GPS survey methods include Continuous, Static,
Rapid Static, and Kinematic survey techniques. The noise data collected in the field

can be integrated into GIS and displayed on a map of the urban area. The distance
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between data points on the map may vary based on the level of human habitation in
different regions. Each data point contains information like coordinates, location, date
and time of data collection, main noise sources, noise indicators, maximum and

minimum recorded noise levels, and average noise level.

2.5.2 Spatial database development

A spatial database is a collection of information organized in table form.
The tables in the database are structured based on the sensitivity of the collected
survey data. The spatial database is built from four types of spatial data: GPS noise
locations, noise level readings, noise sources, and noise impacts. GPS noise locations
can be used to identify the geographical points where noise levels were recorded.
Each location is assigned a unique identifier that serves as a reference to connect the
entire database. Noise level readings are described in decibels (dB). Noise sources
provide information about the major sources of noise, while noise impacts study the

effects of noise pollution on human health and behavior.

2.5.3 Spatial modeling

Spatial modeling can be defined as the number of grids or polygons
that are aggregated to a particular form of an area. This modeling technique can be
linked to GIS for data input and display. There are two main types of spatial modeling
techniques: vector and raster. These techniques are applied within GIS tools to
determine the spatial distribution of noise pollution.

2.5.4 Interpolation methods used in noise mapping

Interpolation methods are commonly used to estimate noise levels at
unsampled locations based on measured data from monitoring stations or other
sources. Interpolation helps create continuous noise maps that provide a spatial
representation of noise levels throughout an area of interest. Several interpolation
methods are utilized, including IDW, kriging, Gaussian Process Regression, Spline, and
Radial Basis Functions. Among these methods, two popular and commonly utilized
approaches for noise mapping are Inverse Distance Weighting (IDW) and Kriging,
including the following:

Inverse Distance Weighting (IDW): IDW is a widely used interpolation
method in noise mapping. It assigns weights to nearby measured points based on their
distance to the target location (Wu & Hung, 2016). The weights are inversely
proportional to the distances, meaning closer points have more influence on the
interpolated value. the size of the search neighborhood is directly related to the
distribution of reference points in the region and the distances between these points

(Figure 2.3). IDW assumes a smooth spatial variation and is simple to implement, but
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it does not consider the spatial correlation between points.

M Interpolation point Search circle

@® Reference point

Figure 2.3 How IDW works
Adapted from Harman et al. (2016)

The power parameter is used to control the influence of nearby data
points on the interpolated values. It determines the rate at which the weights assigned
to neighboring points decrease with distance. The power parameter allows you to
adjust the influence of the data points, emphasizing either closer points or giving more
weight to points farther away. The value at the interpolation point from the IDW

method can be calculated using equation 10.

Zin:l NiP
NO = ok 8§ | (equ)
Zi:l i
When N, =  the value at interpolation point
N, = the value at reference point
P =  the power parameter determines the weight

of the value at the reference point
n = the number of measurement points
Inverse Distance Weighting has several advantages, including its
simplicity, ease of understanding, and efficiency. However, it is sensitive to outliers and
lacks an indication of error (Longley, 2005).
Kriging: Kriging is a geostatistical interpolation method that considers
both spatial correlation and spatial trend in the data (Wu & Hung, 2016). Kriging is a
geostatistical method similar to IDW, but unlike IDW where weights are determined
based only on the inverse of distances, kriging considers both proximity and spatial
correlation when assigning weights to data points for estimation (Harman et al., 2016).
It estimates the values at unsampled locations by considering the neighboring point

values and their spatial relationships. Kriging is an interpolator that can be exact or
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smoothed depending on the measurement error model. It is very flexible and allows
for the investigation of spatial auto correlation and cross-correlation graphs.

Kriging utilizes statistical models that provide various output surfaces,
including predictions, prediction standard errors, probability, and quantiles. Using
kriging requires making careful decisions due to its flexibility. Kriging assumes that the
data is from a consistent random process, and some methods assume the data follows
a normal distribution. Kriging includes several variants such as ordinary kriging, simple
kriging, universal kriging, and cokriging. The value at the interpolation point from the

Kriging method can be calculated using equation 11.

Z(x) = 2L,W)Z(x) (eq11)
When Z(XO) = the value at interpolation point
Z(Xi) = the value at reference point
W.(X,) =  the power parameter determines the weight
of the value at the reference point
n = the number of measurement points

Ordinary Kriging (OK): Ordinary kriging is one of the most widely used
variants of kriging. It assumes that the mean value is unknown and estimates it from
the data. OK provides optimal estimates by minimizing the estimation error variance.
It is suitable for cases where the mean value varies spatially.

Simple Kriging (SK): Simple kriging assumes a known constant mean
value. Unlike ordinary kriging, it does not estimate the mean from the data. SK is
appropriate when the mean is known and constant across the study area. It is less
commonly used compared to ordinary kriging.

Universal Kriging (UK): Universal kriging expands on ordinary kriging by
incorporating additional covariates or trend variables that influence the spatial
variation. It allows for modeling systematic trends or spatially varying means
in the data. By including these covariates, UK can capture more complex spatial
patterns and provide improved estimates.

Co-kriging: Co-kriging, also known as multivariate kriging, is used when
multiple variables are correlated and available for analysis. It extends the principles of
kriging to estimate one variable based on the values of other related variables. Co-
kriging takes advantage of the spatial relationship between variables to improve the
estimation of each variable of interest.

Inverse Distance Weighting (IDW) and Kriging are commonly used spatial
interpolation techniques that can be evaluated based on a comprehensive analysis of

various referenced studies. The advantages and disadvantages of Inverse Distance
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Weighting and Kriging are based on the various referenced studies in term of
interpolation study.

Advantages of Inverse Distance Weighting:

Schloeder et al. (2001) concluded that IDW performs similarly to kriging
and is generally more accurate than spline interpolation.

Lu and Wong (2008) developed a new form of IDW that estimates data
values at unsampled locations based on spatial patterns found in their neighborhood,
potentially enhancing its performance.

Disadvantages of Inverse Distance Weighting:

Kravchenko (2003) reported that the accuracy of IDW interpolation
performance is significantly affected by the presence of spatial structure.
And the variograms have a significant potential to enhance kriging performance more
than they enhance IDW performance.

Harman et al. (2016) reported that IDW produces better results with
a smaller search circle radius and a homogeneous distribution of data.

Advantages of Kriging:

Schloeder et al. (2001) concluded that IDW performs similarly to
kriging and is generally more accurate than spline interpolation.

Bishop and McBratney (2001) found that kriging process can enhance
its performance by including secondary data, such as color aerial photos.

Kravchenko (2003) reported that variograms have a significant potential
to enhance kriging performance, resulting in better results compared to IDW.

Harman et al. (2016) reported that the choice of variogram model in
the Kriging Method significantly impacted the results. The Cubic variogram model
consistently outperformed the Exponential, Linear, and Quadratic models across all
grid resolutions.

Disadvantages of Kriging:

Mueller et al. (2001) reported that the performance of kriging depends
heavily on the existence of spatial structure and sampling density, although there is
little overall difference in performance between IDW and kriging.

Bekele et al. (2003) concluded that while kriging generally performs
better than IDW, a regression-based autocorrelated error model offers greater flexibility
for interpolation.

2.5.5 Geostatistical Analyst
The Geostatistical Analyst is a geostatistical tool that is integrated with

GIS modeling environments. It enables GIS professionals to accurately measure
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the statistical error of predicted surfaces. The Geostatistical Analyst involves
three key steps (Johnston et al., 2001) :

1. Exploratory spatial data analysis

2. Spatial structural analysis

3. Surface prediction and assessment of results

1)  Exploratory spatial data analysis

Exploratory spatial data analysis is utilized to explore the
distribution of data, search for outliers and trends, and examine spatial autocorrelation.
The tools used in exploratory spatial data analysis include Histogram, Voronoi Map,
Trend Analysis, and Semivariogram/Covariance Cloud.

1.1) Histogram tool

The histogram is a tool that provides a one-variable
description of your data. It displays the frequency distribution for the dataset of interest
and calculates summary statistics.

Normal distribution examination: Examining the normal
distribution of data in geostatistical analysis is important to ensure that the data meets
the required assumptions for certain methods. This involves assessing measures such
as mean, median, skewness, and kurtosis. If the data deviates from a normal
distribution, applying transformations to bring it closer to a normal distribution can
improve the accuracy of the analysis.

Outlier detection: Detecting outliers is important in geostatistical
analysis as they can negatively impact prediction surfaces and semivariogram
modeling. The histogram tool helps identify potential outliers located in the tails of
the distribution. Further investigation is needed for isolated extreme values surrounded
by significantly different values. Correcting or removing incorrect outliers due to data
entry errors is essential for more accurate analysis.

1.2) Voronoi map tool

The voronoi map tool help identify and analyze local
outliers, which deviate from the surrounding points within the normal range of the
dataset. These maps are created by establishing shared polygon borders around the
sample points, ensuring that any location within a polygon is closer to its corresponding
sample point than to any other point.

1.3) Semivariogram/Covariance Cloud

The semivariogram/covariance cloud is a valuable tool for

analyzing spatial autocorrelation within a dataset. It visually represents the empirical
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semivariogram for pairs of locations based on their distance. This analysis helps in
evaluating the characteristics of spatial autocorrelation, examining spatial correlation
patterns, exploring examining directional influences, and identifying outliers.
1.4) Trend analysis tool
The trend analysis tool offers a valuable approach for
detecting global trends in the dataset. It visualizes the data in a three-dimensional
representation, with sample point locations displayed on the x-y plane and the values
represented by the height of sticks in the z-dimension. By drawing a best-fit line
(polynomial) through the projected points, trends in specific directions can be
modeled. A flat line indicates the absence of a trend. If a trend is identified, it must
be eliminated to ensure data stationarity, a requirement for employing kriging as an
interpolation method.
2)  Spatial structural analysis
In the geostatistical analysis using the geostatistical wizard, various
parameters such as the input data layer, attribute field, kriging type, data
transformation, and trend type were selected. Semivariogram models were then
developed for each combination by determining the appropriate lag size, fitting a
spherical semivariogram model, and calculating parameter values. Directional
influences were taken into account by utilizing the directional search tool to develop
an anisotropic semivariogram model.
3) Surface prediction and assessment of results
Geostatistical techniques employ statistics to create surfaces that
incorporate the statistical properties of measured data. These techniques, including
various kriging methods such as ordinary, simple, universal, probability, indicator, and
disjunctive kriging, along with cokriging, not only generate prediction surfaces but also
provide error or uncertainty surfaces, allowing for the assessment of prediction
accuracy. The Geostatistical Analyst offers tools to determine appropriate parameters
for the analysis. In the kriging process, the spatial structure of the data is quantified
through variography, where a spatial-dependence model is fitted to the data. To make
predictions for unknown locations, kriging utilizes the fitted model, the spatial data
configuration, and the values of nearby sample points. These methods can produce
prediction and error surfaces.
The assessment of results is essential for obtaining unbiased and

accurate predictions of parameter values, as well as valid prediction standard errors.
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In a model that produces unbiased predictions, the mean of the prediction errors
should be close to zero. Evaluating assessing prediction accuracy involves considering
the root-mean-square standardized prediction error, which should be close to 1, and

the average standard error, which should be minimized or close to zero.

