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It is known that the problem of a collision of two Riemann waves cannot
be solved in the framework of using only constant solutions and Riemann waves.
It happens that after collision of a shock wave and a rarefaction wave the entropy
becomes non-constant, whereas entropy is constant in a Riemann wave. Recently,
a new class of solutions of the gas dynamics equations was obtained. This class of
solutions is called a class of generalized simple waves. The main feature of these
solutions is that they are not isentropic, whereas their other properties are similar
to the simple waves. In the present work, we consider two generalized simple waves
separated by a shock wave.

Construction of a solution is split into two steps. For solving the problem
of interaction of two generalized simple waves through a shock wave, we developed
a code in MATLAB. Using REDUCE, the functions for the right-hand side of the
system of ordinary differential equations are obtained. For solving this system, we
applied the fourth-order Runge-Kutta method.

The obtained results show the possibility of joining two generalized simple

waves through a shock wave.
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CHAPTER III

INTRODUCTION

The study of waves in gases is an important branch of science and engineer-
ing. One type of waves, well-known in the theory of the gas dynamics equations,
are simple waves, which are also called Riemann waves (Courant and Friedrichs,
1990; Rozdestvenskii and Janenko, 1983). Riemann waves are widely exploited in
the gas dynamics theory. The following two classical problems in this theory have
an exact solution.

The first problem is the motion caused by a piston starting from rest and

suddenly moving with constant velocity into a quiet gas. The motion of the piston

Tubea

Fiston

Shock wawve

Figure 3.1 Piston moving into a quiet gas.

implies an immediate shock front, moving away from the piston with constant gas
variables. Another problem is the problem of the motion caused by a piston moving
with constant velocity out of a quiet gas. This motion of the piston develops a
rarefaction simple wave (Riemann wave). The interaction of these two waves
cannot be solved in the framework of using only constant solutions and Riemann
waves. It happens that after collision of a shock wave and a rarefaction wave the

entropy becomes non-constant, whereas entropy is constant in a Riemann wave.



Tuba

Riamann wawva

(rarsfaction wawve)

Figure 3.2 Piston moving out a quiet gas.

Tuba

Piston ) Piston

Figure 3.3 Combination of moving pistons.

The problem of a collision of a shock wave and a rarefaction (or simple) wave was
studied for approximation of the gas dynamics equations, by excluding the energy
equation from the study and considering that the pressure is a linear function of
the density (Rozdestvenskii and Janenko, 1983).

Recently (Meleshko and Shapeev, 2011) a new class of solutions of the gas
dynamics equations was obtained. This class of solutions is called the class of
generalized simple waves. The main feature of these solutions is that they are not
isentropic, whereas their other properties are similar to the simple waves. In this
thesis the problem of interaction of two generalized simple waves through a shock
wave is considered. In particular, if one of the generalized simple waves is reduced
to a motion with a constant Riemann invariant, this study gives a solution of the

classical problem of collision of a simple wave with a shock wave.



3.1 The objective

The main purpose of this thesis is to show the possibility of joining two

generalized simple waves through a shock wave.

3.2 Organization

This thesis is organized as follows. In Chapter 11, we introduce the gas dy-
namics equations and Rankine-Hugoniot conditions. In Chapter III, the Riemann
waves, the generalized simple waves and equations along a characteristic are given.
In Chapter IV the details of the method for solving the problem are shown. In

Chapter V the conclusion is presented.



CHAPTER IV

GAS DYNAMICS EQUATIONS

This chapter provides some terminology and background of the theory of
the gas dynamics equations.

Behavior of a gas is described by three conservation laws: conservation of
mass, momentum and energy. Apart from conservation laws, thermodynamics of

a gas has to be also introduced.

4.1 Conservation laws

In a moving continuous medium, for any moving volume w; C €); and any

moment of time ¢ the following equalities are satisfied:

d
' NS
dt(/%p w) =0,
d
%( pv dw) = P do + pf dw,
Wi Bwt Wt

G saxvyan = [ @xpydos [ oo a

Wt

d 2
d—(/ p(v—+e)dw):/ vpnda+/pvfdw+/ qn do.
t wt 2 8wt wt Bwt

These equalities are called the conservation law of mass, the conservation
law of linear momentum, the conservation law of angular momentum and the
conservation law of energy, respectively,.

Here w; is material volume, Ow; is the volume surface, p is the density per unit

volume, v is the velocity, p, is the density of internal surface force, ¢, is the



surface density of heat output, f is the body (external) force per unit mass, e is

the internal energy per unit, x is a vector in three-dimensional space.

4.2 Gas dynamics axioms

The following axioms separate a gas from general continuum.

Axiom 4.1 (Stress and heat). For inviscid gas, the vectors p,, and g, are defined
as follows
Pn = —pnNn, qn = 07

where p is called the pressure and n is a unit vector.

Axiom 4.2 (Thermodynamical behavior). A gas is a reversible continuum,

satisfying the thermodynamical law
0dS = de — L d (4.1)
ke :
where 6 is the temperature and S is the entropy.

