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The Boltzmann equation describes the statistical behavior of fluids in terms
of a molecular distribution function. The difficulties for solving the equation are
mainly due to the complex mathematical structure of its collision term. In the
particular case of the spatially homogeneous and isotropic Boltzmann equation,
A.V. Bobylev succeeded in reducing the equation to a simpler one by applying
the Fourier transform. The purpose of this thesis is to study this simpler integro-
differential equation by the group analysis method, even under the presence of a
source function.

The first part of the thesis deals with solving the equation by the approach
of a moment generating function. Although the equation governing the moment
generating function is still nonlocal, it is simpler than the original equation. The
algorithm applied in this thesis yields a complete group classification of the equa-
tion with respect to the source function, thus correcting the deficiencies of earlier
studies.

The second part of the thesis is devoted to the group analysis of the integro-
differential equation arising as the Fourier image of the studied equation with a
source function. The coefficients in the determining equation are represented by
the Taylor series and the determining equation is successfully solved. The complete

group classification and all invariant solutions of the equations are presented in the
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thesis.
Both techniques perform well for solving and finding invariant solutions for
the Fourier image of the spatially homogeneous and isotropic Boltzmann equation

with a source function.
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CHAPTER I

INTRODUCTION

1.1 Background and History

Integro-differential equations, together with delay differential equations and
stochastic differential equations, are equations with nonlocal operators. They have
been studied for a long time in numerous scientific and engineering applications
and in mathematics. Many well-known integro-differential equations are kinetic
equations which form the bases in the kinetic theories of rarefied gases, plasma
and radiation transfer. One of them is the Boltzmann kinetic equation in rarefied
gas dynamics.

More than a hundred years ago, Ludwig Boltzmann proposed a nonlinear
integro-differential equation which has come to be the fundamental equation in the
kinetic theory of rarefied gases. The Boltzmann equation describes the statistical
behaviour of fluid in terms of a molecular distribution function, and is of great
interest in connection with initiation of high threshold processes by hot particles,
rarefied gas flows over catalytic surfaces, disturbances of upper earth atmosphere
by solar flares, among others.

The main difficulties to solving this equation are largely due to the com-
plex mathematical structure of the collision term. The detailed form of this term
depends on the precise nature of the intermolecular forces. However, the exact
solution for general intermolecular forces and arbitrary initial conditions is not

known. The solutions are known under only restrictive conditions, therefore it is



of great importance to study simplified models, for which one can obtain special
solutions or preferably the general solution for arbitrary initial conditions. In con-
structing model-Boltzmann equations, one looks for special intermolecular forces
between the particles in the gas, such that the differential scattering cross-section
or collision rate has a simple dependence on the energies of the colliding particles
or on the scattering angle. The best known examples in this category are the so
called Maxwell molecules. After the studies of the class of the Maxwell molecules,
new classes of invariant solutions were constructed in the 1960s (Ernst, 1981).

The most important motivation came from finding an exact solution of the
nonlinear Boltzmann equation for Maxwell molecules, found by Bobylev (1975) and
independently by Krook and Wu (1976). This exact solution is referred to as the
BKW-solution. This solution has been generalized in many directions. Another
development was reviewed in Ernst (1981).

One of powerful methods for finding analytical solutions of differential equa-
tions is group analysis (Ovsiannikov, 1978). Group analysis was introduced by
Sophus Lie in 1870. It has been applied for finding solutions of many types of ordi-
nary differential equations and partially differential equations and it continues to
be developed for nonlocal equations, e.g. integro-differential equations (Grigoriev
and Meleshko, 1986).

Group analysis involves the study of symmetries of differential equations,
with emphasis on finding solutions by using their symmetries. In case of ordinary
differential equations, the existence of a symmetry can be used to reduce the order
of an equation, and then the solutions are found from solving the reduced equation.
For a given system of partial differential equations, group analysis may lead to an
easier form of the system, or to special types of the system. Group analysis has

been applied to delay differential equations (Tanthanuch and Meleshko, 2002) and



integro-differential equations (Grigoriev and Meleshko, 1987).

1.2 Statement of the Problem

This thesis is devoted to group classification of invariant solutions of the
Boltzmann equation in the spatially homogeneous and isotropic case with an arbi-
trary source term. Several approaches have been worked out during the study of
invariant solutions of integro-differential equations, and an introduction to these
approaches can be seen in Chapter II. One of these approaches is the transition
to an equation for a moment generating function, which was first considered by
Krook and Wu (1976), where the BKW solution was also obtained. Therefore, this
thesis separats the group classification of the spatially homogeneous and isotropic
Boltzmann equation with sources into two parts: firstly, the equation for a mo-
ment generating function is studied; and secondly, the spatially homogeneous and
isotropic Boltzmann equation with an integral term is investigated. While, the
spatially homogeneous and isotropic Boltzmann equation with sources was first
studied by Nonnenmacher (1984), it was not taken into account that this equation
is, in fact, a nonlocal partial differential equation (Grigoriev and Meleshko, 2012);
this problem is corected in the thesis. The two studied equations are introduced

in the next two subsections.

1.2.1 The Fourier Image of the Spatially Homogeneous and

Isotropic Boltzmann Equation

The Fourier image of the spatially homogeneous and isotropic Boltzmann

equation with sources has the form (Bobylev, 1975)

ool ) + oy, (0, 8) = [ olys, Dol — 9),8) ds + 4w t). (L)



Here, the function ¢(y,t) is related with the Fourier transform @(k,t) of the

isotropic distribution function f(z,t) by the formula

4

w(k?/2,t) = ¢k, t) = - fowvsin(kv)f('u,t) dv.

Similarly, the transform of the source function g(v,t) is

4: o0
@k, t) = -—kﬂ/ vsin{kv)g{v, t) dv,
0
and
Q(k,t) = 4(k*/2.1).
The inverse Fourier transform of @(k,t) gives the distribution function

flo, ) =T f b Fsin(ev) 3 (k, £) di
0

v

1.2.2 The Moment Generating Function of the Spatially

Homogeneous and Isotropic Boltzmann Equation

Normalized moments of the distribution function f are introduced by the

formula {Grigoriev and Meleshko, 2012)

47 o
M,t) = ——— Hutig =0,1,2.... 1.2
()= Gy |, SO0 =01 (1.9

Following (Bobylev, 1984), one can obtain a system of equations for the moments

(1.2) from (1.1). It is sufficient to substitute the power series expansions

o0 i o0

n y - n, (Y
elt) =D (FD"Mal®) 5, 4wt) =) (~1)"a() 7,
n=0 n=0
into (1.1), where
gn(t) = 2R /OO q(u, t)v* 2 du m o= QL 2
T (2?1 + :E)!! 0 ¥ 1 H b L)



are the normalized moments of the source function. As a result, one derives the

moment system

———dﬂé’;m + M (t) Mo(t) = ﬁi ,; Mi(t) Mn-(t) + an(t). e}

Let us define moment generating functions for the distribution function

f(v,t) and for the source function ¢(v,t):

Glw,t) =D w"Mn(t), Sw.t)=_ w'e(t).
n=0

n=0

Multiplying Equations (1.3) by w", and summing over all n, one obtains the equa-

tion for G{w,t)

8*(wG) 8(wG) O(wS)

2
Yo + My(t) R = 8 +__8w A (1.4)
Here, the obvious relations are used
= . _ 0(wG) X i _ 0wS)
g(w L™ Mo (t) = ===, g(m D" gn(t) = =5,

S WS M) Mu—i(t) = G2
k=0

n=0

In contrast to the case of homogeneous relaxation with g(v, t) = 0, the gas density

My(t) = ¢(0,1) is not constant. From Equation (1.3) for n = 0 one can obtain

i
Moft) = f qo(t)dt' + Mo(0).
0
Notice also that
Mo(t) = G(0, ). (1.5)

This is the reason why Equation (1.4) has a nonlocal term. Nonenmacher (1984)
has not taken this fact into account in the process of finding an admitted Lie group.
Neglecting this condition can lead to incorrect admitted Lie groups.

Equation (1.4) is conveniently rewritten in the form

(zus)y — u* + u(0)(zu); = g, (1.6)



where u{0) = u(0,1). Here, w =12z, G =u and (wS), = g.
In this thesis, the approach for integro-differential equation and algebraic

method are used. This approach contains the following steps:

(1) Find the admitted Lie groups of Equation (1.1) and Equation (1.6). Notice
that we use a different method to finding the admitted Lie groups of these

equations, as compared with partial differential equation;
(2) Classify the admitted Lie algebras of Equation (1.1) and Equation (1.6);

This thesis is organized as follows. Chapter II introduces some background
knowledge of Lie group analysis and application of group analysis for integro-
differential equations. Chapter III presents the algorithm in finding an admitted
Lie group of Equation (1.6}, followed by its classification. The method for finding
the admitted Lie group, the classification, and the invariant solutions of Equation

(1.1) are given in Chapter IV. Lastly, the conclusion is presented in Chapter V.



/
i
|
i
I
3
3
3
F
3
3
i
1
}
1
1
1
1
1
1
1
1
1
1
1
i
1
i
i
1
i
i
i
I
I
]
]
|
|
|
|
|
|
i
i
i
t
3
t
k
E
b
1
1
i
\

-

The Fourier image of the spatially homogeneous and

isotropic Boltzmann equation with sources

- A M M e e b e e e e b

Grigoriev and Meleshko (2012)

The equation for a moment

generating function

Lie group

[ The determining equation of ]

the equation for a moment

generating function

Solving the determining

equation

1.} Generators admitited by
the studied equation
2.} The remaining pars of

the determining equation

Optimal system

Y

Group classification of the
equation for a moment
generating function

On group classification of the spatially

homogengous and isotropic Boltzmana
equation with sources II.

INT J NONLINEARMECH. 2014

B i R i o S AR 0 B BB e o e e e s e s s Y O

The determining equation

Apply Taylor series to

coefficients

Modified determining equation

Solving the modified

determining equation
y

1.) Generators admitted by
the studied equation
2.} The remaining part of

the determining equation

Optimal system

y

Group classification of the Fourier
image of the spatially homogeneous
and isotropic Boltzmanrn: equation

with sources

T e Y 3?5 5 i i e i

Invariant solutions
\\ J

Group analysis of the Fourier

transform of the spatially homogenous
and isotropic Boltzmann equation with
a source term,

JPHYS A-MATH THEOR, in press

Figure 1.1 Work flow of this thesis.



CHAPTER II

GROUP ANALYSIS

Before the discussion of the main research in the next chapter, it is useful to
review some basic concepts of group analysis. In 1870, a Norwegian mathematician,
Sophus Lie, introduced the theory of continuous transformation groups which are
now known as Lie groups. Lie group analysis is a successtul method for integration
of linear and nonlinear differential equations by using their symmetries. Later,
these groups were applied to many type of differential equations. An introduction
to this method can be found in textbooks (cf. Ovsiannikov (1978), Ibragimov
(1999)). The collection of results by using this method is in the Handbooks of
Lie Group analysis (1994), {1995), (1996). The application of group analysis for
integro-differential equations was developed in Grigoriev and Meleshko (1986),
(1987), Meleshko (2005) and Grigoriev, Ibragimov, Kovalev and Meleshko (2010).