2.6  Noise prediction model with machine learning

Machine learning is a branch of artificial intelligence (Al) that uses data and
algorithms to improve accuracy (Madhavan, 2019). It is a powerful tool that uses
algorithms to enable systems to learn patterns from data to make predictions. It
incorporates analysis and forecast using statistical models, machine learning, and
mathematical algorithms, such as neural networks or decision trees. These platforms
enable researchers to apply advanced algorithms and statistical techniques to predict
data, such as MATLAB, R, Python, SAS, IBM SPSS Modeler, Microsoft Azure ML, and
Apache Spark ML.

Machine learning is an effective technique for predicting and evaluating
environmental pollution. In the field of air pollution, data mining, and machine learning
algorithms are being increasingly utilized to analyze large datasets and identify patterns
and correlations such as air pollutants, air concentrations epidemiology, air conditions,
and health outcomes (Athanasiadis et al., 2003; Bellinger et al., 2017). In the field of
water pollution, machine learning algorithms have been applied to assess and predict
water quality in various water environments, that have been applied to evaluate the
water quality in different water environments, such as surface water, groundwater,
drinking water, sewage, and seawater (Bellinger et al., 2017). Furthermore, machine
learning approaches have also been employed to analyze noise pollution levels.
Kumar et al. (2014) proved the Artificial Neural Network (ANN) approach as a powerful
technique for traffic noise modeling by replacing linear regression analysis with
advanced modeling techniques such as ANN. Not only has ANN been used to
predict traffic noise, but decision trees, random forests, generalized linear models, and
artificial neural networks are also used to predict traffic noise (Adulaimi et al., 2021,
Singh et al., 2021).

2.6.1 Algorithms of machine learning

Algorithms are computational models designed to make predictions or
forecasts based on existing data. These algorithms utilize various mathematical and
statistical techniques to analyze patterns and relationships within the data enabling
them to predict outcomes from unseen data points. There are two main types of

prediction algorithms: classification and numeric algorithms.
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Classification algorithms: Classification algorithms are machine learning
algorithms that categorize or assign labels to data points based on
their features. The classification algorithm is used to build a model that can accurately
predict the category of new data points, such as decision trees, Support Vector
Machines (SVM), k-nearest neighbors (k-NN), CHAID, and random forests.

Numeric algorithms: Numeric algorithms or regression algorithms are a
type of machine learning algorithm used to predict continuous numeric values based
on input features. These algorithms analyze the relationships between the input and
target variables to create a model that can estimate the new numeric value, such as
linear regression, decision tree regression, support vector regression, and
neural networks.

These descriptions provide a more detailed understanding of the
mechanisms employed by each algorithm and how they operate and make predictions
based on the given data. The information is sourced from Ambika (2020),
Syed Muzamil and Dharmendra Singh (2019), and The International Business Machines
Corporation (2021b).

Decision Trees: Decision trees are hierarchical structures where each
node represents a feature or attribute, and each branch represents a decision based
on that attribute. It is utilized for classification and regression tasks. The tree is
constructed by recursively partitioning the data based on feature values to minimize
or maximize information gain at each step. A decision tree starts with a root node,

which does not have any incoming branches.

Condition (choice) > ( Decisionnode ]

Alternatives - ~* Branch Branch
Decisionnode Decisionnode

Chciaon Leaf Leaf Leaf Leaf

(outcomes)

Figure 2.4 Elements of decision tree diagram
From Kosarenko (2021)
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Support Vector Machines (SVM): SVM constructs hyperplanes or decision
boundaries in high-dimensional space to separate data points from different classes.
Its objective is to maximize the margin between the hyperplane and the nearest data
points, known as support vectors. By identifying this hyperplane, SVM can successfully
generalize to unseen data points, providing reliable predictions. SVMs are versatile and
applicable to both classification and regression tasks. They are commonly encountered

in various fields, such as bioinformatics, image recognition, and text analysis.

@ class A sample
N [ B class B sample

Hyperplane

Hyperplane

Figure 2.5 Classification of data by support vector machine (SVM)
Adapted from Garcia-Gonzalo et al. (2016)

K-nearest neighbors (k-NN): k-NN classifies data points by considering
the majority vote of their k nearest neighbors in the feature space. The distance metric
is employed to determine the proximity between data points. Class labels are assigned
based on the title that appears most frequently among the k nearest neighbors of a
data point, a technique commonly referred to as "majority voting" and widely used in
literature. It is worth noting that k-NN can be applied to both classification and
regression tasks. The main difference between classification and regression is that
classification is employed for predicting discrete values or categories, while regression

is used for estimating continuous values.
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Figure 2.6 K-nearest neighbors diagram

Adapted from The International Business Machines Corporation (2018)
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Chi-squared Automatic Interaction Detection (CHAID): CHAID is a
decision tree-based algorithm that uses the chi-squared test for statistical significance
to determine the best attribute for splitting the data at each step. It is particularly
suitable for categorical or nominal target variables. CHAID can produce nonbinary trees,
allowing splits with more than two branches, resulting in broader trees compared to
binary growing methods. This algorithm is compatible with various input types and
accommodates case weights and frequency variables.

Random Forest: Random Forest is an ensemble learning technique that
combines the predictions of multiple individual decision trees to enhance accuracy
and robustness. By creating a random subset from the training data and constructing
decision trees based on different features and splitting criteria, Random Forest
mitigates overfitting and improves generalization. The final prediction is obtained by
aggregating the individual tree predictions through majority voting or averaging. It is

utilized for classification and regression tasks.
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Figure 2.7 Random Forest algorithm diagram
Adapted from Sharma (2020)

Linear Regression: Linear regression establishes a linear relationship

between independent variables (features) and a dependent variable (target). It aims to
find the best-fit line that minimizes the sum of squared differences between the
observed and predicted values. The algorithm works by fitting a linear equation to the
training data, minimizing the sum of squared differences between the observed and
predicted values. Linear Regression finds the best-fitting line for a relationship between

the variables.
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Figure 2.8 Linear regression algorithm
Decision Tree Regression: Decision tree regression is similar to decision
trees for classification but is used for predicting continuous numeric values. The
predicted value for a new data point is the average or weighted average of the target
variable within the leaf node. Each internal node in the tree represents a feature or
attribute, while the leaf nodes provide the predicted numerical value. The splitting
process is based on metrics such as mean squared error or mean absolute error.

This method aims to minimize the overall prediction error.

Decision
node

Branch Branch

Decision
node
[ Decision ] [ Leaf ]
node
[ Leaf ] [ Leaf ]

Figure 2.9 Decision tree regression algorithm diagram

Support Vector Regression: Support Vector Regression (SVR) is an
extension of SVM for regression problems. It uses support vectors and hyperplanes to
perform regression and estimate continuous values. Both SVM and SVR utilize the
concept of support vectors, which are the data points that are closest to the decision
boundary or hyperplane. SVR aims to find the hyperplane that minimizes the error

between the predicted and actual continuous values.
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Neural Networks: Neural networks, also known as Artificial Neural
Networks (ANNSs), consist of interconnected layers of artificial neurons called nodes or
units, inspired by the structure and functioning of the human brain. They process data
through weighted connections, apply activation functions, and have the ability to learn
and recognize complex patterns and relationships in the data. Neural networks can
handle both classification and regression tasks and are particularly effective in learning

from large and high-dimensional datasets.
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Figure 2.10 Neural networks algorithm diagram
Ensemble methods: Ensemble methods combine multiple models to
make predictions. Random Forests, for example, create an ensemble of decision trees,
where each tree is trained on a subset of the data. The final prediction is determined
by aggregating the predictions of individual trees. Ensemble methods improve
prediction accuracy and generalization by leveraging the diverse perspectives and

collective wisdom of multiple models.
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Figure 2.11 Ensemble methods diagram
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2.6.2 Machine learning performance evaluation

Machine learning performance evaluation is a crucial aspect of
developing and assessing the effectiveness of predictive models. It involves quantifying
the accuracy and reliability of the model's predictions by comparing them to the actual
values. Performance evaluation assists in studying model selection, improvement, and
optimization. Various metrics are used for evaluation, such as R-squared (R?), mean
absolute error (MAE), Mean Squared Error (MSE), and mean squared error (RMSE)
(Chicco et al., 2021).

R-squared (R?): R? or the coefficient of determination, measures the
proportion of the variance in the dependent variable that can be explained by the
independent variables in a regression model. It ranges between 0 and 1, with a higher
value indicating a better fit of the model to the data.

Mean Absolute Error (MAE): MAE measures the average absolute
difference between the predicted and actual values. It provides a measure of the
average magnitude of errors without considering their direction. Smaller MAE values
indicate better prediction accuracy.

Mean Squared Error (MSE): MSE measures the average squared
difference between the predicted and actual values. It squares the errors, penalizing
larger errors more heavily. MSE is widely used as an objective function in regression
models. Like MAE, smaller MSE values indicate better prediction accuracy.

Root Mean Squared Error (RMSE): RMSE is the square root of the MSE. It
measures the standard deviation of the residuals or errors in a regression model. RMSE
is often used to evaluate the accuracy of prediction models, with smaller values

indicating better performance.

