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 เสาวลักษณ  ตะเคียนงาม : การบีบอัดขอมูลและการตรวจจับความผิดปกติในเครือขาย 
 ตัวตรวจรูไรสาย (DATA COMPRESSION AND ANOMALY DETECTION IN  

 WIRELESS SENSOR NETWORKS) อาจารยท่ีปรึกษา : ผูชวยศาสตราจารย ดร.  
 วิภาวี  หัตถกรรม, 179 หนา. 

 
 เครือขายตัวตรวจรูไรสายมีขอจํากัดหลายอยาง เชน หนวยความจํา, ความกวางแถบความถ่ี 
(แบนดวิธ), อัตราการสงขอมูลต่ํา, แหลงพลังงานและการใชพลังงาน, และความสามารถเชิง
ประมวลผล เปนตน ขอจํากัดของอุปกรณเหลานี้สงผลกระทบตอความสามารถในการตรวจจับ 
ความผิดปกติของตัวตรวจรู และสามารถกอใหเกิดความเสียหายตอผลผลิตได นอกจากนี้ขอจํากัด
ดานแหลงพลังงานในเครือขายตัวตรวจรูไรสาย ตองการใชพลังงานใหนอยท่ีสุด เนื่องจากการสง
ขอมูลในเครือขายตัวตรวจรูไรสายนั้น ใชพลังงานมากกวากระบวนการในการประมวลผล และ   
การคํานวณขอมูลท่ีมีขนาดเล็กจะใชพลังงานนอยกวาการคํานวณขอมูลขนาดใหญดวย 

 ดังนั้น งานวิจัยนี้จึงมุงเนนท่ีจะผสมผสานการทํางานระหวาง การบีบอัดขอมูลดวย 
Discrete Wavelet Transform (DWT) และ Lifting Wavelet Transform (LWT) รวมกับ การ
ตรวจจับความผิดปกติของขอมูลโดยใช One-Class Support Vector Machine (OCSVM) 

 วิธีการแรกท่ีนําเสนอในงานวิจัยนี้ คือ OCSVM + DWT เม่ือนําไปเปรียบเทียบกับวิธีการ
กอนหนานี้ท่ีถูกนําเสนอมาแลว เชน Self-Organizing Map (SOM) + DWT พบวา OCSVM + 

DWT สามารถเพ่ิมประสิทธิภาพในการตรวจจับความผิดปกติได สําหรับการทดลองกับขอมูล
สังเคราะหพบวา OCSVM + DWT ท่ีเลือกใชคาสัมประสิทธ์ิความถ่ีต่ํา มีอัตราความถูกตองในการ
ตรวจจับความผิดปกติถึง 100% ในขณะท่ีอัตราความผิดพลาดในการตรวจจับขอมูลเพ่ิมขึ้นเพียง
เล็กนอย เม่ือเปรียบเทียบกับวิธีการอ่ืน ๆ และในการทดลองกับชุดขอมูลจริงพบวา OCSVM + 

DWT ท่ีเลือกใชคาสัมประสิทธ์ิความถ่ีต่ํา ทํางานไดดีท่ีสุด โดยมีอัตราความถูกตองในการตรวจจับ
ความผิดปกติสูงถึงเกือบ 100%  แมวาในการทดลองกับขอมูลท่ีมีความผิดปกติแบบ Short หรือ 
Noise จะใหอัตราการตรวจจับขอมูลท่ีผิดพลาดสูงกวาวิธีการอ่ืน ๆ ก็ตาม จากการทดลองจะเห็นวา 
OCSVM + DWT ท่ีเลือกใชคาสัมประสิทธ์ิความถ่ีต่ํา เหมาะกับการตรวจจับขอมูลท่ีมีความ
ผิดปกติแบบ Short หรือ Noise เปนองคประกอบ ในขณะท่ี SOM + DWT ท่ีเลือกใชคา
สัมประสิทธ์ิความถ่ีต่ํา เหมาะกับการตรวจจับขอมูลท่ีมีความผิดปกติแบบ Constant เปน
องคประกอบ 
 อีกวิธีการหนึ่งท่ีนําเสนอในงานวิจัยนี้ คือ OCSVM + LWT ซ่ึงจะถูกนําไปเปรียบเทียบ
ประสิทธิภาพการทํางานกับวิธีการอ่ืน ซ่ึงไดแก OCSVM + DWT และ OCSVM + Principal 

 

 

 

 

 

 



II 
 

Component Analysis (PCA) สําหรับการทดลองกับขอมูลสังเคราะหและขอมูลจริงท่ีมีความ
ผิดปกติแบบ Short เปนองคประกอบ พบวา OCSVM + LWT มีประสิทธิภาพการทํางาน
ใกลเคียงกับ OCSVM, OCSVM + DWT และ OCSVM + PCA สําหรับการทดลองกับขอมูล
สังเคราะหและขอมูลจริงท่ีมีความผิดปกติแบบ Noise และ Constant เปนองคประกอบ พบวา 
OCSVM + LWT และ OCSVM + DWT ท่ีเลือกใชสัมประสิทธ์ิความถ่ีต่ํา มีประสิทธิภาพการ
ทํางานท่ีดีกวา OCSVM และ OCSVM + PCA ในทางกลับกัน OCSVM + LWT และ 
OCSVM + DWT ท่ีเลือกใชสัมประสิทธ์ิความถ่ีสูง มีประสิทธิภาพการทํางานท่ีแยท่ีสุด ซ่ึงแสดง
ใหเห็นวา LWT มีความตองการท่ีนอยกวา DWT ในแงของหนวยความจําท่ีใชงาน และเวลาในการ
คํานวณ และจากผลการทดลองของเราแสดงใหเห็นวา OCSVM + LWT เหมาะท่ีจะนําไปติดตั้ง
เครือขายตัวตรวจรูไรสายมากกวาวิธีการอ่ืน ๆ ท่ีไดกลาวมาแลว 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
สาขาวิชาวิศวกรรมโทรคมนาคม ลายมือช่ือนักศึกษา   