The gas dynamics equations describe a motion of a two parametric contin-
uum. The thermodynamic parameters p, p, e, the entropy S, and the temperature
¢ are related by the main thermodynamics identity (4.1).

In particular, choosing the thermodynamic parameters p and p, one assumes
that e = e(p,p), 0 = 0(p,p) and S = S(p, p), where the functions e(p, p), 0(p, p),

S(p,p) are related by the equations

The thermodynamic equations are closed by the Clausius-Clapeyron rela-
tion

p = Rpb, (4.2)



where R is the specific gas constant. Notice that because of the Clausius-Clapeyron

relation and the main thermodynamics identity one has that

P
e=— =, 4.3
; (4.3)

where 7 is the polytropic exponent.

4.2.1 Continuous motion

The integral conservation laws for a gas become

d
dt(/‘dtpdw)-(),
d

%( pv dw) = \ —p - ndo, (4.4)

o[ e = [ vpma

— —e) dwy= v(—p-n) do.

dt ], "2 NP

Remark 4.1. The conservation law of angular momentum is omitted because of

the symmetry of the stress tensor P = —pl.

Definition 4.1 (Continuous motion). A motion of a continuum is called contin-
uous in a domain €2 if the functions p, e, v, p, and f are continuously differentiable

functions in Q C R*.

Because of arbitrariness of w; for a continuous motion, in the absence of a
body force (f = 0) the integral equations (4.4) can be reduced to the following

differential equations

dp .
i + pdiv(v) =0,
dv
- =0 4.5
poytvp=0, (4.5)

d
p d—j + pdiv(v) = 0.



In this thesis we study one-dimensional flow of a gas. In the one-dimensional
flow all functions depend on (x,t), where z € R! and the velocity is v = (v, 0, 0)

In the one-dimensional case equations (4.5) become

%p+§%mﬁzQ
O+ ot ) =0 (4.6)
O (ole+ 50+ -+ ple+ 2)) = 0.

4.3 Shock conditions

In this project, discontinuous solutions of the gas dynamics equations are
considered. In this case the notion of a solution is extended. A mathematical
model of such solutions is constructed on the base of the integral conservation laws
(4.4). The solution is considered as a piecewise smooth function. The requirement
to satisfy the integral relations leads to the relations between the gas dynamics
variables along the discontinuities. Assuming that a discontinuity occurs along
the curve o = X (¢), the integral conservation laws lead to the equations (Chorin

and Marsden, 1990; Courant and Friedrichs, 1948; Meleshko and Shapeev, 2011),

Dip]=[pv],
Dlpv]=[p*+p], (4.7)
2 2
o ofe+5)] = [o(r+re+ )]
where D = X'(t) is the velocity of the moving discontinuity. The notation [ - | is
used for a jump across the discontinuity, and it is defined as [ f | = fo - f1 , with
= lim —7),
L
(y,t)te
fo=lim  f(y+71),

(y,t) = (z(1)t)
(yut)EQQ



where 7 =1/p > 0, Q2 =Q,UQy and f; (i = 1,2) are the values of a function
f from different sides of the discontinuity. These relations are called Rankine-
Hugoniot conditions. Equations (4.7) can be simplified. In particular, for a poly-

tropic gas they are

[ plv=D)]=0,
[+ plo— D) ] =0, (4.8)
[T 5 ]

There is another representation of the Rankine-Hugoniot conditions, found

by using the REDUCE program:

S
vy = M(P2 P1 ) F o,
(yp1 — vp2 + p1 + p2)
py = PEAPLE P2 F 1+ ) (4.9)
(Yp1 — yp2 + p1 + p2)
ppy!
D 3 L + U1,

(Y1 — p2 + p1 + p2)

where

= —\/2p1p1p2(vp1 — VP2 + p1 + p2).



CHAPTER V

GENERALIZED SIMPLE WAVES

This chapter introduces Riemann waves, generalized simple waves and re-

lation of equations along a characteristic on generalized simple waves.

5.1 Riemann waves

Riemann waves are one of the well-known classes of solutions of the gas
dynamics equations (Courant and Friedrichs, 1948; Rozdestvenskii and Janenko,
1983). These solutions can be obtained as follows. Assume that all the gas dy-

namics variables are functions of one dependent variable, say p:

Substituting them into the gas dynamics equations, we obtain an overdetermined

system of partial differential equations which in the matrix form is

A =0,
Pz
where
1 v+ pu,
A=1 pv, pov,+P

P vP'+~Puv,

Since we try to find solutions such that p is not constant, then rank A < 2.
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The latter condition leads to the equations

P — p(pv,)* =0,
pP' = ~P.

Solving these equations (in Appendix B), we obtain

2c0
U+’7—1_ 1,
5.1
s (5.1
5_027

where a = =+, /% and ¢; and ¢y are constant. Solutions satisfying conditions

(5.1) are called Riemann waves (or simple waves). Then the last equation of (5.1)
allows us to conclude that the entropy S is constant in a Riemann wave. Notice

that relations (5.1) can be also obtained from the conditions

2
(2, =
y—1/,
(B
p7 e

The latter conditions (5.2) can be considered as an alternative definition of

(5.2)

simple waves.