R? = (x -v.) (eq.12)
L2 %)
Zi(xi - Yi)
MAE = 1l 1
EZi=1|Xi - yi| (eq.13)
- 1 <n
MSE Hzi:l(xi y. )2 (eq.14)
RMSE = 1n 2 (eq.15)
\/H Zi:l(xi - yi )
When X; = The measured values
. = The predicted values
Yi

= The mean values
Yi
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2.6.3 Comparison of data mining tools
Data mining is an advanced data analysis technique that involves the
process of discovering hidden patterns and relationships within large datasets. This
process combines artificial intelligence (Al), machine learning (ML), and statistical
analysis to identify data trends and make predictions based on those trends. With
numerous tools available in the market, it is essential to compare their features,
strengths, and limitations to determine the most suitable tool for specific data mining
tasks. In the study conducted by Chou et al. (2018), four popular data mining tools
were explored: RapidMiner Studio, Microsoft Azure Machine Learning Studio, WEKA,
and IBM SPSS Modeler.
The data mining tool described by Wolff (2022) provides a detailed
description of their data mining tool, functionalities, capabilities, and applications.
RapidMiner Studio: It is a free and open-source data science platform
that is based on a Java application. It is designed to provide multiple tools for data
analysis tasks and features hundreds of algorithms for data preparation, machine
learning, deep learning, text mining, and predictive analytics.
Advantages: - Free and open-source platform.
- User-friendly visual interface.
- Extensive library of algorithms for various data
analysis tasks.
- Support for machine learning, deep learning, text
mining, and predictive analytics.
- Active community support.
Disadvantages: - Limited scalability for big data processing.
- Requires some level of programming knowledge for
advanced customization.
Microsoft Azure Machine Learning Studio: It is a cloud-based platform
that allows users to build, deploy, and manage machine learning models. It features a
drag-and-drop interface and offers built-in algorithms, and automated machine learning
capabilities. The platform enables users to quickly create and deploy predictive
models as analytics solutions.

Advantages: - Cloud-based platform with scalable infrastructure.

Integration with other Azure services.

Automated machine learning capabilities.

Collaboration and deployment features.

Seamless integration with Microsoft ecosystem.



33

Disadvantages: - Reliance on Azure services.

- Potential scalability and performance limitations.
- Limited customization options compared to other
tools.

Weka: It is a free and open-source machine learning software with a
large collection of machine learning algorithms that is based on a Java application. It
widely used for educational purposes and provides a large collection of algorithms
and techniques for data analysis.

Advantages: - Open-source tool with a large collection of

algorithms.

- User-friendly graphical interface.

- Suitable for educational purposes.

- Extensive data preprocessing capabilities.

- Active community support.

Disadvantages: - Limited scalability for large datasets.

- Less suitable for big data analytics.

- Limited integration options with other tools or
platforms.

IBM SPSS Modeler: It is a visual data science and machine learning
solution designed for data mining and predictive analytics. It is a user-friendly data
mining tool that supports various modeling techniques. It features a visual interface for
ease of use and offers capabilities for data preparation, transformation, and integration
with other SPSS products.

Advantages: - User-friendly visual interface.

- Broad range of modeling techniques.

- Support for data preparation and transformation.
- Integration with other SPSS products.

- Strong documentation and support.

Disadvantages: - Proprietary software with licensing costs.

- Limited customization options compared to some
other tools.
- Less flexible for advanced users.

In the comparison of RapidMiner Studio, Microsoft Azure Machine
Learning Studio, WEKA, and IBM SPSS Modeler. IBM SPSS Modeler was the most
effective platform for the baseline analysis, outperforming other Al techniques and

producing the best performance among the models evaluated (Chou et al., 2018).
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IBM SPSS Modeler is a multipurpose software that suites on data mining
and include numerous methods, It supports deep learning tasks, various data
structures, and time series analysis (Bruxella et al.,, 2014).

This study utilizes IBM SPSS Modeler through a 30-day free trial
subscription. The trial period includes access to trial support provided through the
Stack Overflow forum, ensuring that users can seek assistance and guidance during
their exploration of the software. With the comprehensive capabilities of SPSS Modeler,
researchers can effectively prepare, blend, explore, and model their data without the

need for programming expertise.

2.7  Literature review of noise prediction and noise mapping

Noise pollution is a significant environmental concern that requires thorough
study and analysis. The noise propagation prediction can be achieved by applying
mathematical formulas such as ISO 9613-2 and various modeling software tools like
Nord2000, CONCAWE, IMMI Software, and SoundPLAN. These tools provide valuable
insights into how noise travels and its potential impact on different areas. Furthermore,
noise pollution evaluation can be effectively conducted by utilizing Geographic
Information Systems (GIS) and developing noise maps with software applications such
as ArcGIS, CadnaA®, SoundPLAN, and Openwind®. These software tools enable
researchers and policymakers to visualize and analyze noise pollution patterns,
assisting in identifying areas that require mitigation measures.

In conducting this study, a comprehensive literature review of noise mapping
was undertaken, focusing on selecting relevant research that aligns with the objectives
and scope of the present investigation. The literature review of noise prediction and

mapping is shown in Table 2.3.
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Chapter Il

METHOD

This study focuses on the propagation of sound level from a wind turbine to
nearby community and develops a sound level prediction model. To test
the hypothesis presented before sound level, wind speed, temperature, and moisture
data was collected from study area at various distances from the wind turbines.
The method of the study can divide into

1. Noise map generation: In this step, the study site had investigated for
site description. The field measurement had measured sound level levels follows
a guidance note on sound level assessment of wind turbine operations at EPA licensed
sites (NG3) by USEPA. The secondary data such as base map picture and transportation
route, had gather from ESRI’s community and Thailand land development department.
The field measurement and the secondary data had made a noise map generation.
The noise map had generated by ArcGIS’s interpolation and overlay analysis.

2. Statistical comparison: In this step, After the field measurement had
measured, the sound levels had been compared relationship with distance, time, and
wind speed. The T-test method used to determine a significant difference between
sound level in day-time and night-time. The Pearson correlation used to measure of
linear correlation between sound level and distance, time, and wind speed that it
represents a relationship of two variables.

3. Developing a model to predict sound level levels cause by a wind turbine:
In this step, IBM SPSS Modeler is a data mining and text analytics software application.
IBM SPSS Modeler had selected from modeling program comparison. Other field
measurement had measured sound level levels, wind speed, wind direction,
temperature, and moisture follow a guidance note on sound level assessment of wind
turbine operations at EPA licensed sites (NG3) by USEPA. field measurement data had
input to IBM SPSS Modeler. Data had separated to training and testing partition.
The prediction model had generated by the auto numeric node. The Auto Numeric
node estimates and compares models for continuous numeric range outcomes using
a number of different methods such as regression, generalized linear, SVM, C&R tree,

CHAID, KNN algorithm. The model used to predict a sound level that nearby
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community received at a worst case scenario. The worst case scenario had made from
a Nakhon Ratchasima Climatolosgical data for period 1990-2019.
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Figure 3.1 Conceptual framework
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3.1 Noise mapping
3.1.1 Site description

The study area is in Nakhon Ratchasima province, Thailand, which has
a tropical climate influenced by seasonal monsoon winds. The case study wind farm
is located on a mountain ridge with 20-year wind speeds ranging from 0.87 to 1.29 m/s.
The wind farm consists of 30 wind turbines with a hub height of 125 m and a rated
power of 2.0 MW on an area of 3.25 sg. km. The study area is 800 m around the
boundary of the wind farm and covers an area of 13 sqg. km. The location of the wind
farm, its layout, automated sound monitoring stations, and noise measurement points
are shown in Figure 3.2.

The study area has three land use types: (1) residential; (2) industrial (a
wind farm); and (3) agricultural. Figure 3.3 shows the satellite image of the study area
and land use zones with the color code classification following the Department of
Public Works and Town & Country Planning, Thailand. The area is dominated by
dryland agriculture land use, such as cassava, cane, corn, etc., followed by industry
and community. There are two rural communities close to the wind farm: Huai Bong
village, located approximately 600 m to the southeast, has 326 households, and Noi
Phatthana Village, located approximately 500 m to the northeast, has 200 households.
Most households are cultivators. The study area consists of two major routes: (1) a
highway, which is a two-lane road running east-west and located on the wind farm's
south side; and (2) a rural road, which is a two-lane road running north-south and

located on the wind farm's east side.
3.1.2 Study area

The study area was a wind farm boundary and its vicinity. To select the
measuring point, the study area was divided into 8 directions with 800 m distance from
the wind farm boundary. Locations was set at 5 locations for each at distances ranging
every 200 m interval up to 800 m from the wind farm, totally 40 points. The
surrounding area was rural, and agriculture was cultivated, including cassava, cane, and
corn. The area was flat, with little difference in elevation. The majority of the area was
unaffected by terrain features like hills, trees, and buildings that could activate sound

propagation. The study area is shown in Figure 3.4.
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Figure 3.4 Study area and noise measurement locations for noise mapping

3.1.3 Method and equipment

The sound levels were measured for 10 minutes per location as an

average Laeq (dB(A)) as described in (equation 11). The sampling time was around 13:00-

1674000 1675000 1676000

1673000
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16:00 pm on May 30, 2018, June 25, 2019, September 15, 2020, and February 2, 2021.
A noise measurement method follows guidance note on noise assessment of wind
turbine operations at EPA licensed sites (NG3) by USEPA (McAleer & McKenzie, 2011).
The sound level meter was set at 1.2-1.5 m above ground level on a tripod and

positioned at least 3.5 m away from a reflecting surface to minimizing the impact of

noise reflections such as a wall, building, or trees.

Figure 3.5 Noise measurement

The A-weighted continuous equivalent sound level (Laeq) s
the logarithmic or energy-averaged noise level which is computed from

the instantaneous noise levels. Laeq can be determined using equation 16.

N
L _ 10log,, izloLA‘.llo (eq.16)
‘ N =
When N = the total number of readings
LAs = the i A-weighted sound pressure level reading

§i = The mean values

3.1.4 Sound level meter and global positioning system
The sound level was measured using the class 1 sound level meter
BSWA 308 with the MPA231 microphone set from BSWA Technology Co., Ltd.-
Productions. The sound level meter was set with a frequency weighting of “A”
according to the international standard IEC 61672:2003 to represent human hearing.
The global positioning system (GPS), as latitude and longitude, was measured with
eTrex-10 from Garmin Ltd. The sound level meter and global positioning system meter

are shown in Figure 3.6.
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GARMIN

b)
Figure 3.6 Measurement equipment
(a) Sound level meter and (b) Global positioning system meter
3.1.5 Noise map generation

The noise map was generated through an interpolation analysis using
sound level sampling location coordinates, sound level distribution, and a base map
(including country, city boundaries, or satellite imagery) in GIS. The sound level
sampling locations were determined using GPS and represented as X, Y coordinates.
The sound level distribution was analyzed using interpolation techniques, incorporating
the sound level sampling location coordinates and field measurements. The base map
was obtained from the Thailand Land Development Department. ArcGIS Desktop 10.5
software was utilized for creating the noise map, employing interpolation methods.
The resulting interpolated surfaces can be visualized in ArcGIS as continuous color
maps or contour lines, allowing for the identification of spatial patterns and trends in
the noise levels across the study area.

