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ABSTRACT

In this project, long-live glucose biosensors have been developed from platinum disk
working electrodes that are chemically modified with chitosan-soaked carbon nanotube
deposits (CHIT-CNT), and subsequently loaded with a ferrocene species (Fc) and glucose
oxidase (GOx) as functional sensing elements. The entire placement was easy to carry out by
an electrochemical technique called ‘Electrophoretic Deposition Paint or EDP’, which at the
end the CNT/CHIT/Fc/GOx thin films are top-coated to protect against loss of enzyme
and/or synthetic redox mediator. This sophisticated but simple-to-make enzyme
immobilization matrix allowed not only molecular O, and/or Fc to be active as native
and/or synthetic redox-active enzyme partner but also made direct enzyme-to-electrode
electron transfer (DET) possible. With the biosensor in operation all three options were
capable possible for oxidized GOx recovery after enzymatic glucose conversion and
restoration of the protein’s catalytically active site for non-stop interaction with
continuously arriving sugar targets. The integration of the marine biopolymer chitosan as part
of the functional biosensor layer led to the predictable gain of a matrix biocompatibility that
was well supportive of GOx long-term survival on the sensor surface and hence brought up
analytical response stability. The stable and consistent manifestation of CNT/CHIT/Fc/GOx-
based biosensor signals in a flow-based electrochemical cell for the duration of multiple
day-long continuous exposures to adjusted glucose levels. From glucose calibration ftrials
during uninterrupted flow cell operation showed that the immobilized GOx entities were
entrapped gently enough in their polymeric chitosugar/CNT environment to maintain their
bio-catalytic activity for long. In summary, EDP-covered CNT/CHIT/Fc/GOx thin films have the
potential to be a suitable matrix for the development of long-time stable glucose biosensors

with high performance.
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Possible pathways for GOx redox recycling in the immobilization

layer of an amperometric glucose biosensor.

The design of the proposed composite immobilization layer with
a merger of carbon nanotubes, chitosan, a ferrocene derivative,

glucose oxidase and an electro-deposition paint (EDP).

Schematic representation of the procedure for the fabrication of

Scheme 2-type glucose biosensors.

Cyclic voltammograms of the carbon nanotube/glucose oxidase-
modified 3-mm-diameter platinum disk electrode in de-aerated

0.1 M KCU/PBS. (pH 7.0) at various scan rates from 2 to 50 mV/s.

Graphical illustration of the three different types of biosensors
that have been prepared for comparative biosensor test trials
concerning the achievement of bare oxygen or additionally CNT &
ferrocene-supported redox mediation in a thin-film
CNT/Fc/Chitosan/EDP immobilization layer design as proposed in

Scheme 2.

Steady-state current of a CNT/CHIT/Fc/GOx/EDP biosensor on
successive addition of small aliquots of glucose into stirred and

aerated PBS /KCLl (pH 7.2).
Glucose calibration curves of a CHIT/GOx/EDP biosensor.
Glucose calibration curves of a CNT/CHIT/GOx/EDP biosensor.

Glucose calibration curves of a CNT/CHIT/Fc/GOx/EDP biosensor in
presence and absence of oxygen as native enzyme redox

mediator.

Comparison of amperometric glucose calibration curves of
CNT/CHIT/GOx/EDP and CNT/CHIT/Fc/GOx/EDP biosensors in
presence and absence of oxygen as native enzyme redox

mediator.
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Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Workstation for flow-based amperometric sensor tests.

Computer screenshot of an I/t trace acquired in course of a long-

term glucose oxidase biosensor stability test.

1° of five glucose biosensor calibrations acquired via
amperometric hydrogen peroxide detection in a workstation for

flow-based analysis in a 153 hour long measuring cycle.

2" of five glucose biosensor calibrations acquired via
amperometric hydrogen peroxide detection in a workstation for

flow-based analysis in a 153 hour long measuring cycle.

3" of five glucose biosensor calibrations acquired via
amperometric hydrogen peroxide detection in a workstation for

flow-based analysis in a 153 hour long measuring cycle.