ปการศึกษา 2554 ลายมือช่ืออาจารยท่ีปรึกษา  
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 SAOWALUK  TAKIANNGAM : DATA COMPRESSION AND ANOMALY 

 DETECTION IN WIRELESS SENSOR NETWORKS. THESIS ADVISOR :  

 ASST. PROF. WIPAWEE  HATTAGAM, Ph.D., 179 PP. 

 

DATA COMPRESSION / ANOMALY DETECTION / WIRELESS SENSOR 

NETWORKS / ONE-CLASS SUPPORT VECTOR MACHINES (OCSVM) / SELF-

ORGANIZING MAP (SOM) / LIFTING WAVELET TRANSFORM (LWT) / 

DISCRETE WAVELET TRANSFORM (DWT) / PRINCIPAL COMPONENT 

ANALYSIS (PCA) 

 

 Wireless sensor networks (WSNs) have many limitations such as memory, 

bandwidth, low-rate radio communication, energy supply and consumption, and 

computational capabilities. These limitations can affect the sensor node ability to 

detect anomalies and can damage produce. Furthermore, the battery supply limitations 

in WSNs require minimal energy consumption. Since radio communication in WSNs 

consume more energy than processing and computing, computation with small 

datasets is likely to consume less energy than a large dataset.  

 Therefore, this research is focused on incorporating the discrete wavelet 

transform (DWT) and lifting wavelet transform (LWT) data compression schemes 

with one-class support vector machine (OCSVM) anomaly detection.  

 Our first proposed algorithm (OCSVM + DWT) was compared with a 

previous algorithm i.e., self-organizing map (SOM) + DWT. We found the OCSVM + 

DWT can increase the efficiency of anomaly detection. For synthetic data, the 

OCSVM + DWT with low-pass coefficients (LP) achieved 100% detection rate (DR) 
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with marginal increase in false positive rate (FPR) when compared with all other 

algorithms. For real world datasets, the OCSVM + DWT with LP coefficients 

performed best by achieving nearly 100% DR although with slightly higher FPR for 

datasets containing short and noise faults. These results suggest that OCSVM + DWT 

(LP) algorithm is suited for short and noise faults whereas SOM + DWT (LP) is 

suited for short and constant faults. 

 Our second proposed algorithm (OCSVM + LWT) was compared with other 

variants of integration such as OCSVM + DWT and OCSVM + principal component 

analysis (PCA) and OCSVM alone (with uncompressed data). For synthetic data and 

real world datasets with short faults, the OCSVM + LWT performed equally well as 

the OCSVM alone, OCSVM + DWT and OCSVM + PCA. For synthetic data and real 

world datasets with noise and constant faults, the OCSVM + LWT [LP] and the 

OCSVM + DWT [LP] gave better performance than the OCSVM alone and OCSVM 

+ PCA. On the contrary the OCSVM + LWT [HP] with high-pass coefficients and the 

OCSVM + DWT [HP] gave the worst performance. It was also demonstrated that 

LWT was less demanding in terms of memory requirement and computation time than 

DWT. Our results therefore suggest that OCSVM + LWT was more suitable for 

implementation in WSNs. 
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CHAPTER I 

INTRODUCTION 

 

 This chapter introduces a background on data compression and anomaly 

detection in wireless sensor networks (WSNs). It also presents the motivation for 

applying reinforcement learning to achieve the best mutual policy for the agents 

which is the main focus of this thesis. 

 

1.1 Background problem and significance of study 

 Nowadays, many wireless communication applications are applied in 

agriculture. One example is using wireless sensor nodes for agriculture monitoring 

thereby obtaining data measurements from wireless sensor networks (WSNs) that 

consist of wireless sensor nodes located at different places on a farm. Such 

measurements are collected and forwarded to a central server. WSNs are formed 

using many sensor nodes that are small and inexpensive, with an onboard simple 

central processing unit (CPU), limited memory, and limited energy resource. 

Therefore, each sensor node has many limitations such as memory, bandwidth, low-

rate radio communication, energy consumption, and computational capabilities (Goh, 

Sim, and Ewe, 2007). These limitations make communication unreliable which can 

contribute to occurrences of the anomalies in a set of sensor data measurements. 

 An anomaly or outlier in a set of sensor data measurements is defined as an 

observation that appears to be inconsistent with the remainder of the dataset 

(Rajasegarar, Leckie, and Palaniswami, 2008). Anomalies, which occur from unusual
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phenomena in monitor domain, can damage agricultural produce. Some applications, 

such as in a hydroponics farm that requires accurate pH level control of solution plant, 

or in a bio-organic fertilizer plant that requires temperature control in the fertilizer 

compost process, or in aquaculture monitoring that requires monitoring of the 

dissolved oxygen value (DO) in water, immediate anomaly detection in a set of data 

measurement is essential in order to take immediate course of actions. 