In this chapter, we review some background of Lie group analysis such as a
one-parameter Lie group, The Lie algebra of generator, the Lie-Béicklund operator,
an invariant solution and an application of group analysis to integro-differential

equations. In the last section is group classification.

2.1 One-parameter Lie Group of Transformations

Let us consider invertible transformations

2 = gtz 0), (2.1)



where i = 1,2,..,N, z € V C R" and a is a parameter, a € A. The set V is an

open set in RY and A is a symmetric interval in R with respect to zero.

Definition 1. A set G of transformations (2.1) is called a local one-parameter Lie
group if it has the following properties:

(1) ¢(z;0) =z forall z€ V.

(2) ¢*(g*(2;a),b) = g{z;a+b) for all a,b,a+ b€ A,z V.

(3) If, for a € A, we have g*(z;a) = z for all z € V, then a = 0.

(4) g* € C=(V,A).

For differential equations, the variable z is separated into two parts, z =
(z,u) € V C R* x R™",N = n+ m. Here, z = (21,23,...,2,) € R" is the
independent variable, u = (u',u?,...,u™) € R™ is the dependent variable. The

transformations (2.1) can be decomposed as

z; = ¢z, u;a), B=1,..,n, 22)
@ = P (z,u;a), j=1,..,m.
Here, these transformations are assumed to be sufficiently differentiable with re-
spect to the variables z; and «’/. The expansion of the functions ¢, 1 into their

Taylor series in a near ¢ = 0 yields the infinitesimal transformation of group G

(2:1):

B o+ E(zu)e, @ =+ (2w, (23)
where
; _ 0z, u;a) : _ 9P (z,u;0)
g (.'B,'U.) - 3@ - 3 TI"(.’I;,'U;) = aa - (24)

Let us consider the relation between equations and Lie groups.

Definition 2. A group of transformations, which transforms a solution ue(z) to
the new solution u,(z) of the same equation is called an admitted Lie group of

transformations.



10

Suppose the equation

F{z,u) =0 (235

and a solution up{x) are given. The transformed function %,(Z) is obtained in the

following way. Substituting ug(z) into (2.2), the transformations become
z; = ' (x, uo(z); a), @ = (2, u(2); a). (2.6)

Using the inverse function theorem for the first equation of (2.6), we can find

z = 0(Z;a). The transformed function is

1
2
)

Il

P(0(Z; a), uo(0(Z; 0)); a). (2.7)
After applying an admitted Lie group of transformations, we obtain
F (i@, (Z)) = 0. (2.8)

Differentiating (2.8) with respect to the group parameter a and substituting a = 0,

we get
oF At OF O _
833,; a=0 ( 8(1. a=(}) N BuJ a=0 ( aa‘ a=0) B 0 (29)
Applying formula (2.4), Equation {2.9) becomes
: oF ; oF B
& (m,u)a—xz(m,u) + 7 (:c,u)-a?(x,u) = (2.10)

The last equation can be expressed as an action of the infinitesimal generator
X= €i($1u)aﬂzi +Trj(mau')611-f' (211)

X is called the generator of the Lie group of transformations or infinitesimal gen-
erator, and the functions &' and 7’ are called the coefficients of the generator. Here
an index is repeated once, it is a dummy index indicating a summation with the
index running though the integers 1, 2, ... and this notation is used in the next of

the thesis.
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2.1.1 Prolongation of Group Transformations

In order to apply the Lie group of transformations (2.2) to the study of
a differential equation, one needs to know how this group acts on derivatives.
In the following the action of this group on u(z) is the same as seen in the the
previous subsection. For the sake of simplicity, let us first consider the case of one
independent variable and one dependent variable. The transformation of the first

derivative can be found as follows. Let us differentiate (2.7) with respect to &

_ OU(Z)  0v o8 Oy Ouy 00 oY O Oug
AT 6x8x+%3§;§; (8:6 " du Bm)@m' {22y

Substituting £ = 8(Z; a) into the first transformation of (2.6) implies the identity
T = (8(F; a), uo(6(Z; a)); a). (2.13)

Differentiating this identity with respect to ¥, we obtain

Oy N Op Oug \ 08
Bz Ou oz ) 0%

Since

dyp

8¢ 4. S 2 0)): 0) =
—5‘;(9(3:)0)1150(8(3;:0)))0) i 1: Ju (9( 0)1”0(9(3310))1 0) = 05
&p Bt,oé‘u(]

i) e 2 o g D
- waw}w(m,ug,a) + 5 (z,up; @) o (x) Bty

Uz w{z, uo(x), 5=
Oy _ O L Oug Oz
"5;(33, ug; @) + Eﬁ(m’”“’“)_ax (z)

This is the first prolongation of the transformations (2.2). Similarly, the function

= () in the neighborhood of o = 0. Hence,

{z);a). (2.14)

w can be written by Taylor series expansion with respect to the parameter ¢ in the

neighborhood of the point @ = 0:

w(z, u, up; @) = uy + al,
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where
Ow

da|,_q

_ 2

& 1= .

d
= Dy — ugDof, €= a—‘j

a={) a=0

Here, the operator

D _E—i—u—?—-l—u -—a—-i-
T 0 Tou o TOu,

ou
and — = u, are used. It is an operator of the total derivatives with respect to z.

or
The first prolongation of the generator (2.11) is given by

d
O,

X=X+¢

The second and higher prolongations can be found in the same way.

Now consider the case where the number of independent and dependent
variables is greater than one. Given Z = R™ x R™, the space Z is prolonged
by introducing the additional variables p = (p?). Here, a = (a;,ay,...,0) is
a multi-index. For a multi-index the notations |a| = oy + az + ... + o, and
o, = (o, a9, ooy 1, 0 + 1, (44, -0, ) are used. The variable p?, plays the role

of a derivative,
C Plaly Hlolyd
3 Oz AT Oxg? . Oz

The space J' of the variables:

$ == (xi)a U == (uj)': = (pg:))
(1 == L3Zinesis J = 162 st [0l £ 1)

is called the I[-th prolongation of the space Z. For convenience the notation that

J? = Z is used.

Definition 3. The generator

X=X+ mB (G=1..m |o| 1),

Jhe
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with the coefficients:

. = Dn — Zpé,iﬂkfig (e & ¢ —1); (2.15)

is called the [-th prolongation of the generator X.

Here, the total derivative operators with respect to x, has the form
8 =
D 58 e P, =1 & s i,
b= 5 Z gz | )

and 19 = 17, where &, 7/ are defined as in formulae (2.4).
The correspondence between a one-parameter group G and its infinitesimal

generater is explained by the following theorem.

Theorem 1. Let a function g(z; a) satisfy the group properties and have expansion

7 =gi(za) 2 + &(2)a, i=12, ..., N, (2.16)
where
BN agi(ZQ a)
5 (Z) - da 2

Then it solves the Cauchy problem

dz if 5t 5t i .
£=5(z), 2|, ,=% i=12..,N. (2.17)

Conversely, given £'(z), the solution of the Cauchy problem (2.17) satisfies the

group properties.

Equation (2.17) are called Lie equations. Precisely, this theorem establishes
a one-to-one correspondence between Lie groups of transformations and infinitesi-

mal generators.
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2.1.2 Invariant Manifolds

The relation between differential equations and Lie groups is presented in
this subsection by following the idea of an admitted Lie group of transformations.
Consider a manifold or surface M which is defined by a system of partial

differential equations:
F¥(z,u,p) =0, (k=1,2,..,8). (2.18)
Hence,
M = {{z,u,p)} F*{z,u,p) =0, (k=12,..s}

where z is the independent variable, u is the dependent variable, and p are partial

derivatives of u with respect to #. The manifold M is assumed to be regular, i.e.

fant (8?%) =

Then the system (2.18) determines a manifold M. A manifold M is said to be

invariant with respect to the group of transformations G as shown in (2.2), if

every point of the manifold M is moved by G along this manifold M, i.e.
F*(z,a,9) =0, (k=1,2,...,8).

Accordingly, the Lie group of transformations as shown in (2.2) is admitted by
system (2.18), in other words, system (2.18) is not changed under the Lie group of
transformations.

In order to find the infinitesimal generator of the group admitted by a

system (2.18) one can use the following theorem.

Theorem 2. The differential equations (2.18) admit the group G with the gener-

ator X in the form as in Definition 3 if and only if the following equations hold

)[(F’“(m,u,p) =0, (k=12,..8), (2.19)
M
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where the notation |,, means evaluated on manifold M. Equations (2.19) are

called determining equations.

The algorithm for finding a generator of a Lie group admitted by differential

equations as shown in (2.18), consists of the following steps:

(1) Forming the admitted generator
X = &4z, u)0,, + 7 (z,u)0ys
with the unknown coefficient £'(z, u), 7’ (z,u) are given.

(2) Constructing the prolonged operator )1( . The coeflicients of the operator )1{

are defined by formula (2.15}.
{3) Applying the prolonged operator ),!( to each equation of the system (2.18).
(4) Considering on the manifold M as in Theorem 2.

(5) Solving the determining equations. The determining equations are split with
respect to the parametric derivatives into over-determined systems. The

solutions of the determining equations give us the coefficients of a generator.

2.2 Lie Algebra of Generators

Let

Xi = C?(Z)azm (7' =1, 2) (220)

be two infinitesimal generators.

Definition 4. The generator

Xz = Céx(z)az.:
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with the coeflicients
G5 = X1((5) — Xa((T)

is called a commutator of the generators X7 and Xs.

The commutator is denoted by
Xg = [X]_, Xg}
A commutator satisfies the axioms:

(1) Bilinearity: [aX; + 8Xq, X3] = a[ Xy, X3] + 81X, Xi),
[Xl,ﬂ:'.XQ + ﬁX3] = CE[X},XQ] -+ ﬁ[Xlu X3]a

where « and 3 are arbitrary constant,
(2) Antisymmetry: [Xl,XQ] = “[Xg,Xll,
(3) Jacobi identity: {[X1, X5], Xa] + [[Xo, Xsl, Xi] + [X5, Xi1], Xa] = 0.

Definition 5. A Lie algebra is a vector space [ with a commutator operation,
which satisfies the properties of bilinearity, antisymmetry, Jacobi identity and acts

on this space.

Take for example the space of generators: A vector space of generators L is

a Lie algebra if the commutator [X,, X,] of any two generators in L belongs to L.
Lemma 3. A commutator is invariant with respect to any change of variables.

Theorem 4. If the system admits generators X and Y, then it admits their

commutator [X,Y].

Definition 6. A vector subspace L' C L of Lie algebra L is called a subalgebra if

it is a Lie algebra.
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In other words, for arbitrary vectors X, and X, from L', their commutator [X,,, X, ]

belongs to L.

Definition 7. Let I C L be a subspace of Lie algebra L with the property,
[X,Y] eI, VX &IandVY € L. The subspace [ is called an ideal.

Definition 8. Two Lie algebra of generators L' and L” are similar if there exists

a change of variable that transforms one into the other.