4™ of five glucose biosensor calibrations acquired via
amperometric hydrogen peroxide detection in a workstation for

flow-based analysis in a 153 hour long measuring cycle.

5t of five glucose biosensor calibrations acquired via
amperometric hydrogen peroxide detection in a workstation for

flow-based analysis in a 153 hour long measuring cycle.

Calibration curve of a CNT/CHIT/Fc/GOx/EDP biosensor that was
obtained after the tool has been used more than 150 hours in

the flow system of Figure 9 for continuous glucose monitoring

16

17

18

18

19

19

20

21



UNN 1
unu (Introduction)

1.1, anuddyuasiinnvesdyniniside (Rationale/Motivation)

.(Amperometric) enzyme-based biosensors'™ are important tools in clinical diagnosis,
health care, process control in food industry and biotechnology and also environmental
monitoring. The variety and the complexity of potential samples and the request for cheap
but reliable analysis are behind the motivation in the field to continuously improve the
simplicity and reliability of enzyme biosensor assembly and permanently make sensor
performance better in terms of sensitivity, selectivity, detection limits, minimal influence of
interferences and long-term stability. This one-year project tried optimizing the chemical
architecture of the porous polymeric immobilization layer that is placed on top of inert
(carbon or noble metal) working electrodes for keeping in place (immobilizing) enzymes as
the active key sensor component. Suggested as advanced immobilization layer was a novel
composite made of (1) a dense network of electrically conductive carbon nanotubes (CNTs)
that was (2) loaded with biopolymers chitin and/or chitosan and (3) the reversible redox
compound ferrocene (or one of its derivatives). Expected was not only the gain of a very
biocompatible immobilization layer for enzymes on electrochemical detector surfaces but
also a considerable improvement of the effectiveness of the amperometric transduction
scheme. Actually, ongoing substrate conversion by entrapped enzyme at any location in the
functional coating would be electronically connected to the electrode via mediator
interaction between the distributed ferrocene redox entities and the catalytic protein
molecules and quantitative detection of the change in the mediator’s redox state at the
conductive CNT filaments. Potentially, the proposed sensor layout should be associated
with an improved response behavior, in particular for low levels of targeted analyte
(substrate), an independence from aerated measuring conditions due to the replacement of
oxygen as enzyme redox partner, and an extended sensor life time because of enzyme
embedment in a natural biocompatible matrix. Reach of this situation would be a significant
achievement and a relevant input of the project to the highly active field of fundamental

biosensor research and development and related scientific and industrial communities.



1.2, Inquizaenvaalasaniside (Objectives)

1. Addition of enzyme (here as a model: glucose oxidase, GOx) to a blend of CNTs

with chitin or chitosan, and ferrocene-based redox entities and the placement of
the composite as thin film modification on disk-shaped noble metal electrodes to
form (glucose) biosensors with an improved layout of the immobilization layer.

2. Performance tests with the novel type of glucose biosensors and evaluation of

their correct function and analytical figures of merit.

1.3,  UdULUAYBINITIAY (Framework)

Enzyme-based electrochemical biosensors are widely used analytical tools that are subject
of continuous research and development. Stable but mild (biocompatible) enzyme
immobilization into polymer films on an electrode surface and efficient detection of
enzyme/substrate interaction are in case of amperometric enzyme biosensors among the
crucial issues determining satisfactory function. Work on the advancement of the building
blocks of amperometric enzyme biosensors is thus an understandable requisite on the way
to best possible analytical performance. This project aimed at contribution in terms of the
improvements of the layout of immobilization layer of enzyme biosensors and a design

adaptation that related to enhanced biosensor response towards analyte.