The satellite imagery base map used in this study employed the
WGS 1984 UTM ZONE 48N coordinate system projection. Microsoft Excel software
was utilized for the analysis and interpretation of tabular data, which included latitude,
longitude, and sound level measurements from the field.

In this study, the kriging method was chosen for interpolation due to
the anisotropic distribution of the sampling points, which is better suited for kriging.
Additionally, kriging considers the spatial variability and offers variogram models that
can improve interpolation accuracy. The noise maps were created by employing kriging
interpolation within the Geostatistical analyst extension in ArcGIS. The Geostatistical
analyst tool was utilized to generate statistics for comparative analysis and produce

geospatial visualizations. The flowchart of interpolation process is shown in Figure 3.7.
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Figure 3.7 Noise map generation flow chart

The method involved several steps including:

In the first step, the noise datasets were imported into ArcGIS.

In the second step, exploratory spatial data analysis was conducted to
examine the data and identify various statistics, including distribution, trends,
directional components, and outliers. This analysis involved the use of different
techniques, such as: Histogram analysis was performed to identify outliers and
calculate the data distribution. Voronoi maps were utilized to analyze the spatial
variability of neighborhood data. Semi-variogram/covariance cloud analysis was
employed to assess spatial autocorrelation within the dataset and identify outliers.

Trend analysis was conducted to identify global trends.
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In the third step, the geostatistical methods were selected.
The interpolation method defining as the kriging, setting the kriging type as simple and
output surface type as prediction. The data was transformed to normal distributions.
The second-order trend was removed. The variable was defined semivariogram
variable, and a model type was chosen from options such as Circular, Spherical,
Tetraspherical, Pentaspherical, Exponential, Gaussian, Rational Quadratic, Hole Effect,
K-Bessel, J-Bessel, and Stable. The anisotropy was set to true, and the lag size and
number of lags were determined. Through this process, the various combinations of
parameters were executed.

In the fourth step, the interpolation was executed, and the results were
assessed using cross-validation within the dataset.

In the fifth step, the statistical data was evaluated based on the root-
mean-square standardized value, aiming for a value close to 1, and the average
standard error, aiming for a minimum value (or close to 0). The values that yielded
the most reliable and representative noise map were selected as the final settings for
the combinations of parameter. If the evaluation indicated acceptable results,
the noise map was considered generated. However, if the evaluation was not
acceptable, the process required revisiting and redefining the combinations of

parameters to achieve improved outcomes.

3.2 Noise Assessment

3.2.1 Automated sound monitoring stations

The wind farm operator installed two automated sound monitoring
stations in a northeastern community and a southeastern community to continuously
investigate the impact of noise from the wind farm. The monitoring stations were 500
m from the wind farm boundary (Figure 3.8). The instrument was the EM2030 Sound
Level Monitor from Sonitus Systems Limited. The sound levels are measured
automatically, analyzed, and uploaded with reports through the Sonitus Cloud
platform. The monitoring stations measured a noise level every 5 minutes on average,
Laeq (dB(A)). The data used in this study was measured from September 13™ 2019 to
April 30", 2021, covering a period of 596 days.
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3.2.2 Statistical Analysis
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Independent sample t-test analysis was performed to differentiate

noise at daytime and nighttime periods.

The null hypothesis is that the means daytime and nighttime sound

levels are equal.
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The alternative hypothesis is that means of daytime and nighttime
sound levels are unequal.
Ho: b1 = Y2 (The means of daytime and nighttime sound levels are equal)
Ha: p1 # Y2 (The means of daytime and nighttime sound levels are not equal)
In this work, the independent sample t-test method compared the difference

with a 95% confidential interval.

3.2.3 Noise measurement metrics

Sound level descriptors are commonly used to measured how sound
is heard, to determine the impact of noise on health and evaluate noise pollution,
sound quality, and the potential for hearing damage. These descriptors are summarized
by The U.S. The Environmental Protection Agency and the World Health Organization
(United States. Office of Noise Abatement, 1974)

Day-Night sound level (Lgn): Lgn is the A-weighted equivalent sound level
for a 24 hour period with an additional 10 dB weighted on the equivalent sound levels
for nighttime to compensate for sleep interference and other disruptions, with separate
weightings applied to:

- Daytime that occurred within the 15 hour period of 7:00 a.m. and 10:00 p.m.
- Nighttime that occurred within the 9 hour period of 10:00 p.m. and 7:00 a.m.

Day-evening-night sound level (Lgen): Lgn is an average sound pressure
level over a 24 hour period, evenings and nights in a year. For the daytime period, no
additional weighting is applied, while a 5 dB penalty is added to the evening period
and a 10 dB penalty is added to the nighttime period. The penalty reflects the
increased noise sensitivity of people during these periods, with separate weightings
applied to:

- Daytime that occurred within the 12 hour period of 7:00 a.m. and 7:00 p.m.
- Evening that occurred within the 3 hour period of 7:00 p.m. and 10:00 p.m.
- Nighttime that occurred within the 9 hour period of 10:00 p.m. and 7:00 a.m.

Lagn @nd Lgen can be determined using equation 17 and 18, respectively.

1 Ly L,+10

Ly = 10log| | |15x10% |+ 9x10 (eq.17)
1 Ly L.+5 L,+10

Ly 10log 1 12x10% |+|3x10 © |+|9x10 (eq.18)

When L, = Daytime equivalent sound level, dB(A)

L, = Evening equivalent sound level, dB(A)

L, = Nighttime equivalent sound level, dB(A)
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Traffic noise index (TNI): TNI indicates the degree of variation in traffic
noise levels and their effects on human annoyance (Langdon & Scholes, 1968). It shows
the overall noise fluctuations over time by combining very noisy vehicles (L10) and the
general traffic noise (Lgg) as described in equation 19.

Noise pollution level (Lyp): Lo indicates the varying levels of noise that

can cause physiological and psychological disturbances. L, can be determined using

equation 20.
NI = 4x(Ly—Lsy)+ (L —30) (eq.19)
Lo L50+(L10_L90)+(|—10_L90)2 (€G.20)
60
When Lo = the sound level exceeded 10% of the time of
the measurement period
Ls, = the sound level exceeded 50% of the time of
the measurement period
Ly, = the sound level exceeded 90% of the time of

the measurement period

3.3  Sound level prediction model

3.3.1 Study area
The study area was a vicinity wind farm located between wind farm
and Noi Phatthana village. The measurement locations were at the northeast
corner of the wind farm. The sound level measurement was performed at four points
with distances of 100 m intervals up to 400 m. Additionally, meteorological
ambient conditions were measured between these points, at a distance of 250 m.

as shown in Figure 3.9.
3.3.2 Method and equipment
The sound level was measured with a calibrated PULSAR Model 44 S/N

1864 Sound Level Meter. The sound level meter was set with a frequency weighting
of “A” according to the international standard IEC 61672:2003 to represent human
hearing (International Electrotechnical Commission, 2013). Meteorology ambient
conditions, including wind speed, direction, temperature, humidity, and atmospheric
pressure, were measured with the NovalLynx Anemometer. The geographical positions
of the measurement points were determined using a Garmin eTrex 10 handheld GPS.

ESRI’s ArcGIS 10.1 software was used to create the maps.
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3.3.3 Data collection and data preparation

Field measurement data was taken in 5-min intervals for three days.
The sampling date was chosen to cover the time when winter transitions into the dry
season. This timeframe was selected due to the higher frequency of wind during this
season compared to other seasons. The data collection period ranged from 1.00 pm
on 20 February 20" 2023, to 1.00 pm on February 23" 2023, a total of 864 data points
per measurement location. In total, there are 3,456 datasets collected for the three-
day period. measurement was taken at the minimum measurement frequency
recommended by USEPA, fifty times per 10 minutes, to ensure sufficient data for
modeling (McAleer & McKenzie, 2011). Measurement data was processed into a
consistent and usable form. Data processing included data cleaning, data structuring,
data transformation, and data filtering.
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Figure 3.9 Study area and field measurement locations
3.3.4 SPSS Modeler

SPSS Modeler is data mining and analytics software used to build
a predictive model. This research applied various algorithms to predict sound levels
using field measurement data, including sound levels, wind speed, wind direction,
temperature, humidity, and atmospheric pressure. The field measurement data was

divided into two datasets, with a ratio of 70% for training and 30% for testing.
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The auto-numerical node was used to generate a variety of algorithms in a single
modeling run. The node explores every possible model and ranks each candidate
model based on the correlation between predicted and observed values for each
model. CHAID, CART, Linear, and Neural network models were possible
to automatically create, and compare default models of continuous numerical
outcomes from the auto-numerical node. Default values were set in
the auto-numerical node. Four models were individual constructs that were
then applied to construct ensemble models that were proposed for increasing
accuracy. The brief descriptions of the prediction models used here are as follows:

CHAID (Chi-squared Automatic Interaction Detection) is a decision tree
algorithm that builds a decision tree by recursively splitting the data into subsets based
on the most significant differences between the target variable and predictor variables.
CHAID is a popular algorithm for categorical target variables. It is used to identify the
most important predictors that determine the target variable.

CART (Classification and Regression Trees) is another decision tree
algorithm that builds a decision tree by recursively splitting the data into subsets based
on the predictor variables that best predict the target variable. CART is used for
categorical and continuous target variables. It can also be used for classification and
regression tasks.

Linear regression is a statistical method for modeling the relationship
between a dependent variable and one or more independent variables. In SPSS
Modeler, linear regression models can be used for simple and multiple linear
regressions that depend on the number of independent variables. The dependent
variable is continuous, and the independent variables can be either continuous or
categorical.

Neural networks are a type of machine learning algorithm that is
designed to recognize patterns in data. In SPSS Modeler, neural network models can
be used for classification and regression tasks. The neural networks are particularly
useful when the relationships between the predictor variables and target variables are
complex and non-linear. The neural network model in SPSS Modeler allows for the
customization of the number of hidden layers and neurons in each layer, as well as
the activation function used in the model.