 However, due to hardware limitations WSNs require minimal energy 

consumption. Since radio communication in WSN consume more energy than 

processing and computing (Rajasegarar et al., 2008), computation with small datasets 

will consume smaller energy than huge datasets. Furthermore, some researches such 

Siripanadorn, Hattagam, and Teaumroong, (2010a, 2010b) and Kiziloren and Germen 

(2009) used data compression by various algorithms. And found that such approach 

can increase the efficiency of anomaly detection. Motivated by their findings, we will 

extend their algorithm to our algorithm by integrate data compression with another 

anomaly detection technique. The underlying aim of this research is to determine an 

efficient combination of data compression and anomaly detection techniques suitable 

for resource-constrained conditions is WSNs. The research initially focuses on the 

effect of data compression on anomaly detection and then proceeds to find the most 

efficient integrated anomaly detection and data compression techniques. A prototype 

of the selected integrated anomaly detection and data compression will then be 

developed on a WSN node for agricultural monitoring. 

 1.1.1 Anomaly detection techniques 

  In general, anomaly or outlier detection mechanisms can be 

categorized into three general approaches depending on the type of background
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knowledge of the data available. The first approach finds outliers without prior 

knowledge of the underlying data. Such approach includes the family of parametric 

statistical anomaly detection techniques. The second approach uses supervised 

classification, where the classifier is trained with labeled data. The third approach is 

analogous to semi-supervised recognition (Rajasegarar, Leckie, and Palaniswami, 

2008). The second and third approaches are referred to as nonparametric anomaly 

detection techniques. 

  1.1.1.1 The parametric statistical anomaly detection techniques  

   The parametric statistical anomaly detection techniques 

assume that the normal data is generated by a parametric distribution (Rajasegarar et 

al., 2008). Therefore, the density distribution of the data is known a priori. The 

parametric distributions such as mean, variance, probability density, are first 

estimated, then anomalies are flagged as those data points with low likelihood given 

that distribution. For example, the Chi-Square Test Statistical Method was used to 

detect sinkhole attacks in WSNs that use sample means as thresholds (Rajasegarar et 

al., 2008).  The Gaussian Model Based Method was tested with a Gaussian 

distribution dataset by using an estimated mean for the anomaly score (Chandola, 

Banerjee, and Kumar, 2009). The Linear Least – Squares Estimation Method (LLSE) 

computed the mean and variance of sensor measurements, as well as the covariance 

between sensor measurements based on the training dataset, and used them to detect 

anomalies in the test dataset (Sharma, Golubchik, and Govindan, 2010).  

   However, parametric statistical techniques are suitable when 

the underlying type of distribution of the data is well known. This is therefore, highly 

application dependent. The technique becomes much harder when the sensors become 
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mobile rather than static, and also when the data distribution evolves over the lifetime 

of the network. Since WSNs have limited resources, can be moveable and their data 

distribution can change frequently, parametric statistical anomaly detection 

techniques are unsuitable for WSNs (Rajasegarar et al., 2008; Chandola et al., 2009).

  1.1.1.2 Nonparametric anomaly detection techniques  

   Nonparametric anomaly detection techniques do not assume 

any prior knowledge about the distribution of the data. Therefore, these techniques are 

suitable for resource-constrained WSNs where the data distribution may change 

frequently and device can become moveable (Rajasegarar et al., 2008; Chandola et al., 

2009). There are many solutions of nonparametric anomaly detection techniques in 

the literature. For example, Rule Based Methods like the Histogram Method was the 

simplest non-parametric technique that divided and plotted the time series of sensor 

readings into some groups of N samples to find thresholds for anomaly detection. The 

efficiency of such method depended on N obtained from the training phase (Sharma et 

al., 2010). It can quickly detect anomaly in the testing phase, and obtain a threshold in 

the training phase (Chandola et al., 2009). However, the open issues were to what 

extent anomaly conditions can be predefined, as well as how to update the rules 

automatically in response to changes in a dynamic environment (Rajasegarar et al., 

2008). 

   Density Based Methods were used for distributed anomaly 

detection. An interesting open issue is to identify a limit for the number of children 

nodes for each parent node, based on the effect of the computational and 

communication load at the parents on the lifetime of the network (Rajasegarar et al., 

2008).  
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   Data Clustering Based Methods, such as the K-Nearest 

Neighbor (KNN), was proposed in (Chandola et al., 2009; Kiziloren and Germen, 

2009; Rajasegarar, Leckie, Palaniswami, and Bezdek, 2006; Yao, Sharma, Golubchik, 

and Govindan, 2010). This method grouped a similar data into clusters of fixed-width 

and finds the average inter-cluster distance between clusters. The performance of this 

method depended strongly on the cluster width. However, data clustering methods can 

only identify which data vectors contain anomalies, but cannot identify anomalous 

readings within a data vector. The efficiency of this method performed poorly in 

detecting long term anomalies since this method was designed to detect outliers and 

did not exploit temporal correlations within the time series (Yao et al., 2010).  

   Cumulative Summation (CUSUM) detected changes in mean, 

variance, or covariance in sensor measurements without assuming any knowledge 

about the underlying data distribution (Yao et al., 2010). This method was 

computationally simple but had long training phase because this method considered 

each feature in isolation (Rajasegarar et al., 2008). 