Hence, if Lie algebras L' and L" are similar, then the generators X =

¢#(2)d., € L' and X = (P(2)0;, € L" of these algebras are related by the formula

¢#(2) = X(¢°(2))

2=q7}(#)
A linear one-to-one map f of a Lie algebra L onto a Lie algebra K is called

an isomorphism (algebra L and K are said to be isomorphic) if

f([Xm XV])L 7a [f(Xu)a f(Xu)]K,

where the indice L and K are used to denote the commutator in the corresponding
algebra. An isomorphism of L onto itself is termed an automorphism. Therefore
the set of all subalgebras can be classified with respect to automorphisms.

Let a vector space L, be given, and let {X;, Xs,..., X} be its basis. Then

L, is a Lie algebra relative to a given commutator, if
[XH’XV] = C;.\LUX)\

with constant coefficients ¢}, known as the structure constants.

Notice that two Lie algebras are isomorphic if they have the same structure
constants in an appropriately chosen basis.

For a given Lie algebra L, with basis {X, X3, ..., X;.}, any X € L is written
as

X=z,X,.
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Hence, elements of L, are represented by vectors z = (z1,...,%,). Let L2 be the

Lie algebra spanned by the following operators,

with the commutator defined as in Definition 4. The algebra L? generates the
group G# of linear transformations of {z,}. These transformations determine
automorphisms of the Lie algebra L, known as inner automorphisms. This set is
denoted by Int{L,). Accordingly, G* is called the group of inner automorphisms of
L,, or the adjoint group of G. Two subalgebras L, and L, of L, are called similar,
if one can be transformed to another by an element of Int(Z,). Similar subalgebras

of the same dimension composes a class.

Definition 9. A set of representatives from all classes is called an optimal system

of subalgebras.

Thus, an optimal system of subalgebras of a Lie algebra L with inner auto-

morphisms A = Int(L) is a set of subalgebras © 4(L) such that

(1) No two elements of this set can be transformed into each other by inner

automorphisms of the Lie algebra L.

(2) Any subalgebra of the Lie algebra L can be transformed into one of the

subalgebras of the set ©4(L)

2.3 Lie-Backlund Operators

Consider operators of the form

;) 9
X =g +n5a (2.21)
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where £* and 1™ belong to the space of all infinitely differentiable functions, denoted

by .A. Their prolongation to all derivatives is

0
gz i + CO-’ _|_ ghzzb««w—i— =+ ..., (222)

a « 2112

where
G = Dl — ETuf) + Eu,
fn = DDy (1% — §uf) + &0, 4, (2.23)
Definition 10. An operator given by formula (2.22) and (2.23), where &, 7* € A,
is called a Lie-Bécklund operator. The abbreviated operator (2.21) is also referred

to as a Lie-Backlund operator.

In fact, the operator (2.22) is an infinite-order prolongation of operator
(2.21).
It is an immediate consequence of the determining equation that every Lie-

Bécklund operator of the form
X.=¢8D;, A, (2.24)

is admitted by some differential equation, here D; is the total derivative operator
with respect to x;. Moreover the set of all operators (2.24) is an ideal in the
Lie algebra of all Lie-Backlund operators. Therefore, it is sufficient to consider

Lie-Béacklund operators with & = 0,

X=nsl e (2.25)

which are called canonical Lie-Béicklund operators. Notice that every operator

(2.21) is transformed to the canonical form by the prescription
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2.4 Invariant Solutions

Theorem 2 is useful for finding the group admitted by a system of equations.
When the functions F*(z,u, p) are known, the coefficients of a generator are deter-
mined from the determining equations. Then one may obtain the transformation
group admitted by solving the Lie equations.

Conversely, in order to find an invariant system of equations for a given
group G, it is convenient to use the following theorem on the representation of
invariant equations via group invariants. Each one-parameter group G of trans-
formations {2.16) has exactly N — 1 functionally independent invariants. Any set
of N — 1 functionally independent invariants is called a basis of invariants for G.

A basis of invariants for a group G with the generator

X =g, &)= 25
can be constructed by solving the characteristic system
d_d2 |
g g2 T T N
Theorem 5. Let the system of equations,
F*2)=0, k=1,..,8<N, (2.26)

admit the group G, and assume its tangent vector £(z) = (£, ...,£") is not equal to
zero on the manifold M determined by Equation (2.26). Then there exist functions

® making it possible to rewrite Equation {2.26} in equivalent form as follows
O (J1(2), ., Inoa(2)) =0, k==1,..,s, (2.27)

where Ji(z), ..., Jy~1(2) is a basis of invariant of the group G. Equations (2.26)

and (2.27) are equivalent in the sense that they determine the same manifold M.
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If a solution is invariant, in the sense of every point of the manifold M being
moved by G along this manifold under the action of some Lie group G, it is called

& group invariant solution or an invariant solution.

2.5 Application of Group Analysis to Integro-Differential

Equations

Group analysis is a powerful method for determining symmetries, and it
has been applied with great success to ordinary differential equations and partial
differential equations with local terms. In this thesis, the group analysis is method
applied for studying equations with nonlocal terms. Although there exists an
algorithm to find an admitted Lie group of differential equations as presented
in section 2.1, a direct transference of the known scheme of the group analysis
method to integro-differential equations is impossible. The main obstacle resides
in the presence of nonlocal integral operators. Application of group analysis to
integro-differential equations is presented in this section. Grigoriev and others
(2010) presented several approaches that were discovered during a long history of
studying invariant solutions of integro-differential equations. The main approaches

can be classified as follows,

(1) Use of a presentation of a solution or an admitted Lie group of transforma-

tions on the basis of a priori simplified assumptions.
(2} Investigation of infinite systems of differential equations for power moments.

(3) Transformation of an original integro-differential equation into a differential

equation.

(4) Direct derivation of a Lie group of transformations through corresponding
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determining equations and construction of representations of invariant solu-

tions of integro-differential equation.

This thesis uses approach (4) for studying the classification of the spatially homo-
geneous and isotropic Boltzmann equation with sources.

In applications of group analysis to equations with nonlocal operators, it
is necessary to use successive steps as done in ordinary and partially differential
equations. The first step involves constructing an admitted Lie group. The defi-
nition of an admitted Lie group given for differential equations cannot be applied
to nonlocal equations. However, one can still define an admitted Lie group as a
group solving a set of determining equations as outlined below. The main difficulty
consists of solving the determining equations.

Let us consider a system of integro-differential equations:
O(z,u) = 0. (2.28}

Here, v is the vector of the dependent variables, and z is the vector of the indepen-

dent variables. Assume that a one-parameter Lie group G'(z) of transformations
T =p(z,u;a), @@=z, u;a) (2.29)

with the generator
X = (2, u)8;, + 1 (z, u)0,,,

transforms a solution ug(z) of Equation (2.28) into the solution u,(x) of the same

equation. The transformed function u,(xz) is

ua(Z) = P(z, uo(2); a),

where £ = 6(Z; a) is substituted into this expression, The function 8{%;a) is found
from the relation £ = ¢(z,u(z);a) using the inverse function theorem. Differ-

entiating the equations ®(z,u.(x)) with respect to the group parameter a and
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evaluating the result for the value a = 0, one obtains the equations

(2-(z,10(a)) oo = O (2.30)

These equations coincide with the equations

(X®){(z,up(z)) =0 (2.31)

obtained by the action of the canonical Lie-Backlund operator X, which is equiv-
alent to the generator X:

X - ﬁjauja
where 7 = ni{z,u) — € (z,u)p]. Equation (2.31) can be constructed without re-

quiring the property that the Lie group should transform a solution into a solution.

This allows the following definition.

Definition 11. A one-parameter Lie group G* of transformations (2.29) is a Lie
group admitted by (2.28), if G* satisfies (2.31) for any solution ue(z) of {2.28).

Equations (2.31) are called the determining equations.

Notice also that the determining equations of an integro-differential equa-
tion are integro-differential.

Grigoriev and others (2010) explain that the advantage of the above def-
inition of an admitted Lie group provides a constructive method for obtaining
the admitted Lie group. Another advantage of this definition is the possibility
to apply it for seeking Lie-Bécklund transformations, conditional symmetries and
other types of symmetries for integro-differential equations. The main difficulty
in obtaining an admitted Lie group consists of solving the determining equations.
There are some methods for simplifying determining equations and as for partial
differential equation, the main method is splitting. It should be noted that the

splitting of integro-differential equations depends on the studied equations. Since
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the determining equations (2.31) have to be satisfied for any solution of the original
equations, the arbitrariness of the solution of a Cauchy problem plays a key role

in the process of solving the determining equations.

2.6 Group Classification

An equation which includes arbitrary elements, constants and functions of
independent and dependent variables, they specify a process. The group classifica-
tion is based on the enumeration of possible nonequivalent Lie algebras of operators
admitted by the chosen type of equation. The first problem of group classification
is constructing transformations which change arbitrary elements, while preserv-
ing the differential structure of the equations themselves. These transformations
are called equivalence transformations. The group classification is regarded with
respect to such transformations. In this thesis, the source function in the spa-
tially homogeneous and isotropic Boltzmann equation is the chosen function for
classification. There are considerable works on group classification of differen-
tial equations in Meleshko (2005), Grigoriev and others (2010) and the literature
referenced therein.

In this thesis, the two-step algorithm of Ovsiannikov (1993) is used for clas-
sification of an admitted Lie group of the studied equations. This algorithm is
useful for high-dimensional Lie algebras and it simplifies the problem of construct-
ing an optimal system of subalgebras.

Let L be a Lie algebra with the basis {X|, X»,..., X;}. Assume that the
Lie algebra L is decomposed as L = I F, where [ is an ideal of the algebra L
and F is a subalgebra. The set of inner aﬁtomorphisms A = Int(L) of the Lie
algebra L is also decomposed as A = A;Ap where A; and Ap are subsets of A

which correspond to the elements of I and F respectively as follows:
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Let z € I be decomposed as z = z; + zp, where z; € I and zp € F. Any
automorphism C € A can be written as C = C;Cr, where C; € A; and Cr € Af.

The automorphisms C and Cr have the properties,

Crzp =2p, VapeF, VYC;e A;,

Crry€l, Crzp € F, Vzyel, VzpeF, VCp € Ap.

At the first step, an optimal system of subalgebras ©4.(F) =
{F, Fy, ..., Fy, Foqr} of the algebra F is formed, here F,,; = {0} and the optimal
system of subalgebras ©4.(F) is constructed with respect to the automorphisms
Ap. For each subalgebra F; of F, (j = 1,2,..,p+1), one has to find its stabilizator
St(F;) C Aas

SU(F;) = {C € AIC(F}) = Fy).

Note that St(F,.1) = A.

The second step consists of forming optimal systems ©gyr;) (I P F), (7 =
1,2,.,p + 1). The optimal system of subalgebras ©4(L) of the algebra L is a
collection of Ogyry(I €D Fy), {7 = 1,2,..,p + 1). If the subalgebra F' can also be

decomposed, the two-step algorithm can be used when constructing © 4, (F).