An ensemble model is a machine learning technique that combines
multiple individual models to improve the overall performance of the prediction. The
idea behind ensemble models is that by combining multiple models, the strengths of

each model can be leveraged, and the weaknesses can be mitigated.
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Figure 3.10 SPSS modeler flow chart

The modeling steps can be graphically illustrated as SPSS modeler flow
as shown in Figure 3.10. Nodes in the IBM SPSS Modeler are represented by a specific
shape to indicate their function (The International Business Machines Corporation,
2021c). The source node (circle) imports data into the modeler from a different format.
The operations node (hexagon) modifies the data in some way and returns the
modified data to the modeler stream. The model builder node (pentagon) generates
models from the data in the modeler. The model applier node (gold diamond) defines
a container for the generated model that is returned to the modeler canvas. The graph
node (triangle) generates a graph or report from the data in the modeler. The output
node (rectangle) provides the means to obtain information about data and models.
These node shapes work together to facilitate data processing and analysis in the I1BM
SPSS Modeler.

3.3.5 Model performance evaluation

To evaluate the prediction accuracy of the individual models and
ensemble models, the predictor importance charts were produced to find the relative
importance of each predictor in estimating the model. The most appropriate model
was selected from 5 types of models by comparing the model’s performance. The
results of five models were merged, The performance error of the developed model
was evaluated using R-squared (R%), Root Mean Squared Error (RMSE), and the Mean
Absolute Error (MAE), which expresses the average model-prediction error in the units
of the variable of interest (Chicco et al,, 2021). The smallest error model was selected
as a prediction model (Ralevi¢ et al., 2014). The expressions of these parameters are

given in equation 21, 22, and 23.
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R? = v ) (eq.21)
1_ Zi (X| E/l )2
Zi (Xi - yi )
MAE = 1y (eq.22)
HZHM - Yil =
RMSE = 1 < (eq.23)
\/ﬁ 2 (%=, ) ’
When X = The measured values
Yi =  The predicted values
?i = The mean values

The gain chart is a visual representation of the performance of a
predictive model. Gains are defined as the proportion of hits in each increment relative
to the total number of hits in the tree (The International Business Machines
Corporation, 2021a). Finally, the gain charts were plotted to evaluate the performance

of the model.

3.3.6 Maximum sound level prediction for worst-case scenario
The prediction model has been selected based on evaluations for
estimating the maximal sound levels generated in worst-case scenarios. In the study
area, a wind turbine has already been constructed. The sound level produced by the
turbine depends on various meteorological factors. Worst-case scenarios refer to
environmental conditions that have the potential to cause the wind turbine to
generate high sound levels that can propagate over long distances.

The data collection process involved selecting the highest or lowest
values of various factors that affect the sound level and distance of propagation. These
factors were obtained from meteorological data collected over 30 years in Nakhon
Ratchasima province by the Meteorological Department of Thailand.

Table 3.1 Meteorological data in worst-case scenario

Parameters Value Descriptions
Wind speed, m/s 23.15 The highest average wind speed
Wind direction a5 The downwind propagation from source

(Northeast direction) to receiver is related to "worst-case"
Humidity, % 93 The speed of sound in air increases with
the increase in humidity.
Temperature, °c 43.2 The speed of sound in air increases with
the increase in temperature.
Pressure, hPa 1028 The speed of sound in air increases with

the increase in air pressure.




Chapter IV
RESULTS

4.1 Site description

The study area covers the village of Huai Bong in Dankhuntod District,
northwestern part of Nakhon Ratchasima Province. It is approximately 2.5 kilometer
south of the Huai Bong Sub-District. The wind farm is located at the center of the study
area. The wind farm has 30 wind turbines scattered around the site. The wind farm
area is 3.25 square kilometers. This area is mainly covered by agriculture, such as
cassava, cane, corn, and mixed deciduous forest. Two rural communities are nearby:
Huai Bong Village locate approximately 1 kilometer to the southeast, and
Noi Phatthana Village locate approximately 0.7 kilometer to the northeast.
The agricultural area is mostly located around a wind farm and the two villages.
There almost used for farming cassava, cane, and corn. Most of the area is flat land.
Most of the area is not taking effect of terrain features such as hills, trees, and buildings
that can affect sound propagation. There is a low bluff territory running from northwest
to southwest. This area is covered with mixed deciduous forests. The tree can act as
sound propagation, but there is no disadvantage to the community since
the community is on the other side.
4.2 Noise map

4.2.1 Field measurement data

The averages and standard deviation of the sound levels at distances

ranging every 200 m intervals up to 800 m from the wind farm at May 30, 2018, June
25, 2019, September 15, 2020, and February 2, 2021, as shown in Table 4.1.

Table 4.1 Field measurement data

Parameters Sound level, dB(A)
0Om 200 m 400 m 600 m 800 m
May 30, 2018 49.0+4.9 46.9+6.7 46.3+3.4 51.5+4.1 47.1+4.4
June 25, 2019 52.3+5.8 49.8+2.7 49.3+1.8 51.0+6.8 52.1+£5.5
Sep 15, 2020 51.1+£3.5 44.4+3.4 45.7+4.8 46.7+9.8 45.5+6.1
Feb 2, 2021 49.2+1.9 45.8+3.6 46.0+4.3 46.9+4.9 46.1+2.5
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4.2.2 Evaluation of predictions

The exploratory spatial data was used to examine the frequency
distribution of the data, checking for its normality, identify outliers, and explore spatial
patterns, as shown in Figure 4.2.

Figure 4.3 includes the slope of the best fit line in the scatter plot, the
remaining number of data points after removing outliers using cluster type in the
voronoi map, the type of variogram models employed, and the statistics of the noise
data collections.

On May 30, 2018, after removing outlier samples, 26 out of 40 samples
remained. The analysis took circular methods. The resulting statistics were a root-
mean-square standardized value of 1.588 and an average standard error of 2.515.

On June 25, 2019, after removing outlier samples, 24 out of 40 samples
remained. The analysis took gaussian methods. The resulting statistics were a root-
mean-square standardized value of 1.831 and an average standard error of 2.613.

On September 15, 2020, after removing outlier samples, 25 out of 40
samples remained. The analysis took stable methods. The resulting statistics were a
root-mean-square standardized value of 1.440 and an average standard error of 2.656.

On February 2, 2021. after removing outlier samples, 34 out of 40
samples remained. The analysis took stable methods. The resulting statistics were a
root-mean-square standardized value of 1.296 and an average standard error of 2.772.

4.2.3 Noise map around the wind farm

The noise maps were generated using kriging techniques to interpolate
noise distribution from sampling locations. The spatial data used as the base map
included satellite imagery and city boundaries. The noise map showed spatial
distribution of sound level in areas of 1,2514,675 square m. The sound level areas
generated by interpolation analysis separated every 2.5 dBA interval sound levels from
40 - 70 dBA. The noise maps of the study area present the noise levels of four
measurements, as shown in Figure 4.4.

1) Noise map of May 30, 2018, Fig. 6 (A);

The predicted sound levels ranged from 40 to 60 dB(A). In the
industrial area, sound levels were predicted to range between 45 and 60 dB(A), while
in the agricultural area, sound levels were predicted to range from 40 to 50 dB(A). In
the residential area, sound levels were predicted to range from 45 to 60 dB(A) in the
south and southeast, and from 45 to 55 dB(A) in the northeast.

Significantly, higher predicted sound levels ranging from 55 to 60

dB(A) were predicted in the south, which is located in close proximity to a highway in



63

both the industrial and residential areas. On the other hand, the lower predicted sound
levels ranged from 40 to 45 dB(A) in the northwest, west, and east, which are
agricultural areas.

2) Noise map of June 25, 2019, Fig. 6 (B);

The predicted sound levels ranged from 40 to 70 dB(A). In the
industrial area, sound levels were predicted to range between 50 and 70 dB(A), while
in the agricultural area, sound levels were predicted to range from 40 to 55 dB(A). In
the residential area, sound levels were predicted to range from 45 to 70 dB(A) in the
south and southeast, and from 45 to 50 dB(A) in the northeast.

Significantly, higher predicted sound levels ranging from 55 to 70
dB(A) were predicted in the south, which is located in close proximity to a highway in
both the industrial and residential areas. On the other hand, the lower predicted sound
levels ranged from 40 to 45 dB(A) in the east, which are agricultural areas.

3) Noise map of September 15, 2020, Fig. 6 (C);

The predicted sound levels ranged from 40 to 55 dB(A). In the
industrial area, sound levels were predicted to range between 45 and 55 dB(A), while
in the agricultural area, sound levels were predicted to range from 40 to 55 dB(A). In
the residential area, sound levels were predicted to range from 45 to 55 dB(A) in the
south and southeast, and from 50 to 55 dB(A) in the northeast.

Significantly, higher predicted sound levels ranging from 50 to 55
dB(A) were predicted in the east, and northeast, which are both the industrial and
residential areas. On the other hand, the lower predicted sound levels ranged from 40
to 45 dB(A) in the west, which are agricultural areas.

4) Noise map of February 2, 2020, Fig. 6 (D);

The predicted sound levels ranged from 40 to 55 dB(A). In the
industrial area, sound levels were predicted to range between 45 and 55 dB(A), while
in the agricultural area, sound levels were predicted to range from 40 to 50 dB(A). In
the residential area, sound levels were predicted to range from 45 to 50 dB(A).

In conclusion, the noise map of four measurements show that the
average sound level ranged between 40.0 and 70.0 dB(A). The sound levels vary based
on the location and time of measurement. The industrial areas consistently show
higher sound levels, ranging from 45 to 70 dB(A) in the maps. The residential areas
show sound levels ranging from 45 to 60 dB(A) in most cases, but higher sound levels
show in proximity to highways. The agricultural areas generally have lower sound
levels, ranging from 40 to 55 dB(A).
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The maps demonstrate that the south and southeast regions
consistently have higher sound levels, mainly due to their close proximity to highways
in both industrial and residential areas. It is possible that traffic is the primary noise
source. The finding is similar to the study in Taiwan (Tsai et al., 2009), Malaysia (Segaran
et al,, 2020), and India (Manojkumar et al., 2019). On the other hand, the northwest,
west, and east regions consistently exhibit lower sound levels, indicating their
agricultural nature. The sound levels in these areas range from 40 to 50 dB(A), and can
reach up to 50 to 55 dB(A). It is possible that the noise is caused by the sound of wind
flowing through vegetation (Paulraj & Valisuo, 2017).