5.2 Generalized simple waves

A generalized simple wave is a solution of the gas dynamics equations

(Meleshko and Shapeev, 2011) satisfying
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where ¢ and 1) are some functions of the variables p, v and p. These functions are
obtained from compatibility analysis of the overdetermined system of the partial
differential equations consisting of the gas dynamics equations and equations (5.3).

The compatibility conditions lead to (Meleshko and Shapeev, 2011)

Y =kp"p’, b=~

3vy—1)ap
br=1-g", 6:1+:37;—1’ k#0, o®=c.

Solutions of the gas dynamics equations satisfying the conditions (5.3) are called
generalized simple waves. In this thesis, this type of solutions is applied.

The equations determining a generalized simple wave can be rewritten in
the form solved with respect to the main derivatives. In fact, the differential

constraints (5.3) can be rewritten in the form

Pe =+ 062[)3;,
4 (5.5)
P
Substituting (5.5) into the gas dynamics equation (4.6) they become
pr = —(v+a)ps — po,
o Y
vp=——WV+a)p, — — — v, (5.6)
=ty

5.2.1 Equations along a characteristic

Consider a characteristic curve © = z(t) on a generalized simple waves.

The characteristic is determined by the equation

d
a(a(t).6) = v(a(t). ) + ale(t). 1) (57)
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Then the derivatives of the gas dynamics variables are

d

Zep(@(0),1) = pu(a(t),8) (v((0),6) + a(2(t), ) + pua (), ),
Sl (t),1) = valr(0),) (v, 1) + 0(x(0),0) + el ), (58)

Sp(a(®).1) = po(a(t), ) (v(a(). ) + ala(®).)) + pu(a(t), )

Substituting (5.4), (5.5) and (5.6) into the latter equations, we obtain

%xzv—l—a,

d __ 3

at’ T 3y —1)a’ (5.9)
d (0 '
di’ B3y 1)y

d )

Ep:ih—l'



CHAPTER VI

STATEMENT OF THE PROBLEM AND

THE SOLUTION METHOD

The method of solving the main problem of the thesis consists of two steps.
In the first step, a shock wave and data on the shock wave are obtained. In
the second step, using the obtained data as the initial data, the systems along
characteristics are solved on both sides of the shock wave. Details of this study

are presented in this Chapter.

6.1 Formulation of the problem

Consider a domain £ C R? separated by a curve z = X (t) : Q = Q; U Q.
Assume that the curve x = X (t) is a shock wave and solutions in €y and 2, are

generalized simple waves.

x=X(@

W

Figure 6.1 The curve of shock wave.
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The main purpose of the thesis is to demonstrate that this solution can be

realized.

6.2 Construction of equations along a shock wave

Consider any function f(z,t) along the curve x = X(¢) :

Differentiating it with respect to ¢, one obtains
() = [ulX (@), 1) + fo(X (1), ) X'(2).
For a shock wave x = X (), one has
X'(t) =D,

where D is the velocity of the moving discontinuity.
As in the domains ©; and (2, solutions of the gas dynamics equations are

continuously differentiable, one can write

d
—pi =py +D iz
ltp Pit P

d
%'Ui = Vi + D Vig, (61)

d
—Di = Pit + D Dia,
dtp pit + LD p

where 1 = 1, 2.
Differentiating the Rankine-Hugoniot conditions

p2(v2 — D) — p1(vi — D) =0,
po — p1 + p2(ve — D)2 — p1(vg — D)2 =0,

(-2 4 (= DY — (0 - D) =0,

1
vy—1\p2 2
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one derives

dp2 dUQ dD dpl d’l]l dD
g (2 >+p2<dt dt) g (D) pl(dt dt) )
dpy dpi  dpy 9 dvy dD
R T L YPTRN ) \ L) Y 5 ) et
g ar T a T D) e >< it di )
d,Ol 2 dUl dD B
_;L%E@wﬂ%ﬂ_L_<@fﬂg
(v —Dp2\Par P ar) T 02\ TP
dv, dD dv, dD
D)2 ) (- DY ) —o.
(v )< at e ) (v )< at  dt ) 0

Substituting (6.1) into these equations and then into (5.6), we derive an
algebraic system with respect to pi., po, and dd—?. For the sake of simplicity we
demonstrate here this derivation using the first equation of the Rankine-Hugoniot

conditions
pa(vy = D) = p1(vy — D) = 0.