CHAPTER III
APPLYING GROUP ANALYSIS TO THE
EQUATION FOR THE MOMENT

GENERATING FUNCTION

In this chapter, the equation for the moment generating function of Equa-

tion (1.1), is studied. The equation is
(zwe)e — u? + u(0){zu); = g, (3.1)

where u(0) = u(t,0). Note that Equation (3.1) is Equation (1.6) in Chapter 1.
Because of the presence of the term «(0), Equation (3.1) is not a partial
differential equation. Therefore, the classical group analysis method cannot be
applied to this equation. Instead the method developed for equations with nonlocal
terms referred to in Chapter II can be used. In the next section, the latter method

is applied for finding an admitted Lie group of Equation {3.1).

3.1 Admitted Lie Algebra of the Equation for the Moment

Generating Function
Admitted generators are sought in the form
X =7(z,t,u)d + E(x, t,u)8p + {{z, t,w)D,.
According to Definition 11, the determining equation for Equation (3.1) is

TWin + ¥ + w(0) (29, + ¥) — 2¢u + ¥{0)(zu), = 0, (3.2)
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where

W(z, t) = ((z,t, ulz, 1)) — ulz, t)7(z, ¢, ult, ) — v, (2, 0)E(z, t, u(z, 1),

$(0) = ¥(0,¢).

After substituting the derivatives ts;, Uiz, and uy, found from Equation (3.1) and
its derivatives with respect to z and ¢ into {3.1), the determining equation becomes
(T + G + Cug + Guuls + g€ + uP€ — 2ux + uz(0)
— 2 {97 + 9e€ + 9(n + &) — T’ — Luv’s — 2uy (0) (usz + u)E(0)
+ u{0)((ax® — Guua — u€ + 2C + BE U+ TTU) — Tolg®? — T UpleTy
— UpUasbuT® — Ugebe® + U@ (Cuu — T + T(0)T — Ep + &) 63)
+ ug(£x@ + (ouZ® — € — Trex® = 2mz(g + u?) + u(0)z(2ru — T7y)) |
+ U BTy — BTau) + 2 (0)(T — 7(0)) (e + ) + uiz? (uu(0) — &)
+ wug (2{1u(0) + C(0) + Gu) — €t — & —~ 26ug — 26,87 + 26,uu(0))
- ufumfwccg — utuiéwﬁ = 0.

Here,

T(O) = T(U,t,u(o, t))a 5(0) i 5(07 tau(oat))a C(O) = C(Oat%u(o’t)):

u(0) = ue(0,2),  u(0) = uz(0,1).

Differentiating the determining equation (3.3) with respect to %, Ugq, and then

with respect to uw; and uy, 7, =0, 7, = 0, £, = 0, & = 0 are found. Therefore,

T=7(t), §=¢&(2),

and hence 7(0) = 7(t). Differentiating the determining equation with respect to

Uy, and then wu;, we find {,,, = 0, i.e.,

¢z, t,u) = uCiz,t) + Go(w, 1)
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The coefficient with u,u,(0) in the determining equation (3.3) gives £(0} = 0.
Continuing with splitting the determining equation (3.3) with respect to u; and

then with respect to u,, one finds

(ilz,t) = —z 7 E(2) + Cuo(2).

Hence, ¢(0) = £(0,t) = w(0)((10(t) — €'(0)) + (o(0,¢). The coefficient with u;u(0)
leads to the condition

ClO = —’TJ + 61(0)

Differentiating the determining equation with respect to u twice, we has

£, =22 —¢£'(0).

xT

The general solution of this equation is
£ = z(e1x + ¢g).

Equating the coefficient with w, to zero, one derives 73;(¢) = {(0,t). The coeflicient
with «(0) in the determining equation (3.3) gives x(p, + (o = 0. This equation has

a unique solution which is nensingular at z = 0,

CQ(IE, ﬁ) = Q.
Therefore,
T = Cgt + C3

and
¢ =u(—c1z — ca).

The remaining part of the determining equation (3.3) becomes

ge(eat + c3) + zgz(c12 + oo} = —2g(c17 + 2). (3.4)
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Thus, each admitted generator has the form
X = cpXo + ;. X5 + 2Xo + ¢3X5,
where
Xo =28, X1=2z(z8,—ud,), Xe=1t0—ud,, Xz=07. (3.5)

The values of the constants ¢g, ¢1, ¢ and ¢s and relations between them depend
on the function g(¢, z).

The trivial case of the function
g=20

satisfles Equation (3.4), and corresponds to the case of the spatially homoge-
neous and isotropic Boltzmann equation without a source term. In this case,
the complete group classification of the Boltzmann equation was carried out in
Grigoriev and Meleshko (1986), using its Fourier image (1.1) with §{y,¢) = 0. The

four-dimensional Lie algebra L* = {¥], Y, Ys, ¥4} spanned by the generators
1/6 = yaya }/i. = y@awa }/2 a tat - (roa(pa 1/1-3 = at (36)

defines the complete admitied Lie group G* of (1.1). There are direct relations
between the generators (3.5) and (3.6).

Indeed, since the functions @(y,t) and u(z,t) are related through the mo-
ments M,(t), n = 0,1,2,..., it is sufficient to check that the transformations of
moments defined through these functions coincide.

Consider the transformations corresponding to the generators Y, and X,

Y[] = yay:

Ty
Il
o+
ey
Il
w2
%)
sy
il
S

Xg = m@z:

Thy
i
uE‘l-—
S]]
I
3]
o
joued |
Il
e
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The transformed functions are

@(7,t) = o(ge™, 1), a(z,1) = u(Te™,1).

The transformations of moments are, respectively:

- 9"¢(7, 1) " p(ge, 1)
Mn T ={—-1 n—_ = (-1 n_____:___________
(7) = (-1) 5T oo (1) G o
871
— 1) ne B = e "M
= (-1rem 2E 0D 1G]
1 an ( a}ﬂ — -—na_}‘_anu — pna
Ma(t) = w9z =0 O oz (0,8) = ™ Ma(2).

Hence, one can see that the transformations of moments defined through the func-

tions ©(y,t) and u(z,t) coincide.

The transformations corresponding to the generators Y7 and X,

=y, = e’

b |

=,

w3

Y1 = ypd,:
I T
X1 = z{zd, —ud,): L B T

o]

= (1 — az)u,

=]
i

act on the functions ¢{y,t} and u(z,t) and their moments in the following way:

i o
2 —3t = e _:ta t = ta 4
@(7,8) = "0(7,1), @(Z,7) 1+ax(1+af)

O =<

N " .
= (-1) ((a—era) 90) (0.2);
T LoEEy 1o/ 1 (. &
My (t) = nl 0Z" |jg=0 nlOI™ (1 + afﬁu(t’ L+ af))li"—“ﬂ’

respectively. Using computer symbolic calculations with REDUCE one can check

that these transformations of moments also coincide.

The vector fields Y, and X, generate the following transformations:

Yo=1t0 —@d,: t=te*, =y, @&=pe %

Xy =10 —ud,: t=te®, =2z, U= ue "
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which map the functions ¢(y,t) and u(z, t) to the functions @(g,t) = e %p(7, fe™)

and 4(Z,f) = e %u(Z,te™?), respectively. The transformations of moments are

_ (Y "p(g,te"
My () = (‘"1)716—"’9;?(3%5)“@:0 = (_I)R(;aa—y%@;‘u——eglﬁo
- (_1)’18—“%’;—":(0,&—“) = M, (te™")e™,
Ma(f) = %i%@m—_o - %ema%ﬁ*”
- %e-ag—zg(o,fe”“) = M,(fe %)™,

The case where the transformations of moments corresponding to the gen-
erators Y; = J;, and X3 = &, coincide is trivial. These direct relations between the

Lie algebras confirm correctness of our calculations.

3.2 Equivalence Transformations of the Equation for the

Moment Generating Function

For the group classification, one needs to know equivalence transformations.
Let us find some of them using the generators (3.5) and considering their trans-

formations of the left hand side of Equation {3.1)
Lu = Zuge + u — 0 + u(0)(wus + u). (3.7)

The transformations corresponding to the generator Xy = zd, map a func-

tion u(z,t) into the function #(Z,?) = u(Ze?,1), where a is the group parameter.
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The transformed expression of (3.7) becomes

- _ 0% ou L
La = m%:gat(mf) (g‘f}—wu(m ) +a(0,1)(z 8_( z,1) + a(Z,1))
— a0 (se B+ Peaee,D) vz,

+u(0, f)(ﬂ”%(ie f)—i—u(:ce °.7))
=7 aa Fr TR gt(’” t) - ($>t)+u(0,t)(fe‘“%(x,t)+u(z,t))

_ 5‘ U ou 5 du
2 Bm@t(x’ )+ — 5 —(z,t) — v (z,t) + u(0, t)(:a:%(ss, t) +u(z,t))
= Lu,

t=1t, ZT=uze" Tw=u, J=g (3.8)

Similarly, one derives that the transformations corresponding to the gener-

ator X3 = &; define the equivalence Lie group:
t=t+a, T=x, G=u, J=4g. (3.9)

The transformations corresponding to the generator Xs = t&; — ud, map a

function u{z,t) into the function @(z,t) = e ®u(Z, fe™*), which gives

2._
fa - gf’at(xm (@~ + (0,0 (552D + (2, 7)
— ——aau—“ma ma?__ftfm““-_a —2a,,2 —a
= ZIe 6565($’te ;—I—e 65(:6’ e™®) — e “u (:c,te )
e *u(0,1) (5:6""“8—;-(3‘;, te™®) + e~"u(z, fe %))
= 7 w2 agu( t)'l‘ _Qaau( t) ~2a 2( If)
A YT © wAE

22,00, ¢) (E%(m, t) + u(z, 1))
= g% (m%(m,t) + —g—?(:c, t) —ul(z,t) + u(O,t)(w%(m, t) + u(z, t)))
= e 2y,

Hence, we can conclude that the transformations

t=t, ZT=uze*, U=u, §=ge (3.10)
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compose an equivalence Lie group of Equation (3.1).

The transformations corresponding to the generator X; = z(zd, — ud,)

1 A
funeti .t) into the function %(z, %) = 7). Similarly,
map a function u(z,t) into the function @(z,?) T ant (1+ e ) Similarly
we obtain L% = (1 — az)*Lu and the transformations
twmt, I= ad , = (1-az)u, §=(1-a2x)g (3.11)
1—-azx

compose an equivalence Lie group of Equation (3.1).
Thus, the Lie groups shown as Equations (3.8) - (3.11)} corresponding to

the generators
Xg =20y, Xi=z(x0, —uld, —290,), X;=18,—ud,—298,, X;=207

are equivalence Lie groups of Equation (3.1).

There are also two involutions corresponding to the changes
E: T = —x; By, t=—t, @=—u

An involution is a transformation that is its own inverse.

3.3 Group Classification

Group classification of Equation (3.1) is carried out up to the equivalence
transformations considered above.