[y

1.4, Uselewdiiild$uannnsise (Proposed output) Ustlewifimainayldsuainauddeis 4
Usensvanae
1. Novel solutions for enzyme immobilization on noble metal disc electrodes.
2. Improved  sclucose/gslucose  oxidase  biosensors with- a  CNT/Chitin  or
Chitosan/Ferrocene-based immobilization matrix.
3. Trained  researchers  with knowledge in  modern  electrochemical
analysis/biosensing.
4. One publication in a peer-reviewed international journal with a good impact factor

and dissemination of results on an international conference.

mhenuiazinanuideluldsglon
The following institutions may benefit from the project deliveries:
1. Public and private analytical laboratories

2. National and international academic research institutions
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25A111UN15998 (Methodology)

Scheme 1 is a graphical representation of the sequence of redox changeovers that are
instantly induced when exposing immobilized glucose oxidase entities on a disk-shaped
noble metal electrode to the substrate glucose while keeping the adjustable electrode

potential at, for instance, an anodic value of +500 mV vs. reference electrode.
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In a few words, glucose is oxidized after conjugation with the catalytically active site of
glucose oxidase while the protein itself acts as electron acceptor to become reduced.
Depending on the particular biosensor design, up to three pathways may be available for
turning the reduced GOx after substrate conversion back into original oxidized state and
reset its catalytic site for the interaction with the next arriving target sugar molecule: (1) In
aerated solutions the molecular interaction with dissolved oxygen as native redox active
mediator can trigger the desired redox recycling; oxygen acts then as electron accepting

species and facilitates via reduction into hydrogen peroxide the requisite GOX,.q > GOX.,



redox state change, (2) In deaerated solution oxygen is obviously not available as redox
partner of GOx; however, clever supplementation with a synthetic dissolved redox species in
reduced form can provide a functional replacement that supports enzyme redox recycling;
successfully used for this purpose have been, among others, potassium ferricyanide,
ferrocene and ferrocene derivatives, and ruthenium-hexamine-chloride, (3) providing that
enzyme molecules are immobilized in effective electron tunneling distance and orientation
on the (noble metal or carbon) electrode surface direct electron transfer may work as
support of the GOx,.q » GOx, transition with the electron that is released by the process

accepted by the electrode as oxidizing agent.
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Target here was a comparatively easy to create architecture that, in principle, offers
utilization of all three options of glucose oxidase redox recycling, and thus forms biosensors
that are well functional in aerated and de-aerated measuring conditions for efficient

substrate quantification. Scheme 2 is a graphical representation of the design of the



composite immobilization layer in front of, for instance, a disk-shaped noble metal or

carbon working electrode (“the transducer of GOx action on glucose”).
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Figure 1 is then a display of the procedure for the fabrication of glucose biosensors that
follows the design suggested in Scheme 2. A nanoporous network of CNT filaments, simply
drop-coated on the carrier disk electrode in a preceding step, got actually soaked with a few
microliter of a suspension containing GOx, chitosan (or chitin) and ferrocene (or a ferrocene
derivative). Solvent evaporation leaves the three functional components randomly

distributed in the conductive CNT nano-grid, which itself is in good electrical contact to the



carrying electrode surface at e.g. + 500 mV detection potential vs. reference electrode. In
this special configuration O, (in aerated solution), ferrocene (in aerated and de-aerated
solution) and direct electron transfer redox mediation at CNT surfaces (in aerated and de-
aerated solution) can be responsible for the processes of electron shuttling and, depending
on the measuring conditions, all may jointly contribute to the current response of the
biosensor that allows substrate quantification. The (marine) biopolymer chitosan (or chitin)
was chosen to be included in the immobilization matrix for GOx to reach via gain of an
inherent material biocompatibility a long-term stable sensor configuration that is suitable for

continuous glucose monitoring over extended periods of many days or even weeks.

Sensors of the outlined designs were prepared and evaluated for their performance
in  common beaker-type three-electrode electrochemical cells via conventional
amperometric biosensor calibration measurements and analytical redox voltammetry under
aerated and de-aerated electrolyte conditions. Results of the measurements allowed
judgments on the basic properties of the sensor response and the analytical figures of merit
including linear range, sensitivity, detection limit, and type of redox mediation

Further assessments of the amperometric glucose response of the different
established biosensors were carried out under aerated matrix conditions in a three electrode
electrochemical flow cell flushed continuously with slucose-containing or -free running
buffers with the intention to find out about the long-term stability tests and reproducibility

of flow-based calibration curve construction.
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NANISNAABILAZTDI150d (Results and Discussion)

The following summary of the outcome of this project first presents experiments that
demonstrated the coexistence of native and artificial redox mediators and direct electron
transfer redox mediation in glucose biosensors with GOx immobilized in a CNT/Fc/Chitosan
electrode surface deposit. Data of trials with the sensors of the proposed type and of
control versions of the immobilization layer architecture (lacking e.c. the ferrocene
supplementation), either operated in aerated and de-aerated measuring buffers, will be
presented and discussed. Then presented will be the performance for uninterrupted
operation of the developed glucose biosensors in a flow-based system that allowed
continuous exposure to substrate free or containing running buffer and scheduled injections

of substrate at various time points after trial start.