   On the other hand, the Time Series Analysis Based Methods 

can be performed online. Example for such method included the Autoregressive 

Integrated Moving Average (ARIMA) that was used in (Chandola et al., 2009; 

Sharma et al., 2010; Yao et al., 2010) as a standard tool for modeling and forecasting 

time series data with periodicity. Temporal correlations in sensor measurements were 

used to construct an ARIMA model of sensor data. In order to predict the value of 

future readings, with new sensor readings and compared it against their predicted 

value. If the difference between these values was above a threshold, the new data is 

marked as anomalous. However, ARIMA performed poorly at detecting long duration 
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anomalies. An alternative method was the Segment Sequence Analysis (SSA), which 

was suitable for periodicity and leveraged temporal correlations in sensor 

measurements. SSA can detect most long duration anomalies. Furthermore, by 

combining SSA and Rule Based Methods together, both short and long duration 

anomalies can be detected. SSA was robust to the presence of sensor data faults in the 

reference time series, and had low computation and memory cost, therefore it can be 

effectively implemented in WSN. A comparison of Yao et al. (2010) showed that 

SSA had more efficiency than KNN, CUSUM, PCA and ARIMA. However, SSA 

itself alone can detect only long duration anomalies (Yao et al., 2010). 

   Kernel-based methods like the Support Vector Machine 

(SVM) were proposed for data classification and anomaly detection. SVM is a 

popular and useful technique for data classification (Hsu, Chang, and C. J. Lin, 2003). 

It has been applied for hyperspectral remote sensing image classification with good 

performance in recent years (Du, Tan, and Xing, 2010). The first key concept of this 

method was developed for binary classification problems by mean of mapping the 

original data vectors from input space into higher dimensional space called feature 

space using the kernel function (Lutsa, et al., 2010). Therefore, the kernel functions 

play an important role in SVM. There have been many kernel functions deployed, 

such as linear, polynomial, Gaussian or Radial Basis Function (RBF), and Sigmoid-

shaped functions (Du et al., 2010). Therefore, SVM can be applied for anomaly 

detection by classifying data into normal and anomalous classes. The SVM that has 

been applied for anomaly detection was the One-Class Support Vector Machine 

(OCSVM). OCSVM was used for detecting anomalous connections in (F. Wang, 

Qian, Dai, and Z. Wang, 2010). Furthermore, (Laskov, Schafer, and Kotenko, 2004; 
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Rajasegarar et al., 2007; 2010; Y. Zhang, Meratnia, and Havinga, 2009) successfully 

used OCSVM to detect anomalies in WSN, with real world datasets based on fitting 

normal data to a quarter of sphere feature space that can change in dynamic 

environment. In 2008, Rajasegarar et al., suggested that OCSVM incurred little 

communication overhead and was suitable for sensor networks deployed in 

homogenous environments where the data distribution at each node was identical but 

unknown, and was suitable for online application. It was also noted that OCSVM had 

more flexibility to dynamically estimate the normal behavior from the observed 

feature. However, despite its performance, the approach was more demanding in 

terms of computational complexity than the Rule Based Methods and CUSUM. The 

OCSVM requires correct estimation of two parameters: 

    1) The kernel parameter function that maps the data 

to the feature space, e.g. degree in polynomial kernel or sigma () in the Radial Basis 

Function. 

    2) A regularization parameter (), which controls the 

fraction of data vectors that fall inside the hyperplan or hypersphere. 

   The final non-parametric anomaly detection technique is the 

family of Learning Based Methods. Two approaches have been proposed. The first 

was the Hidden Markov Model (HMM) that was used to construct a model for the 

measurements reported by sensors in a WSN. This method was used in fault detection 

in which each sample was labeled either as fault-free or faulty with a particular fault 

type. Such labeled data was then used for estimating the parameters of the HMM 

(Sharma et al., 2010). However, an alternative approach which obtained detection 

results better than HMM was the Self-Organizing Map (SOM) (Min and Dongliang, 
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2009). SOM is an unsupervised neural network model for analyzing and visualizing 

high dimensional data into two-dimensional lattices (F. Wang, Qian, Dai, and Z. 

Wang, 2010). SOM was used in conjunction with OCSVM, where OCSVM was 

applied for anomaly detection and SOM for filtering known intrusions and classifying 

the unknown intrusions (F. Wang et al., 2010). Finally, they found that their model 

performed well by obtaining high detection rates and low false alarm rates. In 2007, 

Doshi, King, and Lawrence used SOM to classify hyperspectral data that was 

compressed by Discrete Wavelet Transform (DWT). In 2010, Xu and Chow used 

SOM to classify data that had been compressed with density based data reduction. In 

2009, Min and Dongliang used SOM in real-time intrusion detection and founded that 

SOM obtained detection results better than HMM. In 2010, Siripanadorn et al. used 

SOM to detect anomalies in a centralized anomaly detection operation on sensor data 

measurements that was compressed by DWT.  The authors noted that though SOM 

required limited storage and computing costs and can accurately detect anomalies, the 

processing time will increase with the size of input data. In 2009, Kiziloren and 

Germen used SOM to detect anomalies in network traffic once the data had been 

compressed with Principle Component Analysis (PCA).  