In this study, the standard deviation of the measured sound level
ranged from -5.18 to 4.34 dB(A) at the same distance. These significant variations may
be influenced by background noise. By the way, the sound level results obtained
through the batch method represent specific time periods and should not be

considered as a definitive representation of the overall sound level in the area.
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4.2.4 Statistical analysis
1) Noise levels at different time

The sound level was obtained from the two automated sound
monitoring stations in low-density residential areas. The plot of sound levels with
the time of the day is presented in Figure 4.5. The field measurement data and
statistical analysis are shown in Table 4.2 and Table 4.3. A T-test of the differences in
sound level of daytime and nighttime periods shows significant differences (p>0.05)
between the two stations.
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Figure 4.5 Variation of sound levels with time of the day
(Sep 13™, 2019 — Apr 30™, 2021) a) The southeast monitoring station,
b) The northeast monitoring station

A southeast monitoring station, Fig. 7(a); The equivalent sound level
(Laegsmin) Was 41.51-87.56 dB(A), and the average sound level was 48.32+3.08 dB(A).
The daytime sound level, with a mean of 48.98+3.07 dB(A), is higher than the nighttime
sound level, with a mean of 47.20+2.77 dB(A). The results of the southeast monitoring
station show that sound levels peaked between 7:00 am and 9:00 am and between
3:00 pm and 5:00 pm. Due to its proximity to the highway, the primary noise source at
the southeast monitoring station is traffic during peak commuting hours (rush hour).

A northeast monitoring station, Fig. 7(b); The equivalent sound level
(Laeg,smin) Was 29.90-81.82 dB(A), and the average sound level was 49.51+4.85 dB(A).
The daytime sound level, with a mean of 50.35+4.65 dB(A), is higher than the nighttime
sound level, with a mean of 47.81+4.81 dB(A). The results of the northeast monitoring

station show that sound levels were lower between 2:00 pm and 7:00 am (including
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evening and nighttime). This is because most villagers come home and rest in

the evening after work. There were no other activities in the residential area so that

the surrounding environment could influence the sound level.

Table 4.2 The descriptive statistics and noise indicators

Southeast Monitoring

Northeast Monitoring

Descriptive . .
statistics/Indicators >tation >tation
Total Day Night  Total Day Night
Count 162,351 101,769 60,582 166,596 111,382 55,214
Minimum, dB(A) 41.51 42.27 41.74 29.90 31.14 29.90
Maximum, dB(A)) 87.56 85.50 87.56 81.82 81.72 81.82
Mean, dB(A) 48.32 48.98 47.20 49.51 50.35 47.81
Standard Deviation, dB(A) 3.08 3.07 277 4.85 4.65 4.81
Leq, dB(A) 52.40 53.21 50.54 52.99 53.77 51.34
Lgn, dB(A) 57.43 - - 58.19 - -
Lgen, dB(A) 57.68 - - 58.46 - -
L1o, dB(A) 51.73 52.28 50.31 55.63 56.28 53.91
Lso, dB(A) 47.94 48.58 46.79 49.12 49.91 47.24
Lgg, dB(A) 44.98 45.81 44.32 44.25 45.20 42.90
TNI, dB(A) 41.98 41.69 38.28 59.77 59.52 56.94
Lnp, dB(A) 55.45 55.74 53.38 62.65 63.03 60.27

Table 4.3 The t-test for the difference between the means of day-time and night-

time sound levels

95% Confidence

Sig.
Stations t s Mean Interval
(2-tailed)
Lower Upper
Southeast |, 509241 101,768 .000 48.97 48.96 48.99
Monitoring
Stati L, 4,196.36 60,582 .000 47.20 47.18 47.22
tation
Northeast Ly 3,617.73 111,381 .000 50.35 50.32 50.38
Monitoring
. L, 2,336.37 55,213 .000 47.81 ar1.77 47.85
Station
Additionally, most of the sound measurements taken at

the northeast monitoring station are larger than the range measured from

the southeast monitoring station,

which

indicates

that the variability of

the sound measurements at the northeast station was higher than the variability of

sound pollution at the southeast station.
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2) Comparison of measured noise levels with regulation standards

The existing noise levels monitored in this study were compared
with the noise control standards set by the World Health Organization (WHO) guidelines
and the Noise Control Act in Thailand, as shown in Table 4.2 and Table 4.3.

Thailand’s noise control act: The comparison between equivalent
sound levels (Leg) (52.40 and 52.99 dB(A)) and maximum sound levels (87.56 and 81.82
dB(A)) of the two monitoring stations with standard shows that the noise levels are
lower than a 24-hour exposure level of 70 dB(A).

WHO’s guidelines for daytime sound levels: The comparison of
daytime equivalent sound level (Leg) of the two monitoring stations with the guidelines
shows that the noise levels (53.21 and 53.77 dB(A)) exceed the recommended sound
levels (53 dB(A)).

WHO'’s guidelines for nighttime sound levels: The comparison of the
nighttime equivalent sound level (L) of the two monitoring stations with the
guidelines shows that the noise levels (50.54 and 51.34 dB(A)) exceed the
recommended sound levels (45 dB(A)).

WHO’s recommended levels for wind turbine noise sources: The
comparison of the day-evening—night sound level (Lge,) of the two monitoring stations
with the guidelines shows that the noise levels (57.68 and 58.46 dB(A)) exceed the
recommended sound levels (45 dB(A)). The measurement at the wind farm border
(49.0+4.9 on May 30, 2018; 52.3+5.8 on June 25, 2019; 51.1+3.5 on September 15,
2020; 49.2+1.9 on February 2, 2021) shows that the sound level exceeds the
recommended sound levels (45 dB(A)).

WHO’s recommended levels for traffic noise sources: The
comparison of the day-evening-night sound level (Lgen) of the two monitoring stations
(57.68 and 58.46 dB(A)) with standard shows that the noise levels were within the
recommended sound levels (with 53 dB(A)). The comparison of the compared
nighttime equivalent sound level (Leg) (50.54 and 51.34 dB(A)) exceeds the
recommended sound levels (45 dB(A)).

Traffic Noise Index (TNI): TNI indicates the degree of variations
(degree of annoyance) for the traffic flow scenario. The higher value of TNI indicates
more disturbances due to fluctuating noise concerning L. From the measurement,
TNI was higher during the day at 41.69 and 59.52 dB(A), compared to nighttime at 38.28
and 56.94 dB(A) for southeast and northeast monitoring stations, respectively.
Compared with standard, Both TNI are lower than the recommended sound levels
(with 74 dB(A)). Comparing the two monitoring stations, TNI was higher at the northeast

station, which is a residential colony next to a rural road. From observation, vehicles
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on the rural road, which are cars, trucks, and motorcycles, were the major contributors
to the noise pollution in the community. This result is similar to the result published
by Ky et al. (Ky et al., 2021)

Noise Pollution Level (Lnp): Ly indicates the degree of annoyance
caused by fluctuating noise. From the measurement, L, was higher during the day at
55.74 and 63.03 dB(A), compared to nighttime at 53.38 and 60.27 dB(A) for southeast
and northeast stations. Comparing with standard, Both L., are lower than the
recommended sound levels (with 72 dB(A)). Respectively, Similar to TNI, Ln, was higher
at the northeast station.

4.2.5 Evaluation of noise risk zone and impact on human health

Land use in the study was differentiated into three categories,
residential, Industrial, and agricultural. The noise map (Figure 4.4) shows that the
residential zone is in the higher noise levels. Nighttime noise levels in the two villages
exceed WHO recommendations. The noise level in the industrial zone or wind farm
area was 45- 59.9 dB(A). The noise level in the agricultural area was 37.5 - 54.9 dB(A),
and it occasionally reached up to 59.9 dB(A) because of the wind blowing on the
vegetation (Paulraj & Valisuo, 2017). Based on the measurement of the automated
sound monitoring station located in the residential area, the noise level of the roadside
residential colonies is between 29.90 and 87.56 dB(A). The values of TNI and L, were
38.28-59.77 and 53.38-63.03 dB(A), respectively. The maximum TNI and L, values were
59.52 and 63.03 dB(A) during daytime at the side of the rural road (the northeast
monitoring station).

To minimize the nuisance of noise pollution in this area, a mitigation
measure, e.g., proper traffic management and strict enforcement of noise pollution
control rules and resgulations, is required. Many traffic noise management that is
suitable for low-density residential, e.g., demarcation of noise-sensitive zones for speed
reduction and increasing greeneries and open spaces along the roadside. The noise
assessment shows that the noise levels measured at two monitoring stations are
generally lower than the 24-hour time period and maximum permissible sound levels
set by Thailand’s noise and vibration control act. However, the daytime, nighttime,
and day-evening-night sound levels are higher than the recommended sound levels
set by WHO for the community, wind turbine, and traffic noise sources. Moreover, the
measured traffic noise index (TNI) and noise pollution level (LNP) are both lower than
the recommended sound levels. Overall, while the noise levels at the two monitoring
stations comply with Thailand's Noise and vibration control act, they exceed WHO's
recommended sound levels for some noise sources, indicating a need for further noise

reduction measures. Nighttime noise can cause sleep disturbances, leading people to
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suffer from daytime sleepiness, tiredness, annoyance, mood changes, and decreased
short-term well-being and cognitive performance. Long-term sleep disturbance can
lead to adverse cardiometabolic, psychiatric, and social outcomes (Halperin, 2014).
This suggests that noise is potentially harmful to human health and well-being and
may require further measures to reduce noise pollution.

WHO defines the noise levels and their impacts on humans as the
following: more than 30 dB(A): not restful sleep; more than 30 dB(A): not restful sleep;
more than 75 dB(A): harmful; more than 120 dB(A): painful. The average noise level at
night in the villages was 47.20+2.77 and 47.81+4.81 dB(A), which exceeds the WHO
recommendation. In this case, nighttime noise was caused by traffic, affects objectively
measured sleep physiology, and subjectively assessed sleep disturbance in adults
(World Health Organization, 2022). The sleep disturbance causes people to suffer from
daytime sleepiness and tiredness, annoyance, mood changes, and decreased short-
term well-being and cognitive performance the next day. The long-term sleep
disturbance causes adverse outcomes of cardiometabolic, psychiatric, and social
(Halperin, 2014).