Differentiating with respect to ¢,

N (dvz dD) dpa (0 — D). (63)

o a) @

d’Ul dD ) dp1
dt dt

=D = (G~ ) 0

Substituting (6.1), we have

dD

p2(vay + Dugy) — PQ% + (v2 — D)(p2t + Dpaz)

dD
= p1(viy + Dvyy) — pl% + (v1 = D)(p1t + Dp1a),

dD
P22t + Dpavg, — sz + (vg — D)pay + (va — D)Dpo,

dD
= p1v1 + Dprvi, — pl% + (v1 — D)p1t + (v1 — D)Dpy,.
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Substituting (5.5) and (5.6), the left-hand side becomes

Q@ WY Q
pz( — (02 + ) pag — — — U2¢2) + Dps <¢2 + —2P2m)
P2 P2 P2

dD
+ (vg — D)( — (vg + a2)pay — ,02¢2> + (va = D)Dpay — P2

= —a(Vg + ) oz — Va2 — P2202 + Dpads + Daapay — (v2 — D)(v2 + i) pag

dD
— (va = D)pagpa + (v2 — D) Dpa, — P2

= (= as(vs + 2) + Daz — (12 = D)(vs + ) + (12 = D)D) s

dD
— g — pav2g2 + Dpate — (Vg — D) pachs — P2E

o _ Yo+ (D — va2)papy — (v2 — D)pagpa

= —(D— 2 oy —
( Vg + 2)"po pzdt

dD
=—(D—vy + 042)2/32x - P2% — )y + 2(D — v3) pagho.

The right-hand side becomes

dD
—(D—v + 041)2Pm - pl% — 1 +2(D —v1)p191.

Thus we obtain

dD
(D —wv + 041)2[)19; — (D =+ a2)2p2x +(p2—p1)— =
dt (6.4)

1 — Py + 2(D — vg)pagpa — 2(D — v1)p1¢1.

Applying a similar method to the study of the other equations of the

Rankine-Hugoniot conditions we obtain the following system of equations,
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dD
(D — v 4 a1)?p1e — (D — va + a2)*pag + (p2 — ,01)% =

V1 — Yo+ 2(D — va)paga — 2(D — v1)p1¢

dD
dt

= 3p22(D — v2)* — 3p101(D — v1)* + (pags — p1h1)
(6.5)

—(D —v1 + 1)’p1z + (D — v2 4 a2) pay — 2(p2v2 — prv1 + D(p1 — p2)

+ 3w1(D — 1)1) — 3w2(D — 'UQ)

Qo «Q dD
—1(D — v+ 041)2,01a; — —2(D — Vg + 042)2,023; + (v, — v2)—
p1 P2 dt
2v — 1
_ ((D—'Ul)ﬂ—(D—Ug)ﬁ>
v—1 P1 P2

+ 0000+ (D —0)?) =1 (@® + (D - w)?)

This system is an algebraic system of equations with respect to pi,,

dD .
P2z and i

dD
hi1piz + hiopas + hi3% = hi, (i=1,2,3), (6.6)

where
hii = (D — v + o),
his = —(D — vy + a)?,
his = p2 — p1,
his = Y1 — Yo + 2(D — v2)paga — 2(D — v1)p101,
hor = —(D — vy + )3,
has = (D — v2 + az)?,

h23 = 05
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h24 = 3p2¢2(D — 112)2 — 3p1¢1(D — U1)2 + 7(p2¢2 - plgbl)

+ 31/11<D — ’Ul) — 3¢2(D — U2>7

(0%
h31 = —l(D — v + 061)2,
P1
(6
h32 = ——2<D — V2 + 062)27
P2

In matrix form, this system is

hii hia his Pz hi4
hor haa hos | - P2z - haa
hsi hsa  hs3 % hsa

The determinant of this system is
A= (a1 +D—v)’(as+D—wy)’ (041042(P1 — p2)? — prpa(v1 — U2)2>/(01P2)

Since D # v; — «y, (1 = 1,2), then the determinant of this system is not

equal to zero if

2
o0 y (vl —v2) ‘ (6.7)
pP1p2 P1— P2

Substituting D, pe and vy from (4.9) into this system, and applying the
Gauss elimination method, we find py,, pos, D, where D := %. Their expressions

are shown in Appendix A.
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Substituting piz, poe, D into (6.1), we obtain the system of ordinary dif-

ferential equations

d

Ex =D,

d

%Pl = f1(P1,P2,Ul,p1),

%Ul = fa(p1, p2,v1,p1), (6.8)
d

Elh = f3(P1,P2,U1,p1),

d

@[& = f4(P17P2,U1;p1);

where for the sake of shortness, the representations of the functions f;(i =
1,2,3,4,5) are presented in Appendix A. Here other gas dynamic variables on

the shock wave are found from the Rankine-Hugoniot conditions (4.9).

6.3 Algorithm for finding data on a shock wave
Consider the initial data at ¢ =0 :

T = Xo, P1 = P10, P2 = P20, U1 = Vo0, P1 = P1o, (6-9)

such that conditions (6.7) are satisfied.

The algorithm of finding the shock wave and the data on it consists of the
following steps.

First, one needs to determine the right-hand side in equations (6.8). The

code of this step is given in file “w.m”:
1. Set the initial data =g, p1g, P20, and vyp.

2. Using (4.9), find vs, po, and D : (lines 12-24, in “w.m”).

3. Applying the Gauss elimination method, find piz, pos, and D : (lines 32-79,

in “w.m”).



20
4. Compute the right-hand side of ordinary differential equations (6.8) : (lines
81-103, in “w.m”).

5. The data on the shock wave are obtained by the fourth-order Runge-Kutta

method *. The code of this part is given in file “rk_w.m” (lines 1-23).