3.1 Redox crosstalk (DET) of GOx and the CNT component of the CNT/Fc/Chitosan/EDP-

based enzyme immobilization matrices

Direct electron transfer (DET) between GOx entities and the charged surface of electrodes
avoiding an involvement of free-diffusing redox mediators is according to the Marcus theory
not very feasible and only possible when the prosthetic group of the protein
macromolecule is in suitable “electron tunneling distance to the solid and on top
structurally oriented in a way that the inner catalytically active site is straight facing the
interface. These two boundary conditions are not obtained easily and special care within the
immobilization procedure of the biocatalyst and a priming of the electrode surface with, for
instance, nanomaterial and/or conductive polymer coatings, have been reported as
prerequisites for success with the achievement of an efficient DET contact between GOx and
the superficial sensor disk. When, however, DET contact is accomplished, the enzyme and
the electrode can reversibly exchange electrons and act in either direction as electron
acceptor or donator. A convincing proof for a favorable GOX immobilization and
electrochemistry with DET realization is thus the appearance of the redox wave for cathodic
and anodic GOx reduction and oxidation in cyclic voltammograms that have been recorded
with enzyme-modified sensors in redox mediator free de-aerated electrolyte solution that is

free of dissolved reducible oxygen.



Glucose oxidase redox cyclic voltammograms have in the past been reported in
several studies for electrodes with CNT thin films®® and, as evidenced with the display of
Figure 2, it was also accomplishable with the dropped & dried CNT deposit of the biosensors
of this work. In good agreement with the earlier reports a pair of well-defined and nearly
symmetrical cathodic and anodic current waves was detected when GOx a functional
component of the CNT sensor coats and the peak currents scaled, as expected, linear with
the square root of scan speed (not shown). In control experiments sensors with a bare CNT
modification (no GOx added!) the two distinct redox waves disappeared clearly indicating
that the waves in Figure 2 indeed are derived from a faradaic redox interaction between CNT
and (adsorbed) enzyme molecules. Apparently, surfaces of the uniformly spread CNTs
offered, to certain extent at least, an active graphitic platform for desired direct GOx redox
mediation and it was expected to be able to benefit from this valuable effect also in the
proposed biosensor configuration (CNT/Fc/Chitosan/GOx/EDP) as one contribution to analyte
signaling, which would be particularly sood in the absence of oxygen as native redox partner

of the enzyme.
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After probability of an electron shuttle between the CNT nano-conduits and immobilized
GOx was proven, the possibility of using extra artificial redox mediator, here a ferrocene

derivative, for support of continuous enzyme recycling during substrate exposure had to be



tested. Tackled was this task with the amperometric glucose biosensor tests of the following

section.

3.2 Ferrocene-assisted GOx redox mediation in CNT/Fc/Chitosan/GOx/EDP-sensor

coatings

Three different biosensors have been prepared for comparative biosensor test trials

concerning the achievement of CNT & ferrocene-based redox mediation in a thin-film

CNT/Fc/Chitosan/EDP immobilization layer design as proposed in Scheme 2. They were:

® A Chitosan/GOX/EDP biosensor lacking both the CNT and the ferrocene component.

Only chitosan was present as enzyme-entrapping matrix and EDP as top coat

protection against diffusional enzyme loss (Figure 3A).

For this sensor configuration enzyme redox mediation during substrate
conversion is on the shoulders of oxygen alone. In de-aerated solution a full

collapse of glucose-induced amperometric current response is expected.