4.3  Noise prediction model

4.3.1 Field measurement data

The ranges and averages of the field measurements from four
measurement points are shown in Table 4.4. Comparing meteorological parameters
between the field measurement and historical data obtained from the Thai
Meteorological Department (TMD) of Nakhon Ratchasima province from 1990-2019
reveals that the measurement data is within the range of the historical data. The
average sound level was higher at the measurement point closer to the wind turbine.
A plot between sound level and time of the day for all measurement points over 72
hours is shown in Table 4.4.
Table 4.4 Field measurement data

Parameters Units Field measurement data Historical data
100m 200m 300m 400 m (1990-2019)

Sound level dB(A) 46.8 47.8 43.0 43.6 ]
(Mean+SD) +5.4 +6.3 +4.9 +4.6
Wind direction Degree 62.1+54.8 -
Wind speed m/s 1.2+1.1 0.9-1.3
Temperature °C 28.5+2.7 24.4-30.1
Humidity % 67.7£2.9 62.0-81.0

Pressure hPa 998.5+0.4 997.7-1,013.8
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Figure 4.6 Plots between sound level and time

From Figure 4.6, the difference between the sound at various times of the day
can be seen. The higher sound level around morning and evening indicated the effect
of human activity from the road and village nearby. The U.S. The Environmental
Protection Agency (EPA) defines daytime sound levels as those that occur between
the hours of 7.00 am and 10.00 pm and nighttime sound levels as those that occur
between 10.00 pm and 7.00 am (United States Environmental Protection Agency Office
of Noise Abatement and Control, 1974). The high noise levels in the daytime compared
to the nighttime are typical for a quiet residential area.

The measured sound level, 33.0-61.7 dB(A), was lower than Thailand's
standard, which sets an average level of 70 dB(A) for 24 hours and a maximum level
of 115 dB(A). However, some measurements exceed the WHO's recommended value,
45 dB (A), for the wind turbine noise and the WHO's recommended value for
community noise in outdoor living areas, 55 dB Laeq (World Health Organization, 2022).
This means that noise in the study area could potentially be harmful to human health.
Hence, mitigation measures should be implemented to protect residents in study area.

4.3.2 Data Preparation

The field measurement data used for model input was within a wind
turbine’s cut-in speed condition. The cut-in speed is when the wind turbine blades
start to rotate and generate power. The wind turbines at the study site are the G114-
2.0 MW model, which has a cut-in wind speed of 2.5 m/s. The remaining dataset (n =
576) was divided into training and testing. A ratio of 70/30 for training and testing
datasets was a popular ratio, and it was considered the best ratio for training and
validating the models (Nguyen et al.,, 2021). The number of training data was 399
(69.3%), and testing was 177 (30.7%). The distribution plot of the training and testing

datasets with sound levels is shown in Figure 4.7.
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Figure 4.7 The distribution of the training and testing dataset
4.3.3 Modeling
The modified datasets were used to generate models from the auto-
numerical node with default values. When an automated modeling node is executed,
the node estimates candidate models. The model candidate provided four modeling
methods: CHAID, CART, Linear, and Neural Network. The ensemble model combines
the other models to produce one optimal predictive model. The default ensemble
method is voting. The voting operates by counting how many times each predicted
value is selected and then choosing the value with the greatest cumulative count.
4.3.4 Predictor Importance
The predictor importance chart helps indicate the relative importance
of each predictor in estimating the model. In Figure 4.6, the predictor importance chart
of the CHAID, CART, Linear, and Neural network models reveal that distance is the

primary predictor, followed by temperature, time, and wind speed.
4.3.5 Model performance evaluation

Table 4.5 shows the comparison of the statistical analysis for model
evaluation. Considering the R-Squared (R?), the top 3 best performances were the
Ensemble model (0.613), CHAID (0.608), and CART (0.608). Comparing the RMSE and
MAE values of the models in Table 4.5 indicates the Ensemble as the premier model
with the lowest values of 2.919 and 2.328, respectively. Therefore, the Ensemble
model was selected as a prediction model. The ensemble model was further validated
using cross-validation, splitting a dataset into training and testing subsets.

The Ensemble model was further validated using cross-validation by
splitting a dataset into training and testing subsets. In this paper, RMSE and MAE are utilized
to assess the performance of the forecasting model. As shown in Table 4.6, The percentage
difference between training and testing, RMSE (10.08%) and MAE (5.89%) is low.
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It indicates that the model is not overfitting (Kim & Simon, 2014). Thus, the proposed model

could forecast the sound level with a reasonable level of accuracy. The metrics RMSE and

MAE also validate the effectiveness of the model.

Table 4.5 Comparison of performance metrics of five models

Model R? RMSE MAE
CHAID 0.608 2.871 2.437
CART 0.608 2.871 2.564
Linear 0.276 3.903 3.053
Neural network 0.372 3.848 3.011
Ensemble 0.613 2919 2.328
Table 4.6 Ensemble model validation performance metric
Partition RMSE MAE
Training 2.818 2.191
Testing 3.134 2.328
% Difference 10.08 5.89
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Figure 4.8 Predictor importance chart

The performances of the models were visually compared using the gain

chart plots. The plot presents accumulated gains % to percentile for training and

testing datasets. The gain chart in Figure 4.9 indicates that the models are exemplary

because the charts rise steeply toward 100% approximately and then level off.
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Figure 4.9 Gain charts
4.3.6 Maximum sound level prediction for worst-case scenario
The maximum sound level is predicted using an ensemble
model. The result is obtained through a voting mechanism that combines the
predictions from CHAID, CART, Linear, and Neural algorithms. The modeling steps can
be graphically illustrated as SPSS modeler flow, as shown in Figure 4.10.
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Figure 4.10 Prediction flow chart

The sound level prediction model results reveal patterns in the
relationship between the predicted sound level and distance, as shown in Figure 4.11.
Overall, the predicted sound level during nighttime is higher than during daytime.
Focusing on the predicted sound level during nighttime, it initially increases as the
distance from the source increases, reaching a peak of 52.2 dB at 160 m, representing
the maximum sound level. Then, the predicted sound level starts to decrease at a
distance of 200 m. However, it eventually reaches a stationary state at a distance of

360 m, maintaining a constant sound level of 43.9 dB even as the distance increases.
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Chapter V
CONCLUSION AND RECOMMENDATIONS

This chapter presents the conclusions and recommendations of
the study based on the research objectives, which are as follows: (1) To study
the propagation of wind turbine noise by generating a noise map, and (2) To investigate
sound level with a noise prediction model. The study has concluded these objectives

and provides future research and development recommendations.

5.1  Overview of the Study

This research aims to study the potential effect of wind farm noise on
the community at 800 m. radius from the boundary of the wind farm located in
Huai Bong Sub- District, Dankhuntod District, Nakhon Ratchasima Province in Thailand.
The study can be divided into 2 parts; 1. Noise map generation and 2. Developing
a model to predict sound levels caused by a wind turbine.

For the noise map generation, the sound level was measured On-site.
The field measurement following a guidance note on sound level assessment of
wind turbine operations at EPA-licensed sites (NG3) by USEPA. The field measurement
and the secondary data, aerial photo, and transportation route are used to generate
noise contour and map. The techniques employed for this purpose included
interpolation and overlay analysis. Specifically, noise maps were generated using kriging
as the interpolation technique. The process of developing these noise maps was
facilitated through the use of ArcGIS Desktop 10.5 software.

For the sound level prediction generation, A model to predict sound was
performed using IBM SPSS Modeler. IBM SPSS Modeler had selected from modeling
program comparison. Other field measurements had measured sound levels,
wind speed, wind direction, temperature, and moisture. The prediction model was
generated by estimates and compares models for continuous numeric range outcomes
using a number of different methods such as regression, generalized linear,
SVM algorithm, C&R tree, CHAID algorithm, KNN algorithm, Neural network, and
Ensemble algorithm. The model was used to predict a sound level that a nearby
community received in a worst-case scenario. The worst-case scenario had made from

Nakhon Ratchasima Climatological data for the period 1990-2019.
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5.2 Conclusion

5.2.1 Noise mapping

In this study, sound levels were measured at distances ranging every
200 m intervals up to 800 m from the wind farm, totaling 40 points. A noise
measurement method followed the guidance note on noise assessment of wind
turbine operations at EPA’s licensed sites (NG3) by USEPA. The development of noise
maps using GIS for the area around the wind farm, based on field data measured yearly
from 2018 to 2021, is presented. ArcGIS desktop 10.5 software was used in this study
to develop noise maps and land use maps. These noise maps were generated using
kriging interpolation techniques on geostatistical analyst.

The noise map from the four measurements indicates that the average
sound level was between 30.0 and 70.0 dB(A). In agricultural areas, the sound level
ranged from 30.0 to 44.9 dB(A), with peaks reaching between 55.0 and 59.9 dB(A) due
to the sound of the wind flowing through vegetation, which served as the background
noise (Paulraj & Valisuo, 2017). High noise levels between 55.0 and 70.0 dB(A) were
found around the roads, indicating that traffic is the primary noise source. This finding
is consistent with studies conducted on traffic noise in urban noise mapping
environments in Taiwan (Tsai et al., 2009), noise mapping in urban environments in
India (Manojkumar et al., 2019), and noise mapping in residential environments in
Malaysia (Segaran et al., 2020).

Theoretically, sound levels are measured on a logarithmic scale.
Doubling the distance from a wind turbine reduces the sound level by six decibels
(Alberts, 2006). However, in this study, doubling the distance from a wind turbine
led to sound level variations ranging from -5.18 to 4.34 dB(A). Sound levels at
the same distance showed significant variations influenced by background noise.
The wind turbine generates a noise level that becomes equal to the background noise
level when the wind speed is approximately 12 m/s and the distance exceeds 100 m
from the receiver (Katinas et al., 2016), However, the 30-year wind speeds ranged from
0.9 to 1.3 m/s at Nakhon Ratchasima Province, significant lower. which means that the
noise level that generated from wind turbine becomes equal to the background noise
level even when the distance does not exceed 100 m from the receiver.
There is a possibility that a sound source other than wind turbine noise could be
dominating this area. The dominating noise could be generated by wind blowing on

the microphone or vegetation (Bolin, 2006), or even from traffic noise.
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5.2.2 Noise assessment

The sound level was obtained from the two automated sound
monitoring stations located southeast and northeast of the wind farm. The monitoring
stations measured a noise level every 5 minutes on average, Laeq (dB(A)).
The data used in this study was measured from September 13", 2019 to April 30",
2021, covering 596 days. Independent sample t-test analysis was performed to
differentiate between noise levels during daytime and nighttime periods.
And sound level descriptors were calculated to compare measured noise levels with
standards such as Thailand’s noise control act, World Health Organization guidelines,
Traffic Noise Index, and Noise pollution level, to determine the impact of noise on
health and evaluate noise pollution.