In Figure (6.2) results of calculations of the shock wave are presented. For

computations we used the following data:

1.4

ki = 0.01, ky = 0, ~

and the initial data

0 02z 04 06 08 1 12 14 16 18 2

Figure 6.2 Shock Wave.

*Runge-Kutta method is presented in Appendix A
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6.4 Adjoining two generalized simple waves

The solutions on both sides of the shock wave are obtained by integrating
equations (6.8) along characteristics starting from a point on the shock wave.

The algorithm consists of the following steps.

1. Choose a point on the shock wave.

2. Integrate equations (5.9) using the fourth-order Runge-Kutta method with
the initial conditions obtained on the shock wave at the chosen point : (line

25-44, in “rk_w.m”).
3. Change the point and continue with item 1 : (line 45-70, in “rk_-w.m”).

4. Consider all points o the shock wave. All computed data are plotted on

figure 6.3-6.5 : (line 71-97, in “rk-w.m”).

Figure 6.3 Velocity on (t,x,v) - space.



=3
oo 0 — (o] (5] =N m [ny]

Figure 6.5 Pressure on (¢, z,p) - space.
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CHAPTER VII

CONCLUSIONS

The obtained results show the possibility of joining two generalized simple
waves through a shock wave.

The solution of the problem depends on six constants which value of the
functions vy, p1, p1 and py at some point ¢y and xy, and two constants k; and ks

characterizing the generalized simple waves. The solutions found are presented in

Figures 4.2-4.5 prepared in MATLAB (version2011a).
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APPENDIX A

COMPUTER PROGRAMS

This appendix contains codes of the programs which are written in MAT-

LAB.

CODES FOR FINDING A SOLUTION ON THE SHOCK WAVE

File name w.m

JAuthor: Wiparat Worapitpong

%This program for find y:x, rol, ro2, ul, pl
JWhich get D, u2, p2 from REDUCE

%And set k1=0.01, k2=0

function dy=w(t,y)

syms rol ro2 ul pl

rol=y(2);

ul=y(3);

pl=y(4);

ro2=y(5);

k1=0.01; %constant from side 1

k2=0; Yiconstant from side 2

ga=1.4; %Specific gas constant: Polytropic gas
be=1+(1/(3*ga-1));

bel=1-(ga/(3xga-1));
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19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

28

s02=2xga*pl*rol*ro2+*(ga*rol-gaxro2+rol+ro2);

sg=-sqrt(so2);

u2=sq*(-rol~(-1)+ro2~(-1))/(ga*rol-ga*ro2+rol+ro2)+ul;
p2=(pl*(-ga*xrol+ga*ro2+rol+ro2))/(ga*rol-ga*ro2+rol+ro2) ;

d=-(sq*rol~(-1))/(ga*rol-ga*ro2+rol+ro2)+ul;

alfi=(ga*pl/rol)~(1/2);
alf2=(ga*p2/ro2)~(1/2);
psl=kl*(rol~bel)*(pl-be);
fil=-3xga*ps1/((3*ga-1)*alflxrol);
ps2=k2*(ro2~bel) *(p2~be) ;

fi2=-3*ga*ps2/((3*ga-1)*alf2*ro2);

aa = sym(zeros(3));

aa(1,1)=-alf1"2+2*xalf1*(-d+ul)-d"2+2*d*ul-ul"2;
aa(1,2)=alf2"2+2*xalf2* (d-u2)+d"2-2*xd*u2+u2”~2;
aa(1,3)=-rol+ro2;
aa(2,1)=alf1"3+3*alf1"2*x(d-ul)+3*alf1*(d"2-2*«d*ul+ul”"2)+. ..
d~3-3*%d"2*ul+3*d*ul~2-ul"3;
aa(2,2)=-alf2"3+3*alf2"2* (-d+u2) +3*alf2* (-d"2+2*d*u2-u2"2)-. ..
d~3+3*d"2*u2-3*d*u2”2+u2”3;
aa(2,3)=2*x(d*rol-d*ro2-rol*ul+ro2+*u2) ;
aa(3,1)=(alf1"3+2*alf1"2x(d-ul)+alf1x(d"2-2*d*ul+ul~2)) /rol;

aa(3,2)=(-alf273+2*alf2"2*(-d+u2)+alf2*(-d"2+2xd*u2-u2-2)) /ro2;
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

aa(3,3)=-ul+u2;

aa_10=(ps1*alf2*x(-3*alflxga+alfl-6xd*ga+6*garul)+...
ps2*alfix(3*xalf2*xga-alf2+6*dxga-. . .

6*xga*xu2))/(alf1*alf2x(3xga-1));

aa_20=(3*pslxalf2x(alfl1”2*xga+3*alfl*xd*ga-alfl*d-3*xalflxgaxul+. ..

alflxul+3+d~2xga-6*xd*gaxul+3*ga*ul”™2)+. ..
3xps2*xalflx*(-alf2"2*ga-3*alf2*xd*gatalf2x*d+. ..
3*xalf2xgaxu2-alf2*u2-3*d"2*ga+b6*xd*rga*xu2-. ..

3xgaxu2~2))/(alfixalf2*(3*ga-1));

aa_30=(psl*alf2*ro2+*(3*alfl~2%ga~2-3*alfl”2*ga+b*xalfl*xd*ga™2-...