   Since Siripanadorn et al., (2010a; 2010b) and Kiziloren and 

Germen (2009) used SOM to detect anomalies in compressed data and obtain better 

efficiency, we are therefore motivated to compare efficiency between algorithm in 

(Siripanadorn et al., 2010a; 2010b; Kiziloren and Germen, 2009) and study alternative 

data compression techniques in WSN in order to find a suitable and efficient 

combination data compression and anomaly detection techniques. 
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Table 1.1 Ability of Anomaly Detection in Previous Works 

Previous anomaly detection works 
Ability to detect faults Adaptive 

to dynamic 
Used with 

data compression Short Noise Constant 

Parametric Statistical Anomaly Detection Technique 

1 Chi-Square Test Statistic Method - - -   
2 Gaussian Model Based Method - - -   
3 Linear Least – Squares Estimation (LLSE)      

Nonparametric Anomaly Detection Techniques 

4 Rule-Based method      
  Histogram Method      

5 Density Based Method      
6 Data Clustering Based Method      
  K-Nearest Neighbor (KNN)      

7 Cumulative Summation (CUSUM)      
8 Time Series Analysis Based Method      
  Autoregressive Integrated Moving Average (ARIMA)      

  Segment Sequence Analysis (SSA)      
9 Kernel-based method      
  Support Vector Machine (SVM) - - -   

  One-Class Support Vector Machine (OCSVM)      
10 Learning Based Method      
  Hidden Markov Model (HMM)      

   Self-Organizing Map (SOM)      
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 1.1.2 Data compression techniques 

  Many data compression techniques in WSN have been proposed in the 

literature. These techniques were used to reduce size of data in communication and 

reduce dimensional of data in order to prepare the data for suitable feature extraction 

for anomaly detection. 

  The earliest research was on performance comparison of four 

compression algorithms, i.e., Discrete Cosine Transform (DCT), Discrete Fourier 

Transform (DFT), Discrete Wavelet Transform (DWT) and Vector Quantization (VQ) 

(Watson, Liakopoulos, Brzakovic, and Georgakis, 1995). The authors found that VQ 

had a better performance than other techniques and can be successfully applied 

online. VQ was later improved to Adaptive Learning Vector Quantization (ALVQ) in 

order to compress a codebook update (S. Lin, Gunopulos, Kalogeraki, and Lonardi, 

2005). In addition S. Lin et al. (2005) found that ALVQ was suitable for dynamic 

bandwidth application. However, VQ and ALVQ were more popular used to reduce 

the size and detail of picture than used to reduce the dimensional of data. 

  More recently, a lossless compression method for WSNs was called 

the Sensor Lempel Ziv Welch (S-LZW) was studied and improved. Marcelloni and 

Vecchio (2008) improved the S-LZW to achieve a better compression ratio and lower 

computational complexity than the original S-LZW. Furthermore, Capo-Chichi, 

Guyennet, and Friedt (2009) proposed the K-Run Length Encoding (K-RLE) that 

offered a better compression ratio than the S-LZW. However, K-RLE used more 

energy than S-LZW.  

  Kimura and Latifi (2005) proposed three data compression algorithms 

in WSN, i.e., coding by ordering, in-network compression and distributed 
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compression. The coding by ordering method had a good compression ratio and was 

simple to design. However, it required a mapping table. The size of mapping table 

increased exponentially depending on the number of sensor nodes, therefore, 

unsuitable for memory-constrained sensor nodes. In 2003, Arici, Gedik, Altunbasak, 

and Liu first proposed the in-network compression method. After that, Boukerche and 

Samarah (2009) applied the in-network compression method to single-valued sensor 

readings. It was shown that this method did not require temporal redundancy of data 

for good performance. In 2008, Cai and M. Zhang used Minimum Nodes Data 

Gathering Tree (MNDGT) to remove some data redundancy before compression and 

compared the performance with the Distributed Compression. Results have shown 

better performance in terms of energy consumption. Since each compressed data 

packet did not contain the measured value, in-network compressed data may not be 

suitable for anomaly detection. 

  Sharma, Golubchik, and Govindan (2010) proposed Principle 

Component Analysis (PCA) which was shown to be a suitable tool for reducing the 

dimensionality of a dataset. It is a classical statistical method which was used to 

transform attributes of a dataset into a new set of uncorrelated attributes called 

principal components (PCs).  

  In addition, the Wavelet Transform (WT) has been commonly used to 

compress data using many types of transforms. The first method is the Data 

Aggregation based on Wavelet Entropy (DAWE) which used cluster members and 

cluster heads to reduce transmitting packets in WSN. DAWE offered better energy 

efficiency than clustering algorithm like Low-Energy Adaptive Clustering Hierarchy 

(LEACH). Since this work was based on synthetic random data which may exhibit 
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data redundancy different from real sensor measurements, energy efficiency may not 

be guaranteed for in real sensor measurements (Bruce, Koger, and J. Li, 2002). The 

second wavelet transform is the Discrete Wavelet Transform (DWT). Many 

researchers still used DWT to compress data although S. Lin et al. (2005) showed that 

VQ gave more efficiency. Since DWT can reduce the dimension of data while still 

preserving significant features of the data, it can be used with other application such 

as anomaly detection, whereas VQ can only reduce size and detail of data (S. Lin et 

al. 2005). DWT was used to reduce the dimension of hyperspectral data and 

outperformed techniques that considered only the frequency content of the signal but 

not localized information like discrete cosine transform (DCT) (X. L. Li, J. W. Zhang, 

and W. H. FANG, 2009). DWT was used for preprocessing data to reduce the 

dimension of hyperspectral data prior to feeding it into SOM for classification 

purposes (Xu and Chow, 2010). DWT was used to compress data before feeding the 

data to SOM for anomaly detection in WSNs in (Siripanadorn, et al., 2010a; 2010b). 

The integrated SOM and DWT outperformed the SOM in term of anomaly detection 

performance. Finally, the Lifting Wavelet Transform (LWT) has been found to 

perform well in terms of energy savings, when compared its performance with the 

data compression algorithm based on traditional wavelet transforms like DWT. 