Equation (3.4) can be rewritten in the form
cohg + crhy + cohe + czhs = 0, (3.12)

where
ho = 2g,, h1=z(zg, +29), ha=tg +2g, hs=g. (3.13)

One of the methods for analyzing relations between the constants cg, ¢,

¢y and cg is employing the algorithm developed for the gas dynamics equations
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(Ovsiannikov, 1978) by analyzing the vector space Span{V'), where the set V con-
sists of the vectors

U o= (hOa h’l} h’?: h‘3)

with ¢ and z are varied. This algorithm allows one to study all possible admitted
Lie algebras of Equation (3.1) without omission. Unfortunately, this is difficult
to achieve. After several observations and studies of Equation (3.1), an algebraic
algorithm was found which essentially reduces this study to a simpler problem.
Observe here that because of the nonlinearity of the equivalence transformations
corresponding to the generator X\, it is difficult to select out equivalent cases with
respect to these transformations, whereas the algebraic algorithm does not have
such a complication. The following is an algebraic algorithm.

First we study the Lie algebra Ly composed by the generators Xy, X;, Xo

and X3. The commutator table is

. S a
Ay Iy = x3€%,

A3: fig = Ta -+ g,

where only the changed coordinates are presented.
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Second, one can notice that the results of using the equivalence transfor-
mations corresponding to the generators X§, X7, X35, X5 are similar to changing
coordinates of a generator X with regards to the basis change. These changes are
similar to the inner automorphisms. Indeed, the coefficients of the generator X

are changed according to the relation,
X = (Xt)0; + (XZ)8z + (Xu)0s.
Any generator X can be expressed as a linear combination of the basis generators:
FoXo + 81X + 22 Xo + 83X3 = 2o Xo + 21X + 72X5 + 13X, (3.14)
where
Xo =305 X =2(20: —90;), X,=10;— 00y X3=0

Using the invariance of a generator with respect to a change of the variables,
the basis generators X; (i = 0,1,2,3) and X’j (7 = 0,1,2,3) in corresponding

equivalence transiormations are related as follows:

Xg: Xo=Xo, Xi=e Xy, X=Xy Xp=Xy
Xf: XQ =X{)+CLX1, Xl =X1, Xg ZXQ, X3=)A(3;
X5t X():XCH X =X1, X2=X2> X3=EQX3;

X;Z X0=X0, X1=X1, XQZXQWCLX;;, X3=X3.

Substituting these relations into the identity (3.14), one obtains that the coordi-

nates of the generator X in the basis Xy, X, X3, X3 and in the basis X{,, Xl , f(g, Xg
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are changed as follows:

28
IS
Il
3
_§_
]
]
2

X§Z 533 = I3 + G,

They are similar to the changes defined by the inner automorphisms.

This observation allows us to use an optimal system of subalgebras of the
Lie algebra Ly for studying Equation (3.1). Construction of such an optimal system
is not difficult. Moreover, a two-step algorithm as in Chapter II is applied. Let
us decompose Lie algebra L, into the form Ly = [ F, where [ = {X;, X1} is
an ideal and F = {X,, X3} is subalgebra of the Lie algebra L,. The result of
construction of an optimal system of subalgebras is presented in Table 3.1.

Notice also that in constructing the optimal system of subalgebras we also

used transformations corresponding to the involutions £ and Es:
E;i .’f?] = —I, Eg! i%3 = —X3.

The functions g(z,t) are obtained by using the optimal system of subalge-
bras. We need to substitute the constants ¢; corresponding to the basis genera-
tors of a subalgebra into Equation (3.4), and solve the system of equations thus
obtained. The result of group classification is presented in Table 3‘.2, where @,
B # 1y # —2 and & are constant, and the function ® is an arbitrary function of

its argument,
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Table 3.1 Optimal system of subalgebras of L4 for the equation for the moment

generating function.

No.  DBasis No.  Basis

1 Xo, X1, Xo, X3 11 aXgy 4+ Xa, Xi
2 aXo+ Xa, X1, X3 12 Xo+ Xz, Xy
3 Xo, X1, X3 13 X1, Xa

4 Xo, X1, Xo 14 Xo, X3

5 Xo, Xa2, X3 15 aXe+ X

6 Xa, X; 16 X1+ Xy

7 Xy — Xo, X1+ X3 17 Xo+ X3

8 vXo — 2X0, X3 18 X1+ X3

9 X1+ Xy, Xy 19 Xo

10 Xo, Xo 20 X

21 X3

3.3.1 Illustrative Examples of Obtaining the

g(z,1)

Function

For the algebra {aXy + X, X, X3}, we have three sets of coefficients ¢;

(i=0,1,2,3):

C\!Xg + Xg

co=a, cg=0, cp=1, ¢z =10

Xl . CO=O, 61:1, CQ=O, Cg=0;

Xy 0 =0, =0 =0 c=1
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Table 3.2 Group classification of the equation for the moment generating function.

No. g{z, 1) Generators
1. 0 Ko, X1, X, X3
2. Ka? Xo+ Xy, Xy, X3
3. kx*{zt + 1)™1 Xy — X, X1+ X5
4. K vX2 —2Xo, X3
5. ko2 X1+ Xe, X3
6. Kkt 2 KXo, Xo
7. ko221 BXy+ Xs, X,
8. Kz 2e? Xo+ X3, Xy
9. ka2 X1, Xs
10. 20 (mt) aXp + Xo
11 27227 9(ter ™) X; + Xo
12. ¢(ze™) Xo + X;
13. 2P (t + 27 X1+ X3
14. P(t) Xo
15. z720(t) X1
16. ¢ (z) X3
Note  g#Ly#-2

These sets of constants define the following overdetermined system of partial dif-

ferential equations for the function g(z, t):

igt + axg, = —2g, xg,

= —29', gr = 0.
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The general solution of these equations is « = 1 and

gz, t) = KT 2,

where  is constant. This case corresponds to No.2 in Table 3.2.

For the algebra {X3}, there is only one equation for the function g{z,t):

thO.

Hence, the function sought is g(z,t) = ®(z), where ®(z) is an arbitrary function.

This case corresponds to No.16 in Table 3.2.

3.3.2 Illustrative Examples of Representations of Invariant

Solutions

For the function g(z,t) = ®(z), the admitted Lie algebra consists of the

generator X3 only, its invariant solution has the representation
u=r(z).

Substituting this representation of an invariant solution into Equation (3.1), one

obtains the reduced equation
r(0)(zry +7) — r* = ®{z).

Since 7(0) is constant, the reduced equation is similar to the Ricatti equation.
This allows us to state that in the case of a general functions @(ﬁ:), the solution
of this equation cannot be presented in terms of elementary functions. However,
the presence of an admitted Lie group allows reducing the number of independent
variables, thus assisting in obtaining solutions of Equation (3.1).

As another example, consider the function g(z,t) = t 2®{zt™*). There

is also only one admitted generator X = aXy + Xy = t8, — ud, + wxd,. After
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finding invariants of the generator X, one defines the representation of an invariant

solution

u(z,t) = t 7 p(at™)

Substituting u(t, z) into Equation (3.1), one also obtains a reduced equation of one

independent variable:

az¢"(z) + 2a2¢'(2) + ¢*(2) + ${0)(2 — ¢(2)) = ®{2),

where » = zt™¢



CHAPTER IV
APPLYING GROUP ANALYSIS TO THE
SPATIALLY HOMOGENEOUS AND

ISOTROPIC BOLTZMANN EQUATION

4.1 The Equation under Study

The Fourier image of the spatially homogeneous and isotropic Boltzmann

equation with sources has the form

ez, 1) + plz, t)e(0,1) = fo plas,t)p(z(l — ), t) ds -+ §(z,1). {4.1)

Here, t is time, @(z,t) = gb(-@;,t) and §(z,t} = é(%,t} where @(k,t) and §(k, )
are the Fourier transforms of the distribution function and the source function,
respectively.
Remark 1) Equation (4.1) is Equation (1.1} in Chapter I with variable y replaced
by variable z. 2) The variables z in Equations (4.1) and (3.1) are different.

This section presents the complete solution of the determining equation.
The solution was found by constructing necessary conditions for the coefficients
of the admitted generator. These conditions are obtained by using a particular
class of solutions of Equation (4.1). It is worth to noté that the particular class of

solutions allows us to find the general solution of the determining equation.
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Differentiating (4.1) and substituting ¢; found from (4.1}, we obtain
paas0) = ~a(a, 600,842 [ spulos, Dplal1 = 1.0 da+ .50,
ol 0 = 00,0620, = 36(0.1) [ olas,hplal1 —5).) d
+ 2/ f z(1 — s), typ(zss, t)p(zs(l — &), t)ds'ds
—4(0, t)p(w, t) — 4z, 8)p(0,£) + 2 fol o(z(l - 5),t)j(zs, t)ds + G(x,1).
The generator of the admitted Lie group is sought in the form
X =¢&(z,t,0)0: +n(x,t,0)0; + (2,8, ¢)0,.

The determining equation for Equation (4.1) is
1
Dep(, ) +9(0, ) (x, £) +4p(z, 1) 0(0,£) — 2] o(z(1—s),t)p(zs, t)ds = 0, (4.2)
0
when D is total derivative with respect to ¢ and the function ¥(z, ) is
(z,t) = C(z,t,0(z, 1)) — &z, 1,02, 1)) @a(3, 1) — n{a, 1, 0(z, 1) )oe(, 1),

The determining equation (4.2) has to be satisfied for any solution of Equation
(4.1). Assume that the coeflicient of the infinitesimal generator X are represented

by the formal Taylor series with respect to ¢:

E(z,t, @) = qumt)goa:t

>0
W(matﬂo) = Zfr;(m,t)(pl(w,t), (4'3)
>0
C(z,t,p) Zpl z, b
120

A particular class of solutions is considered. This class is defined by the initial

conditions

oz, tg) = wolz) = ba™ (4.4)
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at a given (arbitrary) time t = ty3. Here, n is a positive integer. For solving the
determining equation, we apply the solutions corresponding to the initial data (4.4)
by varying the parameter b and the degree n.

In the case of n = 0, the derivatives of the function ¢(z, t) at the time ¢ = ¢;

become
er{z,t) = §(z.1),  pula,t) = G(2,1),
wu(z,t) = —4(0,£)b — §{(z, t)b + 2 fol bg(zs,t)ds + Gi(z,t).
The determining equation becomes
Gz, £,0) + 4(z, 1) (.1, b) — (2, 1)E(2, 1, B) — ma(2, ¢, b)4(=, 1) — ¢ (. t)my(, ¢, b)
—n(z,t,6) (=40, t}b — Gz, t)b + 2/0153@(3:3, t)ds + Gi(x, 1))

'l'"(C(O’ t, b) - ’f?(Oy £ b)é’(oa t))b + (C(‘Ta i b) - 7?(2;: t b)qA(xv t))b
—2‘/0 b(¢(xs,t,b) —n(zs, t,b)4(xs, t))ds = Q.