5k%alflxdxgatalflxd-6*alflxga”2*xul+b*alfl*gaxul-...

alfl*xul+3*d"2xga”2-3*d"2*xga-6*d*ga”2*xul+6*xd*ga*ul+. ..

3xga~2+ul”2-3*ga*ul”2)+ps2*alfl*rol*(-3*xalf2"2%ga~2+. ..

3*xalf2"2xga-6*alf2*xdxga”2+5xalf2*xd*xga-alf2xd+. ..
6xalf2*xga”2+u2-5*alf2*gaxu2+alf2*u2-3*xd"2xga™2+. ..
3*d"2*xga+6xdxga”2*xu2-6xd*ga*u2-3*xga”~2*u2”2+. . .

3xgaxu2~2))/(alfi1xalf2*rol*ro2+(3*xga~2-4xga+l)) ;

b = sym(zeros(3,1));
b(1,1)=-aa_10;
b(2,1)=-aa_20;
b(3,1)=-aa_30;

b=simplify(b);

29



71

73

74

75

76

80

83

87

88

®
©

91

94

95

b=collect(b);

aal=simplify(aa);

sym(zeros(3,1));

8
I

aal\b;

=}
I

syms rol_x ro2_x d_t

rol_x = m(1,1);
ro2_x = m(2,1);
T - . N —

drol=(-((pl*rol_x-3*psl*rol-3*ga*pl*rol_x)*ga-...

(d-ul)*(3*ga-1)*alfl*rol*rol_x))/(alfl*(3xga-1)*rol);

dul=(-((pl*rol_x-3*psl*rol-3*ga*pl*rol_x)*ga*ul+...

(ga*pl*rol_x+psil*rol)*(3*ga-1)*alfl-...

(pl*rol_x-3*psl*rol-3*ga*pl*rol_x)*d*ga))/(alfl*(3*ga-. ..

1)*rol1~2);

dpl=(-((pl*rol_x-3*psl*rol-3*ga*pl*rol_x)*alflxga-...

(d-ul)*(ga*pl*rol_x+psi*rol)*(3xga-1)))/((3*ga-1)*rol);

dro2=(-((p2*ro2_x-3*ps2*ro2-3*ga*p2*ro2_x)*ga-. . .

(d-u2) *(3*ga-1)*alf2*ro2*ro2_x))/(alf2*(3*xga-1)*ro2) ;

30
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97

98

99

100

101

102

103

10

11

dy = zeros(5,1);

dy(1) = d;
dy(2) = droi;
dy(3) = dui;
dy(4) = dpi;
dy(5) = dro2;
end

CONSTRUCTION OF A SOLUTION ON BOTH SIDES OF THE

SHOCK WAVE

For side 1

File name wpl.m

%hAuthor: Wiparat Worapitpong

%This program to find solution on 1st side.

Jwith initial point
function dy=wpl(t,y)
syms rol ul pl
rol=y(2);

ul=y(3);

pl=y(4);

k1=0.01;

ga=1.4;

from w.m

Y%constant from side 1

hSpecific gas constant: Polytropic gas
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26

27

28

be=1+(1/(3*ga-1));

bel=1-(ga/(3*ga-1));

alfi=(ga*p1l/rol)~(1/2);
psi=kix(rol~bel)*(pl1-be);

fil=-3*ga*psl/((3*ga-1)*alfix*rol);

drol=(3xgaxfil)/alf1*(3*ga-1);

dul=(fil1) /rol*(3*ga-1);

dpl=(alf1*fi1)/(3*ga-1);

dy = zeros(4,1);

dy(1) = ul-alfi;
dy(2) = droi;
dy(3) = dul;
dy(4) = dpil;

end

For side 2

File name wp2.m

%Author: Wiparat Worapitpong

%This program to find solution on 2st side.
Jwith initial point from w.m

function dy=wp2(t,y)

syms ro2 u2 p2

ro2=y(2);
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u2=y(3);

p2=y(4);

k2=0.0;

ga=1.4;

be=1+(1/(3*ga-1));

bel=1-(ga/(3*ga-1));

Yiconstant from side 2

%Specific gas constant:

alf2=(ga*p2/ro2)~(1/2);

ps2=k2* (ro2~bel) *(p2-be) ;

fi2=-3*ga*ps2/((3*xga-1) *alf2*ro2) ;

dro2=(3*gaxfi2)/(alf2*(3*ga-1));

du2=(£i2)/ (ro2*(3*ga-1));

dp2=(alf2xfi2)/(3xga-1);

dy = zeros(4,1);

dy (1)

dy (2)

dy(3)

dy(4)

end

u2-alf2;
dro2;
du2;

dp2;

Polytropic gas
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THE FOURTH-ORDER RUNGE-KUTTA METHOD

The fourth-order Runge-Kutta method is a numerical method for solving the

Cauchy problem.
y'(t) = f(ty),

y(to) = Yo
in from
Yit1 = Yi + Z ki +2ky + 2k3 + ky|,
tin = t, + h (i = 0,1,.,N—1),
where
ki = f(tiyi),
ko = f(ti + ;L’Uz + Zk1)7
ks = f(ti + ;lvyi + ;L]@),

ks = f(ti + hyyi + h k3).