Furthermore, LWT when used as a distributed wavelet compression algorithm, the 

authors found it performed constantly well in (Ciancio and Ortega, 2005; Manjunath 

and Ravikumar, 2010). Therefore, LWT warrants potential use in detection. 

  To the best of our knowledge, SOM has been an anomaly detection 

method that has shown good performance. Furthermore, there have been algorithms 

which used SOM for anomaly detection in conjunction with data compression 
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schemes like DWT and PCA. These integrated algorithms have been found to 

increase the efficiency of anomaly detection. On the other hand, anomaly detection 

using OCSVM has been considered easier to implement than SOM (Du, Tan, and 

Xing, 2010). It has also been a popular and useful technique for anomaly detection 

due to its flexibility and small energy consumption. OCSVM are deemed suitable for 

sensor networks and online application. Furthermore, the Lifting Wavelet Transform 

(LWT) was shown to provide a better data compression technique than DWT.  

  Therefore, this research is focused on incorporating the wavelet-based 

data compression scheme with OCSVM anomaly detection (OCSVM + DWT and 

OCSVM + LWT). Previous works of Siripanadorn, et al., (2010a; 2010b) motivated 

us to compare efficiency with their algorithm (SOM + DWT). Furthermore, the 

proposed OCSVM + LWT algorithm was also compared with other variants of data 

compression and anomaly detection schemes, including the OCSVM alone 

(uncompressed data), the OCSVM + DWT, and the OCSVM + PCA algorithm  in 

order to find the most efficient algorithm for WSNs. 

 

1.2 Research objectives  

 1.2.1 To study efficiency in anomaly detection and data compression in 

wireless sensor networks. 

 1.2.2 To learn effects of data compression on anomaly detection. 

 1.2.3 To find a combination of data compression and anomaly detection 

scheme most suitable for implementation in a wireless sensor node. 
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1.3 Research hypothesis 

 1.3.1 Abnormal data which occur in a wireless sensor network can be 

detected by changing signal levels. 

 1.3.2 Faults can be caused by faulty sensors in the network or unusual 

phenomena in the monitored domain. 

 1.3.3 Data compression affects the ability to detect anomalies in data. 

 

1.4 Basic agreements 

 1.4.1 MATLAB is used to generate synthetic data and simulate the anomaly 

detection algorithm in a WSN. 

 1.4.2 Anomaly detection algorithm will detect real-world faults which are 

categorized into three types as follows; 

1) Short fault; a sharp change in the measurement value between two 

successive data points and affect a single sample at a time,  

2) Noisy fault; a fault that occurs when variance of the sensor 

readings increases and affects a number of successive samples 

3) Constant fault; a fault that occurs when reports a constant value for 

a large number of successive samples. 

  

1.5 Scope and limitation 

 1.5.1 Anomaly detection methods for WSNs were studied. 

 1.5.2 Data compression methods for WSNs were studied.  

 1.5.3 Anomaly detection and data compression were studied to detect 

abnormal data in both synthetic data and real world data. 
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 1.5.4 Results from simulation of combined anomaly detection and data 

compression algorithm were analyzed and concluded. 

 

1.6 Expected benefit 

 1.6.1 To obtain an efficient integrated anomaly detection and data 

compression algorithm for WSNs. 

 

1.7  Synopsis of Thesis 

 The remainder of this thesis is organized as follows.  

 Chapter 2 presented the theoretical background which is the foundation of the 

contributions of this thesis. Firstly, the anomaly detection techniques in related works 

were presented. This was followed by the self-organizing map (SOM) algorithm and 

the one-class support vector machines (OCSVM). Finally, the data compression 

techniques in related works were presented, followed by the principal components 

analysis (PCA), discrete wavelet transforms (DWT) and lifting wavelet transforms 

(LWT). 

 Chapter 3 presented the experiments conducted to evaluate the performance 

of our first proposed algorithm (OCSVM + DWT) and compared with the previous 

algorithm (SOM + DWT). The experiments evaluated the anomaly detection and data 

compression methods described in chapter 2 with series of synthetic data injected by 

various synthetic faults. Furthermore, performance evaluation with the real-world 

datasets with real faults from various sensor networks was also presented. 

 Chapter 4 presented the experiments conducted to evaluate the performance 

of our second proposed algorithm (OCSVM + LWT) and compared with other 
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variants of integration such as OCSVM + DWT and OCSVM + PCA. The 

experiments evaluated their performance with series of synthetic data and real-world 

datasets as in chapter 3. In addition, we extended the experiments to both synthetic 

data and real-world datasets which consisted of more KPIs than the dataset in chapter 

3, in order to study the effect of increasing KPIs on the data compression and anomaly 

detection techniques.  

 Finally, Chapter 5 summarized all the findings and the original contributions 

in this thesis and points out possible future research directions. 
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CHAPTER II 

BACKGROUND THEORY 

 

 In the previous chapter, we described the reason for choosing the data 

compression and anomaly detection techniques which were used in this thesis. The 

data compression techniques include the discrete wavelet transforms (DWT), lifting 

wavelet transforms (LWT) and principal component analysis (PCA). The anomaly 

detection techniques include the self-organizing map (SOM) and one-class support 

vector machines (OCSVM). In this chapter, we presented the theoretical background 

which is the foundation of the contributions of this thesis. Firstly, the anomaly 

detection techniques in related works are presented. These are then followed by the 

introduction to the SOM and the OCSVM. The data compression techniques in related 

works are presented next. Finally, a concise introduction on the DWT, LWT and PCA 

is provided. 