(4.5)
Using the decompositions (4.3), from this equation one obtains
P e Opled) ey @A
—§*{(x, t)r1(z,t) — G;(z, hrolz, 1) = 0
and
%é.%fl + (0 + 2)§(z, t)praa(z, t) — Go(@, O a(z, t) — 4(z,t) 6T;+gix,t)
—(I+ 2)@(z, t)riga(z, t) + G0, t)ry(z, 1) ~ 2ry(z, £) 01@(563, t)ds
—Ge(x, tYriea (2, 8) + (0, 8) — G(0, t)ry(0,8) + iz, t) — 2 Olpg(ms, t)ds
-{—2/1?“;(333, t)g(zs, t)ds =0
’ (4.7)

where [ =0,1,2,3, ...
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If n > 1 the derivatives of the function ¢(z,t) at the time t = t; are

ez, t) = B p, o+ gz, t}, ©ulz,t) = bzt P, + Ge(z, 1),
1

pulz,t) = B*2*Q, — §(0,t)bz™ + 2b:c”f (1— 8)"§(zs, t)ds + Gi(z,t).
0

Here, the notations

(2n)In!

P =—— n = 2P il
" . @ (3n+1)!

are used. For further calculations it is also worth to notice that

mln!

1
1) = ™(l—8)ds = ————.
Bm+1,n+1) fos (1 —s)"ds mtnil)

In this case, the determining equation (4.2) becomes
G+ 4Cp — G — gy — fjgmo -~ qn
1
»iwb( —nz" e — nx e, 4+ 2760, 8)n — 2:1:”77/ (1~ s)"G{zs, t)ds
0
1
+2™((0,t,0) — 2:6”/ (1 —8)"C(ws, t,b(zs)"}ds
0
1
—z™4(0,t)n(0,¢,0) + 23:”/ (1 —s)"n(xs, t,b(zs)")§(xs, t)ds)
0
{4.8)
+b” (xznpngtp - angnnlpng Y 372”}371% — 2z™" nlMp — 6:11552”_15(0, t,0)
1
+ anzn“l/ (1—38)"s"¢(xs, t, b(ms)”)ds)
0
1
—I-b3< —nPz* e, — Quz®™n + 2Pn563”/ (1 = s)"s*"n(xs, t, b(ms)”)ds)

0
+b4( — Pfx‘i“%) = 0.

Using the arbitrariness of the value b and equating to zero the coefficients with

respect to b* (o =0, 1,2, ...), the determining equation can be split into a series of

equations.

For o == 0 the corresponding coefficient vanishes due to Equation (4.6). For
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a = 1 the corresponding coefficient is

o (e ori(a.)

ot

ot -+ 2p2($a t)(ﬂ.’ﬁ, t) - @m(ma t)Ql(mat) - é(ma t)

- 242 (z, )y (3, ) — @z, t)ra(z, 1) + G(0, tyro(z, t) + po(0, 1)
— 4(0,£)ro(0,t) - 2ro(z, ) fz(l — s)"§(xs, t)ds
0

- 2 /01(1 — 8)"po(zs,t)ds + 2 /01(1 — 8)"§(xzs, t)ro(zs, t)ds)

_i_xn-} ( — n%fi,tl - nﬁ(mﬁ t)ql(l:? t)) = 0.

After substituting % found from Equation (4.7) the latter equation is reduced

to the equation

1 1
z (27‘0(3:’ t) / 6(31’3 t)ds - Po(ﬁﬁ, t) + 2] po(:cs, t)ds
0 0

-2 /01 ro(ws, t)4(vs, t)ds = 2o (2, 1) /01(1 o e (4.9)

1

+ 2/:(1 — 8)"§(zs, t)ro{zs, t)ds — 2/

(1~ s)"po{xs, t)ds)
(- n22 ) - nife, e, = 0

ot

Dividing the latter equation by n and letting n approach infinity , we obtain

Og
— L= 4.10

and
1 1
m(?ro(:c,t)/ g(sz,t)ds — po(z, 1) —E-Ef polzs, t)ds
0 0

-2 fol ro(zs, t)q(zs, t)ds — 2ro(z, t) /01(1 — 5)"g(zs, t)ds (4.11)
1

+2 /1(1 — 8)"§(zs, t)ro(zs, t)ds — 2/
0

A (1- s)”pg(rcs,t)ds) =0

Substituting (4.11) into (4.9) and letting n approach infinity again, we get

1 1
2ro(z, t) / d(sz,t)ds — po(z, t) + 2/ polxs, t)ds
0 0 (4.12)

1
- 2/ ro(zs, t)§(zs, t)ds = 0.
0
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Thus, Equation (4.9) is reduced to the equation

rolz, t) 1(1 — 5)"4(sz, t)ds — 1(1 — 8)"ro(xs, t)§(xs, t)ds
fo /0 (4.13)

1
+ / (1—8)"po(xs, t)ds = 0.
0

For analyzing Equation (4.13), we use representation of the functions §,ro and pg

in the formal Taylor series:

(j'(.’Ii,f) == Z hz(f:)l‘z, To(ﬂ?,t} = ZTGi(t)IEi, ZPO‘L 4 14
i=0 i=0

All coefficients with respect to z* in Equation (4.13) have to vanish

k

— ) n+k+ 1) _
; roshi—i( k! n+kmz+1). — U] +poe =0.

Diue to arbitrariness of n, we find
T0illi = 0, por = 0, (4.15)

for all ¢ > 1 and for all £ > 0. Since § # 0, then there exists ky such that Ay, # 0.
Choosing k =i+ ko for any 1 > 1, we get from the first equation of (4.15) and the

second formula of (4.14) that
7‘0(.‘13, t) = T‘go(t). (416)
The second condition of (4.15) provides that

polz,t) = 0. (4.17)
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For a = 2 the corresponding equation is

on (apz(ﬂi,t)

T 3pa(z, )i (z, 1) ~ Golz, Daga(z, t) — é(m,t)a?"g(m,t)

ot

+ qﬂ(o? t)?"l(.’lﬁ', t)
~ 3¢%(x, tirs(z,t) — de(z, thra(z, t) — 2r1(z, t) /1(1 — 5)"§(xs,t)ds
0

1 1
- Qf (1 —8)"s"py(zs,t)ds + 2f (1 —s)"s"g(zs,t)ri(zs, t)ds
0 0

Orglz, t

+ Pan(et) = P2 — 2pi(a, (o)

4] ot .
g2l ( - anﬁ;—) — 2nd(z,t)g2(z, ) — 2nPogo(z,t) — 8n100(0, 1)

|
+ 2nf (1- s)“s”_lqg(ws,t)ds) = 0.
0

s, C
Substituting % found from Equation (4.7) into the latter equation, it becomes

1

m( —pi{z,t) — p:(0,¢) + Z/Ipl(:cs,t)ds + 2?"1(33,t)f G(sx, t)ds + §(0,t)r1(0, )
0 0
-2 /01 r1(zs, t)§(zs, t)ds — 2ry(z, t) /01(1 -~ s)"§{zs, t)ds

-2 /01(1 — 8)"s"p1(zs,t)ds + 2/ (1 —35)"s"G(xs, t)ri(zs, t)ds

+ Popr(z,t) — Pﬂﬁrgéa;,t) 2P 4z, t)r (.t )
+(—-naq1—§’2 2ng(z, t)go(z, t) -I—Zn/ (1 —35)"s" "go(zs,t)ds

— 2nPqe{z,t) — 5n1q0(0,t)) = 0.
(4.18)
Dividing by n and letting n approach infinity, we have

a@h

= .19
B + 24gg == 0. (4.19)
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Equation {4.18) becomes

33( —pi(z,t) — p1(0,8) + 2./01191 (ws,t)ds + 2ry(z, t) /Ul G(sz,t}ds + §(0,t)r.1(0, ¢}
1 1
- 2/ ri(zs, t)§(xs, t)ds — 2ry(z, t)f (1 — 8)"4(xs, t)ds
0 0

1 1
- 2/ (1 —8)"s"pi{ws, t)ds + 2/ (1—s)"s"G§(xs, t)ri(zxs,t)ds
0 0

aT'g (CIS, t)
ot

1
+<2n/ (1— 8)"s" qo(ws, t)ds — 2nP,go(z,1) — 6n100(0, t)) = .
0

+ Pupi(z,t) — Py — 2P, 4(z, t)r (z, t))

(4.20)

Letting n approach infinity again, we obtain

cc( —pi(z,t) — pr (0,8) + 2/1p1($s, t)ds + 2ry(z, 1) /1 j(sz,t)ds
3 o (4.21)

1
4+ 6(0,8)r4(0, ) — 2 f 4(zs D) (zs) t)ds) — Guo(0,£) = 0.
0
Subtracting (4.21) from (4.20), we get

’E( — 271 (z,t) /:(1 — 8)"G{ws, t)ds + 2 fol(l —§)"s"G{zs, t)r1(xs, t)ds

1
— 2/ (1 —s)"s"pi(ws, t)ds + Pupr(z,t) — Pnaroéf’t) — 2P, 4(z, t)r(z, t))
0

1
+ (gnf (1 —s)"s™ qy(ms,t}ds — 2nP,qo(z, t)) =0.
0

(4.22)
Using representations (4.14) and
o0 o0
iz, 1) = erli(t)xzw pi(z,t) = Y pult)e,
1=0 =0
Equation (4.22) becomes
] nl(k — 1) ni{n + k! nin!
xI 14 hk ,, - +
; [Z{] ' n+k—i+ 1)} (2n4 k4 1) (2n—i—1)!)
n!(n + k)! nin! nlnl  Oreg
+ — 4.23
plk((2n+k+1)! 2(2n+1)!)] 22n+1)! Ot (4.23)

=\ . nnln!  nnln+k -~ 1)1
+Zx q{"“((an)s (2n + k)1 )=0.
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Equating coefficients with respect to 2% and z* to zero, we find

goo = 0, (4.24)
and
n'(n + 1)' 87"{]0 _

Due to arbitrariness of n, these equations provide that
T10ho = 0,

and

87"00
=0. 4.25
Pio T e 0 ( )

Equating the coefficients with respect to z* in {4.23) for k > 2, we have

= (k—1—-1) (n+k—1) nl

; [Tuhk_i“{(n + k=9l (2n+ k) * (2n + 1)!)}
(n+k—1)! nl

“”““‘”( @n+ k) 2(2n+1)!)

n(n!) n{{(n+k—-1)1
+q“’“((2n+1)!_ (2n + k)! )

=0,

which provide that

T1fl—1—1 = 0, gor = 0, Pk = 0,

foralli=0,1,2,..,k—1and k = 2, 3,4, .... From the obtained conditions, we can

conclude that

Tl(xat)é(ma t) =0, (426)
Gz, t) = qu(t)z, (4.27)
pi(z,t) = polt) + pu(t)z. (4.28)

Since § # 0, Equation (4.26) gives that r; = 0.
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Returning to Equation (4.8), for & = 3, the corresponding equation is

(2 ors(,)

ot

S + 4dpy(z, t)g(z, t) — G=(z, t)ga(z, t) — 4(z, t)

4+ §(0,8)re(z, t) — 4¢%(x, )ry(z, 1) — Gz, t)ra(z, 1)