® A CNT/Chitosan/GOx/EDP biosensor \acking both the ferrocene component but not

the conducting CNT network. Again, chitosan was present as enzyme-entrapping

matrix and EDP as top coat protection against diffusional enzyme loss (Figure 3B).

Here, redox mediation during substrate conversion is not anymore on the
shoulders of oxygen alone but, based on the findings in 3.1, may also be facilitated
by DET between CNT and GOx entities. In de-aerated solution a distinct decrease of
glucose-induced amperometric current response is expected but not a complete

signal breakdown.

® The full CNT/Fc/Chitosan/GOx/EDP glucose biosensor design with (i) the conducting

CNT network in contact with

® the carrier electrode for support of DET, with chitosan in place to add
biocompatibility to the enzyme-entrapping matrix, with the ferrocene azide addition
there as extra enhancer of redox mediation and, last but not least, with the EDP top

coat applied as protection against diffusional enzyme loss (Figure 3C).

For this sensor layout enzyme recycling during substrate conversion should

be most efficient as in aerated measuring buffers it is a share of DET, oxygen as well
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as ferrocene redox mediation and in de-aerated solutions still aided by the merger of

DET and ferrocene.

A representative amperometric recording from calibration measurements with a type 3
sensor, with the CNT/Fc/Chitosan/GOx/EDP design, is shown in Figure 4. From such
amperometric trials the corresponding calibration plots (biosensor current vs. glucose
concentration) have been computed and looked at for interpretations of the effective redox

mediation pathways in aerated and de-aerated situation.
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Of note, all sensors carried identical amounts of the individual functional components (CNT,
CHIT, Fc, GOx and EDP) in their surface modifications to facilitate sensor response

comparison.

Chitosan/GOx/EDP biosensor
Figure 5 is the calibration curve for the biosensor that had the active enzyme entrapped in a
biocompatible chitosan matrix for gentle immobilization but not CNT as DET facilitator. A
look to calibration curve reveals that as expected this GOx biosensor did not respond in de-
aerated measuring buffer not respond with a concentration-dependent H,O, current since
there is no GOx redox recycling possible (red trace, Figure 5; all redox partners - O,, CNT and
Fc - are absent). Aeration and supply of oxygen turned the biosensor into an active tool
and the typical shape of plots of the measured anodic H,O, current vs. glucose
concentration was revealed (brown trace, Figure 5; O, available as enzyme redox partner but

not CNT and Fc). The current at any concentration is entirely a current produced by
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continuous redox interaction of freely diffusing molecular oxygen with enzyme that just
completed a substrate conversion cycle. As usual for enzyme sensors signal saturation
(reach of I;,,,) was observed at higher substrate concentration (here: ~ 70-80 mM), indicating

reach of maximum turnover for all biocatalyst entities within the immobilization layer.
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CNT/Chitosan/GOx/EDP biosensor

The addition of CNT to the otherwise barely chitosan-based immobilization matrix of the
biosensors of this study had a well-positive effect on their performance for the anodic
detection of the substrate glucose. In contrast to the above first (CNT free!) sensor case the
CNT-holding version produced under de-aerated conditions a hydrogen peroxide oxidation
current response upon addition of glucose to measuring buffer, and the signal magnitude
developed with the increase of substrate concentration in the characteristic manner
reaching a limiting (saturation) value at high enough glucose levels (here: 50-60 mM) (refer to
Figure 6 for the calibration curve). The capacity of a CNT/Chitosan/GOx/EDP-biosensor to
produce a “normal” amperometric glucose under full exclusion of oxygen as enzyme
reaction partner meant manifestation of reasonable DET between immobilized enzyme and

CNT network and confirmed the observation from the cyclic voltammetry experiment in
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section 3.1 (Figure 2). Not surprisingly, the current at enzyme saturation, could for this sensor
design got amplified in course of aeration and related provision of oxygen as extra redox
partner for reduced enzyme re-oxidation (refer to the inset of Figure 6). So far confirmed
were actually the active involvements of two of the three pathways that have been
highligshted in Scheme 1 as possibilities for enzyme biosensor signal establishment with the

proposed system.
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CNT/Fc/Chitosan/GOx/EDP biosensor