 

2.1 Anomaly Detection 

 An anomaly or outlier in a set of sensor data measurements is defined as an 

observation that appears to be inconsistent with the remainder of the dataset 

(Rajasegarar, Leckie, and Palaniswami, 2008). Anomalies, which occur from unusual 

phenomena in monitor domain, can damage agricultural produce. In this thesis, we are 

interested in monitoring anomaly detection in the data gathered from WSNs. 

 

 

 

 

 

 

 



18 
 

 The first step of anomaly detection involves selecting the data parameters to 

be monitored and grouping them together in a pattern vector x  
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 (2.1) 

where   is the observation index: n,...,3,2,1  

 n is the number of data vectors in the dataset,  

 p is the number of parameter types or key performance indices (KPIs)  

  chosen to monitor the environmental condition. 

 

The second step involves identifying the methodology used to classify a newly 

state vector newx  as normal or abnormal.  

 In general, anomaly or outlier detection mechanisms can be categorized into 

three general approaches depending on the type of background knowledge of the data 

available as described in chapter I. Since the nonparametric anomaly detection 

techniques do not assume any prior knowledge about the distribution of the data, these 

techniques are suitable for resource-constrained WSNs where the data distribution 

may change frequently and device can become moveable (Rajasegarar, et al., 2008; Y. 

Zhang, Meratnia, and Havinga, 2009). In this chapter, we discuss two popular 

anomaly detection techniques called the kernel-based method such as OCSVM, and a 

learning-based method such as SOM. 
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 2.1.1 Self-organizing map (SOM) 

  SOM is an unsupervised neural network model for analyzing and 

visualizing high dimensional data manifold into two-dimensional lattices, grid display 

(F. Wang, Qian, Dai, and Z. Wang, 2010). SOM can extract statistical regularities 

from the input data vectors and encode them in weight vectors using unsupervised 

learning.  

 

      

 (a) (b) 

 Figure 2.1 An illustration of the SOM (a) with rectangular lattice neighbors 

 belonging to the innermost neuron (black dot) corresponding to 1, 2        

 and 3 neighborhoods, (b) SOM updates the BMU with  

 1- Neighborhood. 

 

  The basic SOM consists of a regular grid of map units or neurons as 

shown in Figure 2.1(a) Each neuron, denoted by i (depicted by the black dot), has a 

set of layered neighboring neurons (depicted by the white dots). 

  Neuron i maintains a weight vector im . In order to follow the 

properties of the input data, such vector is updated during the training process. For 
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example, Figure 2.1 (b) shows a SOM represented by a 2-dimensional grid of 44 

neurons. The dimension of each vector is equal to the dimension of the input data. In 

the figure, a vector of input data (marked by ) is used to train the SOM weight 

vectors (the black dots). The winning neuron (marked by BMU) as well as its 1-

neighborhood neurons, adjusts their corresponding vectors to the new values (marked 

by the gray dots). 

  The SOM is trained iteratively. In each training step, one sample 

vector x  which was chosen from a fault-free region of the input dataset 

},,3,2,1:{ nxX   .  

  The distances between the sample data and all of weight vectors in the 

SOM are calculated using some distance measure. Suppose that at iteration t, neuron i 

whose weight vector )(tmi  is the closest to the input vector )(tx . We denote such 

weight vector by )(tmc  and refer to it as the Best-Matching Unit (BMU), which is 

 

 )()(minarg)()( tmtxtmtx iic 


 (2.2) 

where   is the Euclidian distance. 

 

  Suppose neuron i is to be updated, the SOM updating rule for the 

weight vector of neuron i is given by 

 

 )]()()[,()()1( tmtxtihtmtm ictii    (2.3) 

 

where  t is the iteration index.  
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 )(tx  is an input vector. 

 t  is the learning rate. 

 ),( tihc  is the neighborhood function of the algorithm.  

 

The Gaussian neighborhood function may be used, that is 
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where )(tri  is the positions of neurons i. 

 )(trc  is the positions of the BMU c.  

 )(t  is the radius of the neighborhood function at time t.  

 

  Note that ),( tihc  defines the width of the neighborhood. It is necessary 

that lim ( , ) 0ct
h i t


  and lim 0tt




  for the algorithm to converge (Siripanadorn, 

Hattagam, and Teaumroong, 2010). 

  There are many research used SOM for many application. SOM was 

used in conjunction with OCSVM, where OCSVM was applied for anomaly detection 

and SOM for filtering known intrusions and classifying the unknown intrusions in (F. 

Wang, et al., 2010). Their model performed well by obtaining high detection rates and 

low false alarm rates. In 2007, Doshi, King, and Lawrence used SOM to classify 

hyperspectral data that was compressed by Discrete Wavelet Transform (DWT). In 

2009, Min and Dongliang used SOM in real-time intrusion detection and founded that 

SOM obtained detection results better than HMM. In addition, Kiziloren and Germen 
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used SOM to detect anomalies in network traffic once the data had been compressed 

with Principle Component Analysis (PCA).  In 2010, Siripanadorn, et al. used SOM 

to detect anomalies in a centralized anomaly detection operation on sensor data 

measurements that was compressed by DWT.  The authors noted that though SOM 

required limited storage and computing costs and can accurately detect anomalies, the 

processing time will increase with the size of input data.  

  Due to work of Min and Dongliang (2009); Siripanadorn, et al. (2010) 

use SOM to detect anomalies in compressed data and obtain better efficiency, we are 

therefore motivated to compare efficiency between algorithm in their work and study 

alternative data compression techniques in WSN in order to find a suitable and 

efficient combination data compression and anomaly detection techniques. 