1 1
— 2ry(z, t)/ (1 —s)"G(zs, t)ds + 2/ (1 — 8)"s*§(zs, t)ra(zs, t)ds
0 0

8?"1(3:, t)
ot

1
— 2] (1 — 5)"s™py(xs, t)ds + 2P, pq(z,t) — P,
0
1
— 4P 4(z, t)ra(z, t) — Qurol(z, t) + 2Pn/ (1-—- s)“32”r0($s,t)ds>
0

Oga{z, 1 "
+$3n-~1 ( _ n_.g%:f___). — 3TLQ(CE,t)Q3(331 t) - 27’1,PnQ]_(-T,t)

i
+ an (1 — 8)*s* gy (s, t)ds — nPaqi(z, t)) =0,
0

4,
which after substitution of 2% found from Equation (4.7) becomes

ot

CE( — palz,t) — p2(0,8) + 2 fl po(xs, t)ds + 2ry(x, t) /1 G{sx, t)ds + §(0,1)ry(0, )
o 0

-2 fl ro(zs, t)G{xs, t)ds — 2ry(z, t) / (1 - 8)"¢{zs,t)ds

0
1 1
— 2/ (1 - 8)"s™py(xs, t)ds + 2[ (1 — 8)"s*"G(zs, t)rg(ws, t)ds
0 0

Ory(z, t)
ot

1
+ QP”_/ (1 — 8)"s™ry(zs, t)ds)
0

+ QPnPQ(CC: t) - P oy 4an?($: t)TQ(xa t) - Qnro(m, t)

#(( =022 — 304, (s, 8 — 3P,
1
+ Qn/ (1- s)”sgn‘lql(ms,t)ds> = 0.
0
(4.29)

Similarly, dividing the latter equation by n, letting n approach infinity and using
the representations of the functions §, ro, 71, 79, ¢ and p; in the formal Taylor series,

we obtain

8as

5t + 34gz = 0, (4.30)
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a(z,t) =0, a“éf’ D w0, polet) =0, rolmt)ile,t) =0.  (4.31)

The last equation gives that ry = 0. From Equations (4.10), (4.27) and the first

condition of (4.31) we have

P, t) = com. (4.32)

For o =4 +{ (I > 0}, Equation (4.8) is reduced to the equation

L4+ (5P4+1 (2, 1)

It - (5 + i)pS-H(mv t)‘j(x’ t) - (jz(ﬂf, t)qtiH(m: t)

. Oranlz,t) . .
- 40 LI 1 40,0 (,0) = (64 D@ rsa(s,

1
— G, t)raqa(m, t) — 2rgq(z, t) f (1—s)"4(zs,t)ds
0

1
- 2/ (1 — 8)"s*pyy(@s, t)ds + (3 + 1) Pupssi(z, 1)
0

8T2+[($, t)

1
+ 2/ (1= )" sBt0G(ms, t)rspy(xs, t)ds — P, En
0

1
— 203 + D) Ppglz, t)rapu(z, t) + 2P”f (1—s)"sB+p, (zs,t)ds
0
- (1 + Z)vaf'rl-i-l(x: - QnTEH(fcat))
3] t
+-gidthin-l ( - n% — (4 + Ong(x, t)quri(z, t) — 2nPhgani{z, )

1
— (2 + DnPugaiilm, t) + 20 / (1= 5)"sCH gy 4y (as, t)ds) =0,
40
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5P4+l

ot

which after substitution

found from Equation (4.7), becomes

1 1
33( — pa(z, t) — pap(0,8) + 2f papi(zs, t)ds 4+ 2ra(z, 1) / §(sz,t)ds
0 0

1 1
+§(0,t)r341(0,8) — 2/ ra+i(zs, t)g{xs, t)ds — 2ry(z, t)/ (1 - 8)"¢(zs, t)ds
0 0
1

1
- 2f (1= 8)"s*pgy(ws, t)ds +2 [ (1— 8)*s* (s, t)rari(zs, t)ds
0 0

8T2+l ($, t) _
at

1
+ 2Pn/ (1~ 8)*s™r; y(zs, t)ds — (I + 1) P2r . {z, t))
Q

Oq341(z, t)
; ( - nflel)

1
+ 2n/ (1 — 3)“3(3”)”_1(12“(3:3,t)ds) = 0.
0

+ @+ D) Pupasi(z, t) — By 2(3 + D) Prd(z, thran(e, t) — Qurivi(z, 1)

(4 + Dng(z, 1)galz, t) — 2nPogan(a, 1)) — (24 DnPugen(z, 1)

(4.33)

Similar as in the previous case, dividing the latter equation by n and letting n
approach infinity and using the representations of the functions, we obtain

3(]34..1(.’13, t)
ot

37‘2_;_1 (x, t)
ot

pap(z,t) =0, 7z, t)f=0, riglz,t)=0, (I>0).

+ {4+ Dz, t)qualz,t) =0,  goui(z,t) =0, =0,

Thus,

pO("E?t) = 01 pl(m}t) = plU(t) +p11(t)$s QO(xat) = G,
awk(:c,t)

i = 0: b1 = Oﬂ k. = 01 Ty = O: k 2 1.
Substituting po, pa, g1, 71,72 and ro(z, 1) = rep(t) into Equation (4.7) in case

[ =0, we find

Op10 Opn

= 0, = 0, (4.34)

ie. pig = co, p11{t) = €1, where ¢; and ¢, are constant. Hence

niz, t) = ¢ + ¢z, (4.35)



Equation (4.25) gives
Too(t) = —cat + €3,
where c¢3 is constant. Therefore, the coefficients of the generator X are
£E(z,t,0) = com, n(z,t,90) = —ct+c3, C(z,8,0) = (+az)p,

where ¢g, ¢1, coand c3 are arbitrary constant.

The remaining part of the determining equation (4.2} becomes
(eat — €3} ~ oy + (C12 + 2¢2)¢ = 0.
Thus, each admitted generator has the form
X = X+ a1 Xy + Xy + 3 X3,

where

X() = ..'L'Bx, Xl = .27(,061'0, X2 = (,0699 — tﬁt, X3 = Bt.

a3

(4.36)

(4.37)

(4.38)

(4.39)

The values of the constants ¢g, ¢1, ce, and ¢z and relations between them depend

on the function §. The trivial case where the function § is equal to zero satisfies

Equation (4.38). This case corresponds to the spatially homogeneous and isotropic

Boltzmann equation without a source term. Grigoriev and Meleshko {1987) studied

the Boltzmann equation with § = 0, They have shown that the admitted Lie

algebra is four-dimensional and spanned by the generators

Xo=20;, X\=2z00, Xo=vd,—10, X;=20,.

4.2 On Equivalence Transformations

In this section we find some of the equivalence transformations. Let

Lo = pu(a,0) + (e, 0p(0,1) - | " ols, ela(l — s, 1) ds

(4.40)
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Considering the transformations of L¢ corresponding to Equation (4.39), the
equivalence transformations are obtained.

The transformations corresponding to the generator Xy = 0, map a func-
tion ¢(z,t) into the function @(Z,t) = ¢(Te™, 1), where a is the group parameter.
The transformed expression of (4.40) becomes

Lo = (a0 + 2@ Dp0.) - [ plas Dol —5).9 ds

wr(ze,8) + p(ze=, (0, F) - / (36, Bp(ze™*(1 — 5), ) ds

Il

— (. 8) + o(z, (0, 1) = f (s, t)p(z(1 ~ s), t) ds

L.

This defines the Lie group of equivalence transformations of Equation (4.1)

3]
1l
B
[4+]
bl
i
_‘C"‘-
1
K
I
=Y

v =,

Similarly, the transformations corresponding to the generator X3 = J; define

the equivalence Lie group

W5
Il
[}

I=2, t=t+ta, ©=,

The transformations corresponding to the generator X, = ©0, — t0; map a

function ¢(z,t) into the function @¢(Z,t) = e®p(Z, te*), which gives

(1—¢),%) ds

]l

Lo = (e, + (@700 - [ o@s, D
= e%p;(Z, 1e%) + (T, te*)ep(0, te?) — Ulezago(:ﬁs, te®)p(Z(1 — s),te) ds
= e%py(Z, Te®) + e2p(Z, te?) (0, Te*) ~ ezafolqa(a':s,fea)go(:ﬁ(l — s),%e*) ds
= (i) + (o )0(0,6) — [ olas, Dola(1 = 9),1) d)

= e L.

Hence, we can conclude that the transformations

T=z, I=te® @=wpe, d§=47je
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compose an equivalence Lie group of Equation (4.1).
The transformations corresponding to the generator X, = zpd, map a

function @(z,t) into the function @(z, ) = e**p(Z, 1), thus

1
Ip = (@) + @@ De(0, B — / 2z, DP(E(1 — 8),8) ds
0
1
= e%yp5(Z, 1) + e%(%, £)(0, ) — / (s, 1™ 0(2(1 — ), 7) ds
4]
1

e*py(Z, 1) + e™p(Z, £ (0, 1) — 6’3‘“/; @(Zs,t)p(Z(1 - s),1) ds
= e (e, ) + pla,1p(0,8) = [ plas,p(a(1 = 5),1) ds)

0

aast EZGLQO,

which gives the equivalence Lie group of transformations
T=z, {t=1t| p=we™® §=ge
Thus, it has been shown that the generators
X5 =20z, Xi=u1zp0,+240; X5=¢0,—1t0,+240; X5=20 (441
define an equivalence Lie group of Equation (4.1). The transformation
E: t=—=t ¢=—p (4.42)

does not change Equation (4.1). This is an involution.
Let us study the change of the generators X = 2o Xy + 21 X1 + 22 Xo + 23X3
under the transformations corresponding to these equivalence transformations. Af-

ter the change defined by equivalence transformation one gets the generator
X = .’30)2{] + 37:;}21 + 5“92}2.'2 -+ 33'3}23, (443)

where

Xo=18;, Xi= Zp0, X = @0y — 10, X3 =0y
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The corresponding transformations of the basis generators are

X3 Xo=Xo. X1 =e "X, Xo = X, Xz = Xs;
X?Z Xo = X@ + G;Xl,Xl == Xl,Xg = Xg,Xg = Xg;
X3 Xo=Xo, X1= X1, Xo = X5, X3 =72 X3,

X5 Xo= XO,X1 = X11X2 = Xz +CLX3,X3 = X3>

or the coordinates of the generator X are changed as follows

X3t %3 =z3+ azs.
4.3 Group Classification

In Equation (4.1}, the source term is assumed to be arbitrary. Group clas-
sification of Equation (4.1) is carried out up to the equivalence transformations
considered in the previous section. The method for classifying the source func-
tion § is similar to the method which was used for classifying the equation for the
moment generating function in Chapter III. First of all, we note that actions of
equivalence transformations corresponding to the equivalence Lie algebra spanned
by the generators (4.41) are equivalent to the automorphisms of the Lie algebra

L4 spanned by the generators X, X, Xs, Xs.
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In fact, the commutators of these generators are

Xo X1 Xo X3

Xo| 0 X O 0
X=X, 0 0 0

Xs| O 0 Xz O

Ag: & = z1€°%,
Ay & =2+ axg,
Ag: | T3 = z3€?,
Az: B3 = z3 + axy,
where only changed coordinates are presented.
Thus we can conclude that the changes corresponding to the equivalence
transformations are similar to actions of the inner automorphisms. Because of this
property for classifying Equation (4.1), we can use an optimal system of subalge-

bras.