Amperometric calibration trials with sensors that had a supplemental incorporation of
ferrocene azide were executed to get evidence that the redox active iron compound indeed
could replace dissolved oxygen as electron-accepting partner for GOx in anaerobic solution.
Of note, the ferrocene species was not kept in place in the immobilization matrix of the
CNT/CHIT/Fc/GOx/EDP versions via special chemical cross-linking to the network of enzyme-
entrapping CNT/CHIT immobilization matrix but rather as randomly dispersed unbound
molecule that found position in course of a simple drop & dry placement of the functional
electrode coating. An electrodeposition paint top coat was practical leak protection for
freely movable ferrocene (and GOx) molecules. Evidence for successful reach of the desired

leak protection for Fc (but also active GOx) will be provided in the following Section 3.3 in



14

which the flow-based long-term stability tests are described. Figure 7 presents for a
CNT/CHIT/Fc/GOx/EDP  biosensor the calibration curves that were derived from

measurements in PBS/KCl measuring buffers with and without oxygen presence.
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A comparison of the current vs. [GOx] plots available in Figure 7 with the ones in Figure 6 is
illustrating that the addition of Fc as synthetic redox active species to the active biosensor
matrix indeed is bringing up a positive effect in terms of the efficacy of the recycling of the
enzyme’s redox state after reaction with substrate. For the trial under anaerobic condition
the biosensor current for the Fc-containing sensor variant was at saturation level about
doubled over the Fc-lacking equivalent with an otherwise identical supplementation
apparently helps increasing the number of GOx entities in the immobilization matrix that are
offered the opportunity of a regenerating redox contact. Upon aeration of the measuring
buffer oxygen can move in as third partaker of cyclic GOx redox state regeneration and

accordingly a further amplification of the current response at sensor saturation is observed.
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Above situation is graphically concluded in Figure 8, which offers a combination of the

calibration curves of CNT/CHIT/Fc/GOx/EDP and CNT/Chitosan/GOx/EDP biosensors in
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oxygen-free and oxygen-containing solution (top display) and a column chart comparison of
the amperometric sensor currents at saturation level for Chitosan/GOx/EDP,
CNT/Chitosan/GOx/EDP and CNT/Chitosan/GOx/EDP, all valid experimental conditions that

were identical except for the composition of the immobilization matrix.

3.3 Amperometric biosensor stability and calibration tests in electrochemical flow cells

The biosensors for the trials in above section used a 3-mm-diameter Pt disk electrode as
carrier of the enzyme-loaded CNT/CHIT matrix a 3-mm-diameter but for flow-based sensor
stability tests Au disks were the transducers as they were available with a design that

allowed use as working electrode in the electrochemical flow cell of the device shown in

Figure 9.
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Prior to the inspection in flow operation freshly prepared biosensors with a

CNT/CHIT/Fc/GOX/EDP  functional matrix have been exposed to amperometric glucose

calibrations trials in aerated and de-aerated measuring buffers and obtained data was used

to judge on proper responsiveness of the analytical tool. The schedule of the representative
trial addressing on-line biosensor stability testing with intermittent calibration trials during

un-interrupted flow is shown in Figure 10.

Figure 11-15 are displays of the original amperometric current traces for the five calibrations
that have been gained in the flow-system at the 26-32 (1), 50-56 (2nd), 74-80 (3'), 146-152
(@™) and 170-176 (5™) hour intervals after trial start together with the corresponding

calibration plots. Worth mentioning that valuations # 4 and 5 happened after an accidental

16 hour long break of buffer stream with flow cell and electrodes running dry.
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15! calibration curve after 26 hours
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3rd calibration curve after 74 hours
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5th calibration curve after 170 hours
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Important observations of the outcome of flow-based sensor stability and calibration testsas

presented in Figures 10-15 were:

® CNT/CHIT/Fc/GOx/EDP-based biosensors were capable to respond to the constant 2
mM glucose level that was in the running buffer before and after the first three
individual calibration trials for more than 100 h of continuous operation with a very

stable hydrogen peroxide oxidation current.