CODES FOR FINDING SOLUTION ON THE SHOCK WAVE
For shock wave

File name rk_ w.m

function [t,yl=rk_w(w,y0,h,a,b)
% yO is initial data vector

%» w is functions of equations.
%» h is step length,

% [a, bl is interval

n=floor((b-a)/h); % evaluate step length
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30

31

35

t(1)=a; % take left point of interval, t is a vector

y(:,1)=y0;

% take initial data from y0, note that dimension of vector y
for i=1:n

t(i+1)=t (i) +h;

kki=w(t(i),y(:,1));

kk2=w(t(i)+h/2,y(:,1)+h*kk1/2);
kk3=w(t(i)+h/2,y(:,1)+h*kk2/2);

kk4=w(t(i)+h,y(:,1)+h*kk3);

y(:,i+1)=y(:,1)+h* (kk1+2xkk2+2*kk3+kk4)/6;

end

plot(t,y(1,:))

xlabel(’t?);

ylabel(’x’);
set(get(gca, ’YLabel’), ’Rotation’,0.0);

%title(’Solution on the Shock Wave’);

% Keep result
A=transpose(y) ;

[m,n]=size(A);

% Step 2 : Compute solution on side 1
hm—m e Code for side 1 -———-————=—————————-
for i=1:m

[t,yl=rk_wpl(@upl,[A(i,1:4)],h,a,b);
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x(1i,:)=y(1,:); % Keep x
ro(i,:)=y(2,:);
u(i,)=y(3,:); 7% Keep u

p(i,)=y(4,:);

end

h————— Code for side 2 ———————————————————-
rol=A(:,2);

ul=A(:,3);

pl=A(:,4);

ro2=A(:,5);

ga=1.4;

% Step 3 : Compute u2 and p2

for i=1:m

s02(i)=2xgax*pl(i)*rol(i)*ro2(i)*(ga*rol(i)-...
gaxro2(i)+rol(i)+ro2(i));

sq(i)=-sqrt(so2(i));

u2(i)=sq(i)*(-ro1 (i)~ (-1)+ro2(i)~(-1))/(gaxrol(i)-. ..
gaxro2(i)+rol(i)+ro2(i))+ul(i);

p2(i1)=(p1(i)*(-ga*rol(i)+ga*ro2(i)+rol(i)+...
ro2(i)))/(ga*rol(i)-ga*ro2(i)+rol(i)+ro2(i));

end

% Step 4 : Compute solution on side 2

for i=1:m

[t,yl=rk_wp2(@up2, [A(i,1) ro2(i) u2(i) p2(i)],h,a,b);
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xx (1, )=y(1,:); % Keep x2 from side 2
rr(i,)=y(2,:);
uu(i,:)=y(3,:); % Keep u2 from side 2
pp(i,:)=y(4,:);

end

/» Step 5 : Change(flip) column xx and uu for plot graph
x_2=fliplr(xx);
r_2=fliplr(rr);
u_2=fliplr(uu);

p_2=fliplr(pp);

% Step 6 : Write in 1 array
tt=-t;

tt=fliplr(tt);

st=[tt t];

sx=[x_2 x];
su=[u_2 ul;
sr=[r_2 rol;

sp=[p_2 pJ;

%y Step 7 : Plot graph 3D

surf (st,sx,su);

xlabel(’t’);
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ylabel(’x’);
zlabel(’v’);

htitle(’Adjoining of 2 Waves’);

surf(st,sx,sr);
xlabel(’t?);
ylabel(’x’);

zlabel (’\rho’);

surf (st,sx,sp);
xlabel(’t?);
ylabel(’x’);

zlabel(’p’);

CODES FOR FINDING SOLUTION ON THE BOTH SIDES OF

THE SHOCK WAVE

Find a solution on side 1 by Runge-Kutta fourth-order method

File name rk_wpl.m

% y0=[x0 rol ul pi]

function [t,yl=rk_wpl(wpl,y0,h,a,b)

% yO is initial data vector

% wpl is functions of equations. i.e. subprogram,

%» h is step length,

% a is left point of interval, b is right point of interval

n=floor((b-a)/h); % evaluate step length
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t(1)=a; % take left point of interval, t is a vector
y(:,1)=y0;
% take initial data from y0, note that dimension of vector y
for i=1:n
t(i+1)=t (i) +h;
kkl=wpl(t(i),y(:,1));
kk2=wpl(t(i)+h/2,y(:,1i)+h*kk1/2);
kk3=wpl (t(i)+h/2,y(:,1)+h*kk2/2) ;
kk4=wpl(t(i)+h,y(:,1)+h*kk3);
y(:,i+1)=y(:,1)+h* (kk1+2xkk2+2*kk3+kk4) /6;

end

Find a solution on side 2 by Runge-Kutta fourth-order method

File name rk wp2.m

% yo=[x0 ro2 u2 p2]

function [t,yl=rk_wp2(wp2,y0,h,a,b)