4.3.1 Optimal System of Subalgebras

The commutator table of Lie algebra L; coincides with the commutator
table considered in Chapter III, where group classification of the equation for
a moment generating function was studied. The difference in constructing an
optimal system here consists of the set of involutions, in the present case the
involution corresponding to &; = —z; is absent. The optimal system of subalgebras
is presented in Table 4.1. |

For the group classification of Equation (4.1) using the optimal system of

subalgebras, the functions §(x,t) are obtained by substituting into Equation (4.38)
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Table 4.1 Optimal system of subalgebras of Ly for the Fourier image of the spa-

tially homogeneous and isotropic Boltzmann equation.

No.  Basis No.  Basis

L Xo, X1, Xo, X3 13, Xo+ X3, Xu
2 aXo+ Xo, X3, X3 4. X3, X3

3. Xo, X1, X3 15, Xo, X3
4. Xo, X1, Xo 16. Xo, Xy

5. Xo, Xo, X3 17 aXe+ Xo
. - Aol
7o Xo+Xo, X+ X5 | 19 X3-X;
8. aXp+ Xo, X3 20. Xo+ X3
9. X1+ Xs, X3 21, X1+ Xs
10 X;— Xy, X3 22. Xy

11, Xo, X3 3. X

12. aXo+ Xo, X1 24, X3

the constants ¢; corresponding to the basis generators of a subalgebra of the optimal

system of subalgebras and solving the obtained system of equations. The result of

the group classification is presented in Table 4.2, where « and « are constant, and

the function ® is an arbitrary function of its argument.
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Table 4.2 Group classification of the Fourier image of the spatially homogeneous

and isotropic Boltzmann equation.

No. §(t, z) Generators

L 0 Xo, X1, X2 X3
2 K2 Xo+ Xo, X1+ X3
23 Kz 2Xo + aXy, X3
4. Rl Xo, X2

5: t720(zt?) aXp+ Xy

6.  t@DP(z) X, + X

7. #20(z) ke, - %3

8. O (ze™t) Xo+ AXs

9. et P(x) X1+ X,

10. @) Xo

1. &(z) X3

4.3.2 Illustrative Examples of Obtaining the Function ¢

Let us consider the subalgebra {aXy+ Xo, X3}. For this Lie algebra, there

are two sets of coefficients ¢;, (1 =0, 1,2, 3):

O:_’Xo +X2 :

X3: Co=0

= =0 =1 ¢c3=0;

g1 =0 =0 cg==1.

These sets define the system of equations by substituting the coefficient ¢; into

Equation (4.38):

tg; + 24 — axgy = 0,

qtzO.
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The general solution of these equations is § = xz®, where o and & are a constant.
Hence the Equation (4.1) with the source function § = sz® admits the generator
aXy + 2X,, X3. This case corresponds to the No.3 in Table 4.2.

For the subalgebra {X; — X5}, there is only one equation

The general solution of the equation is § = t*~2®(z), where ®(z) is an arbitrary

funetion. This case corresponds to No.7 in Table 4.2.

4.4 Invariant Solutions

The study presented in this section is devoted to constructing invariant
solutions of Equation {4.1). For each obtained function §, we study the admitted
Lie algebras. Using an optimal system of subalgebras of these Lie algebras, we
derive invariant solutions. The set of all these solutions defines the set of all possible
invariant solutions of Equation (4.1). It is shown here that similar to differential
equations, equations for finding invariant solutions are reduced to equations with

fewer the independent variables.

4.4.1 Invariant Solutions with § = sx2e™

For the source function § = xz*e™® the admitted Lie algebra of Equation
(4.1} is {Xo+ X5, X, + X3}. An optimal system of subalgebras of this Lie algebra
consists of subalgebras: {Xo + X2}, {X) + X3} and {Xo + X», X: + X3}

A representation of an invariant solution corresponding to the subalgebra
{Xo + X2} is @ = t7'r(2), where z = wt. Substituting this representation of a

solution into Equation (4.1), it becomes

zr'(2) — r(2) + r(2)r(0) — /; r{z8)r(z(1 — 8)) ds = r2’e”. (4.44)
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The latter equation (4.44) is an equation with the single independent variable z
A representation of an invariant solution corresponding to the subalgebra
{X) + X3} is ¢ = e®r(x). Substituting this representation of a solution into

Equation (4.1), we get the reduced equation,

zr(z) 4+ 7(z)r(0) — /0 r(zs)r(z(1 — s)) ds = kx®.

The subalgebra {X, + Xo, X; + X3} gives an invariant solution in the
form ¢ = Kze®™, where K is constant. After substituting this representation into

Equation (4.1), we get the equation for the constant K,
K? 6K +6x=0.

If £ < 3, then C =3+ V0 —6k.

4.4.2 Invariant Solutions with § = xkz®

An optimal system of subalgebras consists of the list: {2Xg + aX», X3},
{X3} and either {2Xo+ aX,} for @ # 0 or {vXo+ X3} for @ = 0.

A representation of an invariant solution corresponding to the subalgebra
{2Xo + aXy, X3} is o = K r7, where K is constant. After substituting this

representation into Equation (4.1), we get the equation for the constant K,
K’B+ k=0,

where B is the beta function, B = fol(s(l —5))2ds.
A representation of an invariant solution corresponding to the subalgebra
{X3} is ¢ = r(z). Substituting this representation into Equation (4.1), we get the

reduced equation,

r(z)r(0) — f; r(zs)r(z(l — s))ds = sz,
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A representation of an invariant solution corresponding to the subalgebra
{2X, + aX,} where a # 0 is ¢ = t71r(2), where z = t2z%. Substituting this

representation into Equation (4.1), we get the reduced equation,
1
2zr'(2) — r(2) + r(2)r{0) — / r(z8)r(z(1 — 8))ds = kz.
0

A representation of an invariant solution corresponding to the subalgebra
{+Xo+ X3} is ¢ = r(z), where z = ze™ . Substituting this representation into

Equation (4.1}, we get the reduced equation,

—yzr'(z) +r(z)r(0) — /1 r(z8)r(z(1 — §))ds = k.
0

4.4.3 Invariant Solutions with § = xt=2

For the source function § = xt~° the admitted Lie algebra of Equation (4.1)
is {Xo, X2}. An optimal system of subalgebras of this Lie algebra consists of
subalgebras: {Xg, X5}, {aXo + X5} and {X,}.

The invariant solution corresponding to the subalgebra {X,, Xz} is ¢ =
—Kt1,

A representation of an invariant solution corresponding to the subalgebra
{aXo + X3} is ¢ = t71r(z), where z = zt®. Substituting this representation into

Equation (4.1), we get the reduced equation,

azr'(z) — r(z) + r(z)r(0) - fl r(zs)r(z(1 — s))ds = k.
0

A representation of an invariant solution corresponding to the subalgebra
{Xo} is ¢ = r(t). Substituting this representation into Equation (4.1), we get the

invariant solution ¢ = —k/t + K, where K is constant.
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4.4.4 Invariant Solutions with § = ¢~ *®(xt%)

In this case the admitted Lie algebra is {a Xy + X3}, An invariant solution
has the representation ¢ = ¢t~!r(z), where z = zt® Substituting this representa-

tion into Equation (4.1), the reduced equation is

azr'(z) — r(z) + r(2)r(0) — /{; r(z8)r(z(1 — s))ds = ®(z).

4.4.5 Invariant Solutions with § = t~=+2®(z)

The admitted Lie algebra is {X; 4+ X2}. An invariant solution has the
representation ¢ = t~@*Ur(z), Substituting this representation into Equation

(4.1), the reduced equation is

—(x + 1)r(z) + r(z)r(0) - /G r{zs)r(z(l — 8))ds = &(z).

4.4.6 Invariant Solutions with § = t*72d(z)

The admitted Lie algebra is {X; — X3}, An invariant solution has the
representation ¢ = *"!r(x). Substituting this representation into Equation (4.1),

the reduced equation is

(z — 1)r{z) + r(x)r(0) — /01 r(zs)r(z(l — s))ds = ®(x).

4.4.7 Invariant Solutions with § = ®(ze™)

For the function § = ®(xe™*) , the admitted Lie algebra is {Xp + X3}, Its
invariant solution has the representation ¢ = r{z), where 2 = ze™*. Substituting

this representation into Equation (4.1}, the reduced equation is

—zr'(z) + r(z)r(0) — fol r(zs)r(z(1 —s)) ds = ®(z).

In particular, for BKW-solution r = 6e*(1 — 2z) which gives that ® = 0.
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4.4.8 Invariant Solutions with § = e®®(z)

The admitted Lie algebra is {X; + X3}. An invariant solution has the
representation ¢ = e*r(z). Substituting this representation into Equation (4.1),

the reduced equation is

zr(z) + r(z)r(0) — [g r{zs)r(z(1l — s8))ds = ®(x).

4.4.9 Invariant Solutions with ¢ = &(¢)

The admitted Lie algebra is {Xg}. Its invariant solution is

] = /Cb(t) dt.

4.4.10 Invariant Solutions with § = ®(z)

The admitted Lie algebra is {X3}. An invariant solution has the represen-
tation ¢ = r(z). Substituting this representation into Equation (4.1), the reduced

equation is
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CHAPTER V

CONCLUSION

The goal of this thesis was to study the integro-differential equation which
arises as the Fourier image of the spatially homogeneous and isotropic Boltzmann

equation with a source term,

o0+ p(0)p = / o(zs)p(a(l — 5))ds + g, (5.1)

by the group analysis method. Since this equation is nonlocal, the classical group
analysis method could not be applied. Instead, the recently developed algorithm
applying group analysis to equations with nonlocal terms was made use of in this
thesis.

This thesis is separated in two parts. The first part deals with the equation

for a moment generating function obtained from equation {5.1),
(zug), — u* + w(0)(zu)y = g. {5.2)

Although this equation is still nonlocal, it is simpler than Equation (5.1). The
algorithm applied in this thesis allowed us to present a complete group classifica-
tion of Equation (5.2) with respect to the source term g(z,t), thus correcting the
deficiencies of earlier studies of this equation {Nonenmacher(1984)).

The results achieved from the study of Equation (5.2) made it possible to
continue with the study of Equation (5.1) by methods of group analysis, as shown
in the second part of the thesis. The main difficulty for Equation {5.1) consisted of
solving the determining equation. This task has been achieved with success, and

a complete group classification of Equation (5.1) could be made.
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The general method of analyzing Equations {5.1) and (5.2) consists of the

following steps:

{1) Construct the determining equation.

The determining equations were obtained using the Definition (11).

(2) Analysis of the determining equation.
The determining equation of Equation (5.2) was simplified by splitting it into
several equations. For the analysis of the determining equation of Equation

(5.1), a particular class of solutions of Equation (5.1) was used.

(3) Solve the reduced determining equations.

An algebraic approach was applied for solving these equations.

The group classification of the two equations thus obtained separates the
source terms into several classes. For each class all the invariant solutions have

been studied.
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