® Sub-mM glucose levels, here for instance 500 M, produced current signals that rose
well above background noise/baseline; The sensitivity of CNT/CHIT/Fc/GOx/EDP-
based biosensor was competitive; predicted detection limit in the flow system is in
the order of about 100 M.

® The current elevations for the 0.5, 1, 2, 5, 10 and 25 MM glucose exposure of the
first three calibrations (before the happening of sensor/electrochemical cell dry out)
were virtually identical for corresponding sugar concentrations. As data acquisition for
the first, second and third calibration experiments took more than 80 hours the
reproduction of equal magnitudes of sensor current for the six tried glucose

concentrations is another sign of well-expressed sensor stability.
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® 26 hour of air-flow through the electrochemical cell and related system drying did
lead to some enzyme death; however, the remaining quantity of active GOx was
enough to ensure sensor functioning. Evidences were a stable amperometric
biosensor current for unbroken flow cell flushing with 2 mM ¢lucose and the ability
to transfer 0.5, 1, 2, 5, 10 and 25 MM glucose exposures still into reasonable

amperometric calibration plots

The operation of CNT/CHIT/Fc/GOx/EDP-based biosensors in the flow system exposed a
satisfactorily performance. The tool actually could work nonstop for multiple days with
a conservation of sensitivity and linearity for the amperometric monitoring of hydrogen
peroxide from GOx/glucose interaction. The gold working electrode showed in the
electrochemical flow cell a constant anodic activity for H,0O, sensing and entrapped GOx
molecules in course of the day-long acquisition trials did not experience a major gradual
degradation. Quite the opposite, the structural and functional enzyme integrity was well-

maintained for the immobilized biocatalysts in the CNT/CHIT matrix. Apparently, the
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Figure 16: Calibration curve of a CNT/CHIT/Fc/GOx/EDP biosensor that was obtained after the tool has been used
more than 150 hours in the flow system of Figure 9 for continuous glucose monitoring.
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uni 4
ung§u (Conclusion/Summary)

A merger of carbon nanotubes with the biopolymer chitosan and a redox active ferrocene
derivative has been explored for use as immobilization matrix of amperometric glucose
oxidase biosensors with anodic hydrogen peroxide readout. The placement of the target
sensor modification as thin films on disk shaped noble metal precursor electrodes was
successful with a sequence of very simple drop & dry coating procedures. A top coat of
electrodeposition paint, also easily to apply, provided finally an effective loss of active
sensor components from CNT/CHIT/FC/GOx-modified sensor disks via diffusional leakage.
Proven was for completed biosensors the coexistence of three redox pathways for the
regeneration of GOx after substrate conversion. Namely, molecular redox contact with native
oxygen and ferrocene as well as direct electron transfer at CNT surfaces could help resetting
the enzyme from reduced to oxidized state, effectively facilitating its cyclic biocatalytic
activity. Sensors of the established design offered an analytical performance that was well
competitive to published similar options. Particular positive feature were (1) an excellently
wide linear range that was paired with reasonable analyte sensitivity and signal
independence from the presence of dissolved O, and (2) an outstanding sensor stability that
allowed, for instance, almost a week of non-stop operation for glucose measurements in a
flow-based electrochemical workstation. The biosensors of this study were rather easy to
make without involvement of critical chemical cross-linking reagents or supplementation
with other nanomaterials than bare CNTs and the procedure adaptation for manufacture
automation is feasible. In summary, the convenient EDP-covered CNT/CHIT/Fc/GOx thin films
showed good potential to be a competent matrix for the development of long-time stable
glucose biosensors with an acceptable quality of analytical performance. Prototypes here
used glucose oxidase as model; however, other the transfer of the methodology to sensors

with other redox enzymes is practical and recommended.
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Publication

A publication is in preparation for a peer-reviewed international journal of good
reputation. Intended title of the report will be “Practical carbon nanotube- chitosan-

glucose oxidase-ferrocene electrode coatings for long-term glucose biosensing”.

Oral and poster presentations on international meetings:

The work was presented in an invited oral session contribution on “The 64rd Annual
Meeting of Japanese Society of Applied Glycoscience/Symposium for Applied
Glycoscience”, September 16-18, 2015 in Nara, Japan.
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