% yO is initial data vector

% wp2 is functions of equations. i.e. subprogram,
%» h is step length,

% a is left point of interval, b is right point of interval

n=floor((b-a)/h); % evaluate step length
t(1)=a; % take left point of interval, t is a vector
y(:,1)=y0;

% take initial data from yO, note that dimension of vector y
for i=1:n

t(i+1)=t(i)+h;
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end

kk1=wp2(t(i),y(:,1));

kk2=wp2(t (i)+h/2,y(:,1)+h*kk1/2);
kk3=wp2(t(i)+h/2,y(:,1)+h*kk2/2);
kk4=wp2(t(i)+h,y(:,1)+h*kk3);

y(:,i+1)=y(:,1)+h*(kk1+2xkk2+2xkk3+kk4) /6;
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APPENDIX B

PROOFS

This appendix contains the proof of some parts from Chapter II and Chap-

ter IIL.

B.1 Derivation of the Rankine-Hugoniot conditions for a

polytropic gas

To show that the Rankine-Hugoniot conditions

Dipl = [pv],
Dlpv] = [pv* + ), (B.1)
2 2
Dlple+ )] = [vlp+ple+ )]
for a polytropic gas are
[o(v — D)] =0,
[+ o0 - D) =0, (B.2)
v p, W=Dy _
[7 — 1; + 2 } =0.
Proof. Since the notation [ - | is defined as [ f | = fo - f1 , where f; and f; are

values of a function f from different sides of the discontinuity. Then first equation

of (B.1) can be rewritten
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p2v2 — prv1 = D(py — p1),
p2v2 — p1v1 — Dpy + Dpy = 0,
(B.3)
(pav2 — Dps) — (p1v1 — Dp1) = 0,
[p(v — D)] = 0.

The second equation of (B.1) can be rewritten

[pv?® + p] = Dlpv],
[pv] + [p] = Dlpv] = 0,
[p] + [pv® — Dpv] =0,
[p] + [pv(v = D)] = 0.
Consider
[ov(v = D)] = pava(v2 — D) = proi(vy — D),

— pa(vs — D + D) (v — D) — pi(v1 — D + D)(v, — D),
= (p2(va — D) + Dpa)(v2 = D) = (pi(v1 — D) + Dp1)(v1 — D),
= pa(va = D)* + Dps(va = D) = pi(v1 — D)* = Dp1(v1 — D),
= pa(va = D)* = p1(v1 — D)* + Dpa(v2 — D) — Dpi(v1 — D),
= [p(v = D)’] + Dlp(v — D)],
= [p(v = D), ([p(v = D)] = 0).

The second equation of (B.1) becomes

[p] + [p(v — D)*] =0,

[p + p(v — D)*| = 0.

(B.4)

For the third equation of (B.1) we use



43

and
[0%] = v,? — 12,
= vy2 — 2Dvy + D? 4+ 2Dvy — v12 + 2Dv, — D? — 2Dvy,
= (v, — D)? +2Dvy — (v; — D)* — 2Dy, (B.5)
= (vg — D)? — (vy — D)* + 2D(vy — 1vy),
= [(v—D)*] +2D[v],

Then the third equation of (B.1) becomes

U2 2

D[ﬂ(€+§)] = [o(p+ ple + = 5 )l

Dl §+%>J oo+ g 2 )L
D[%w%]—[v(j_pﬁ )
DI +p51 = 0= D) + 95+ DL + 65
DIt - 2~ - D)L 4 )
Dl-p) = Il —D)(%} +p%>i; b
Dlp(v — D)*| = [p(v — D)(-— Sl
0=lplo = D)5 L+ 23] - Dlo(w - DY
0= [plo = D) L+ )= Dlpt? — 20D)
0=[plo = D) L+ Dlpuo - D)),
0= lplo- D)5 L+ - D)
0= 2+ 5PN

This finalizes the proof. O
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B.2 Proof of Asserting in Chapter 111

Assume that all the gas dynamics variables are functions of one dependent

variable p,

Substituting them into the gas dynamics equations, we obtain an overdetermined

system of partial differential equations which in the matrix form is

P

where

1 v+ pv,
A= pv,  pov, + P’

P wP' + Py,
To show that v + % i1s constant in Riemann wave.

Proof. Note that

VP — p(pu,)? =0,

pP' = ~P.
Consider the second equation

pP' = ~P.
Then we obtain

P = ¢ p’,

where ¢ is an arbitrary constant.

Since

P = A(S) p",



then

Therefore

where ¢, is a constant.

Next, consider the first equation

c
Up = 4+ ;
As
A(S)p” e
¢ = :% = l%%& = VAAS)p
and
P e
E = C3.
Thus
c
’UP £4 o ;
A(S) p(=1/2
_ 4 VAB) p
P

Then integrate by dp,

2 1
= A(S <_ T)
v YA(S) ) ta
2
Zi——ijMMSMTJ+@
2 P
Ry T
y=1V p
B 2« .
where
P
o=+ ’Y_u



or equivalently,

Therefore

and

P
T
p
2«
v+ = C
v—1
P
E—CQ.
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