The results of the t-test analysis conducted from both stations indicate
significant differences in sound levels between daytime and nighttime periods (p>0.05),
with sound levels during daytime periods being significantly higher than those during
nighttime periods. The sound levels peaked between 7:00 am and 9:00 am and again
between 3:00 pm and 5:00 pm, There is a possibility that the primary noise source
during rush hours is traffic, and several factors contribute to the reinforcement of sound
levels during this period, including both traffic and human activities. But some sound
levels are higher during off-peak hours than during rush hours due to increased traffic
flow, allowing cars to travel at higher speeds that generate higher levels of traffic noise
(Yang et al,, 2020).

The comparison results from both stations were the equivalent sound
levels (Leq) and maximum sound level (Lm.) with standard, which shows that
the noise levels are lower than a 24-hour exposure level (70 dB(A)) stated in
Thailand’s noise control act. However, they exceed the WHO’s guidelines for
sound levels during daytime periods (53 dB(A)) and during nighttime periods (45 dB(A)).
The day-evening-night sound levels (Lgen) also exceed the WHO’s recommended
sound levels for wind turbines and traffic noise sources (45 dB(A)). Although
traffic noise index (TNI) and noise pollution levels (LNP) are lower than
the recommended sound levels, nighttime noise still can cause sleep disturbances,
leading people to suffer from daytime sleepiness, tiredness, annoyance, mood
changes, and decreased short-term well-being and cognitive performance (World
Health Organization, 2022). Long-term sleep disturbance can lead to a range of adverse
outcomes, including cardiometabolic, psychiatric, and social repercussions. The long-

term sleep disruption has been increased risks in various health. (Halperin, 2014).
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5.2.3 Noise prediction modeling

In this study, the field measurement data including sound levels,
wind direction, wind speed, temperature, humidity, and pressure were measured in
5-min intervals for three days (From 1.00 pm, 20 February 20", 2023, to 1.00 pm,
February 23, 2023) with distances of 100 m intervals up to 400 m at the northeast
corner of the wind farm, a total of 864 times per point. To investigate sound level with
a noise prediction model. Field measurement data was processed into a consistent
and usable form. Data processing included data cleaning, data structuring,
data transformation, and data filtering. They divided it into two datasets, with a ratio
of 70% for training and 30% for testing. SPSS Modeler is used to build a prediction
model from the auto-numerical node with default values. To explores possible model
and ranks each candidate model based on the correlation between predicted and
observed values for each model. The performance error of the developed model was
evaluated using R- squared ( R®) , Root Mean Squared Error ( RMSE) , and
the Mean Absolute Error (MAE),

The candidate model provided five modeling methods, including
CHAID, CART, Linear, Neural network, and an Ensemble model that combines the other
models to produce an optimal predictive model. The predictor importance chart
reveals that distance is the primary predictor, followed by temperature, time, and wind
speed. The results of the model evaluation show that the Ensemble model has the
highest R-Squared value (0.613) and the lowest values for RMSE (2.919) and MAE
(2.328). The Ensemble model proves to be the most suitable technique, as it involves
weighing several individual models and combining them to improve predictive
performance (Sagi & Rokach, 2018). Several researchers have observed better
prediction performance with Ensemble models compared to others (Xiao et al., 2018).
The performance of the models was visually compared using gain chart plots. The
chart of the Ensemble model rises steeply to a faster rate than other algorithms in
both the training and testing sections, reaching a 100% gain, and then levels off.
Additionally, the Ensemble model underwent cross-validation by splitting the dataset
into training and testing subsets. The percentage difference between training and
testing for Root Mean Square Error (RMSE) (10.08%) and Mean Absolute Error (MAE)
(5.89%) is low, indicating that the model is not overfitting (Kim & Simon, 2014).
Overfitting occurs when the model cannot generalize and fits too closely to the training
dataset instead. The Ensemble model was ensured to be capable of being

the prediction model.
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5.2.4 Maximum sound level prediction for worst-case scenario

The prediction model has been chosen based on evaluations
conducted to estimate the maximal sound levels generated in worst-case scenarios.
This aims to address the gap in noise regulations for wind turbine noise sources in
Thailand. The ensemble model predicts the maximum sound level through a voting
mechanism that combines the predictions from CHAID, CART, Linear, and Neural
network algorithms. Worst-case scenarios refer to environmental conditions that have
the potential to cause the wind turbine to generate high sound levels that can
propagate over long distances. These factors were obtained from meteorological data
collected over a 30-year period in Nakhon Ratchasima province by the Meteorological
Department of Thailand. The results reveal patterns in the relationship between the
predicted sound level and distance. Nighttime sound levels are higher than daytime
levels. As the distance from the source increases, the nighttime sound level initially
rises, reaching a peak of 52.2 dB(A) at a distance of 160 m. Afterward, at a distance of
200 m, the sound level begins to decline and eventually reaches a stationary state at
360 m, maintaining a constant level of 43.9 dB(A).

5.3 Recommendations

1) The noise maps can also be used to identify the vulnerable area compared
to the local and the WHO’s acceptable thresholds., the decision-makers can identify
the areas that require mitigation measures to minimize the nuisance of noise pollution.

2) Implementing Internet of Things (IoT) technology for noise mapping, utilizing
continuous noise sensors to generate real-time noise maps accessible through websites
or applications. This approach improves data accuracy, enabling more effective noise
management and mitigation strategies.

3) The findings from the study on maximum sound level prediction for worst-
case scenarios will support the development of future noise regulations for wind
turbines in Thailand. The current regulations, which state that regulations on sound
impact that the maximum allowable noise level must not exceed 10 dB(A) and the
24-hour A-weighted equivalent continuous sound level must not exceed 70 dB(A) for
unknown sound sources, may be considered too high for wind turbine noise.
The results of this study can help establish more specific noise limits for wind turbines,
which will ensure effective management and mitigation of noise pollution from
the wind energy projects in Thailand.

4) Additional research on various machine learning algorithms, such as
AdaBoost, Random Forest, Extremely Randomized Trees, and other related algorithms,
is recommended for further exploration and investigation in this field.
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Table Al Field measurement data of various date
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Coordinates

Measurement date

Point
X Y 2018-5 2019-6 2020-9 2021-2
NOO 766279 1675847 a7.1 52.6 54.9 49.3
NO1 766225 1676043 43.7 48.6 a6.7 41.5
NO2 766117 1676228 45.3 51.6 47.8 41.0
NO3 765971 1676408 53.0 58.2 48.3 42.8
NO4 765961 1676608 45.4 56.6 46.1 47.0
E0O 767822 1674407 50.8 47.6 53.1 52.1
EO1 768028.6 1674438 42.9 a4.5 a2.7 50.5
E02 768234 1674467 44.1 49.8 49.5 49.6
E03 768446 1674478 55.8 55.3 55.4 56.0
EO4 768646 1674523 43.2 53.1 52.4 43.6
S00 767383 1673020 58.0 65.8 53.0 52.1
S01 767405 1672824 62.9 51.1 a8.7 a7.1
S02 767459 1672620 523 50.2 49.8 a6.7
S03 767583 1672428 53.9 46.3 a2 45.6
S04 767658 1672237 43.7 as5.7 ar.4 a4.5
W00 766090 1674335 51.7 50.0 53.7 48.1
W01 765885 1674267 46.3 53.6 40.5 50.3
W02 765702.2 1674226 ad4.1 49.0 43.2 54.6
W03 7655132 1674159 56.6 49.6 35.7 45.9
wo4a 765327 1674085 49.8 a8.3 36.2 45.9
NEOO 767130.5 1675424 ar.2 53 46.8 a8.7
NEO1 767387.9 1675641 47.2 48.2 40.6 a2.7
NEO2 767500.9 1675813 50.2 46.2 50.3 43.4
NEO3 767684 1675983 51 58.8 65.3 533
NEO4 767979 1673746 56.2 60.8 52.3 51.6
SEQO 768179.1 1673762 43.2 ar.5 a8.9 48.6
SEO1 768377 1673750 45.2 50.5 49.0 ar.7
SEQ2 768584.3 1673716 43.7 47.8 46.8 4a4.4
SEO3 768785 1673656 48.2 54.9 a7.6 43.5
SEO4 766547 1673914 48.6 56.1 49.5 44.6
SWO00 766331.1 1673842 50.4 50.1 45.7 47.0
SWO01 766152 1673742 a4.5 50.4 42.6 a4.4
SW02 7659849 1673616 ar.7 48.8 40.5 a4.5
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Coordinates

Measurement date

Point
X Y 2018-5 2019-6 2020-9 2021-2

SWO03 765809.3 1673505 45.2 a4.5 38.1 aaq.7
SWo4 765601 1675458 43.9 50.1 39.8 46.1
NWO0O0 765397 1675464 43.3 51.9 52.6 47.8
NWO1 765197 1675487 42.6 51.2 44.6 42.0
NWO02 764998.8 1675516 43.0 51.3 375 43.7
NWO03 764799.4 1675533 48.1 40.3 41.4 43.6
NwWO04 767803.3 1676156 46.3 46.1 40.0 a5.4
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Legend Noise map (25 June 2019)
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Figure B2 Noise map at June 25, 2019
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Lesend Noise map (15 September 2020)
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Figure B3 Noise map at September 15,2020
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Figure B4 Noise map at February 2, 2021
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Model Summary

Target Leq dB(A)

Automatic Data Preparation On

Model Selection Method Forward Stepwise

Information Criterion 609.536

The information criterion is used to compare to
models. Models with smaller information criterion
values fit better

Worse Better
I T T T
0% 25% 50% 75% 100%
Accuracy

Figure D3 The model summary of Linear

Predicted by Observed
Target: Leq dB(A)

Count
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E Qs
S 50,000 6
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2
-%
40,000
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I T T I
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Leq dB(A)
Figure D4 The scatterplot of the predicted values of Linear

Residuals
Target: Leq dB(A)
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[ Mean = -0.001
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Studentized Residual

The histogram of Studentized residuals compares the distribution of the residuals to a normal
distribution. The smooth line represents the normal distribution. The closer the frequencies of the
residuals are to this line, the closer the distribution of the residuals is to the normal distribution.

Figure D5 The binned histogram of the studentized residuals of Linear



Model Summary

Target Leq dB(A)
Model Multilayer Perceptron
Stopping Rule Used Error cannot be further decreased
Hidden Layer 1 Neurons 5
Worse Better
0% 25% 0% 75% 100%
Accuracy

Figure D6 The model summary of Neural Network

Predicted by Observed
Target: Leq dB(A)
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Figure D7 The scatterplot of the predicted values of Neural Network
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Figure D8 The network structure of Neural Network
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