 2.1.2 One-class support vector machines (OCSVM) 

  In 2004, Tax and Duin applied the one-class support vector machines 

(OCSVM) from the Support Vector Machine (SVM) for outlier detection. The first 

key concept of the OCSVM is to map the original data vectors from input space into 

higher dimensional space called feature space using the kernel function (Lutsa, et al., 

2010). Therefore, the kernel functions play an important role in both SVM and 

OCSVM. There have been many kernel functions deployed, such as linear, 

polynomial, Gaussian or Radial Basis Function (RBF), and Sigmoid-shaped functions 

(Du, Tan, and Xing, 2010).  

  Later, P. Laskov, C. Schafer and I. Kotenko (2004) have extended this 

approach into a special type of SVM call Quarter-Sphere OCSVM. The key idea of 

the Quarter-Sphere OCSVM algorithm is to encompass the data with a hypersphere 

anchored at the center of mass of the data in feature space. Here, we provide the 
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mathematical formulation of the one-class quarter-sphere SVM (Laskov, Schafer, and 

Kotenko, 2004). 

  The OCSVM requires correct estimation of two parameters. The first is 

the kernel parameter function that maps the data to the feature space, e.g. degree in 

polynomial kernel or sigma ( ) in the Radial Basis Function. The second is the 

regularization parameter ( ), which controls the fraction of data vectors that fall 

inside the hyperplane or hypersphere. 

  Consider an input dataset },,3,2,1:{ nxX    of p variate data 

vector ],...,,,[ 321

pxxxxx   in the input space p  where the number of data vector 

in a dataset X  is n. In principle, X  is mapped to a feature space q  via a nonlinear 

function )( , resulting in a set of the image vectors },,3,2,1:)({ nxX   
  

where a row vector of image vectors is 1 2 3( ) [ ( ), ( ), ( ),..., ( )]qx x x x x         . The 

aim is to fit a hypersphere in a feature space with minimum effective radius R > 0, 

centered at the origin, encompassing a majority of the image vectors X . This can be 

formulated as an optimization problem as follows (Laskov, et al., 2004; Rajasegarar, 

et al., 2008): 
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where   are the slack variables that allow some of the image vectors to lie outside 

the sphere. The parameter )1,0(  is the regularization parameter which controls the 

fraction of image vectors that lie outside the sphere, i.e., the fraction of image vectors 

that can be anomalies. 
2

( )x is the inner product of the image vector ( )x  and can 

be replacing by a linear kernel function ),(  xxk . Therefore, 
2

( , ) ( )k x x x    

can be used to compute the similarity of any two vectors in the feature space using the 

original attribute set. Equation (2.6) is the dual formulation of the primal problem in 

equation (2.5) which can be obtained as follows (Laskov, et al., 2004; Rajasegarar, et 

al., 2008): 
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n


10   

where 0  is a Lagrangian multiplier. 

 

  This dual problem (2.6) is a linear optimization problem. In order to 

solve this problem, the image vectors in the feature space are centered in the space 

using center kernel matrix as follows: 

 

 KKKK nc  1 Knn 11  n1  (2.7) 
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where K is an nn  kernel metric consist of ),(  xxk  where n,...,3,2,1,  . If 

  , we can obtain ( , ) ( , )k x x k x x    . Therefore, we can obtain ( , )k x x   from 

the norms of image vector )(  x . Otherwise, ),(  xxk  can be obtained from the 

kernel function, such as linear, polynomial, RBF kernel. Furthermore, n1  is an nn  

metric with all values equal to n/1 . Once the image vectors are centered, the norms of 

the kernels are no longer equal. Hence, the dual problem (2.7) can now be solved. 

 

 
 

Figure 2.2 Geometry of the quarter-sphere OCSVM 

 

  The }{   can be obtained using widely available linear optimization 

techniques. The image vectors can be classified as shown in figure 2.2. The image 

vectors with 0  will fall inside the sphere. The image vectors with 0  are 

called the support vectors. Support vectors with n /1  are termed outliers, which 

fall outside the sphere. Support vectors with n /10   reside on the surface of the 

sphere, and hence are called the border support vectors. Moreover, the radius of the 

sphere R can be obtained using ),(2  xxkR  , for any border support vector x . 
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  F. Wang, Qian, Dai, and Z. Wang, (2010) used OCSVM for detecting 

anomalous connections. Furthermore, Laskov, et al. (2004), Rajasegarar, et al. (2007; 

2008; 2010) and Y. Zhang, et al. (2009) successfully used OCSVM to detect 

anomalies in WSN, with real world datasets based on fitting normal data to a quarter 

of sphere feature space that can change in dynamic environment. In 2008,  

Rajasegarar, et al. suggested that OCSVM incurred little communication overhead 

and was suitable for sensor networks deployed in homogenous environments where 

the data distribution at each node was identical but unknown, and was suitable for 

online application.  

 

2.2 Data Compression 

Since our research was focused on incorporating data compression techniques 

with anomaly detection techniques, in order to minimize the energy consumption in 

WSNs, we were interested in studying the effects of data compression on anomaly 

detection. Data compression techniques were used to reduce size of data prior to 

transmission and perform feature extraction on the dataset prior to anomaly detection,  

 Data compression techniques, which when integrated with anomaly detection, 

can increase the efficiency of anomaly detection, are principle component analysis 

(PCA) and discrete wavelet transforms (DWT). In addition, the lifting wavelet 

transform (LWT) was shown to outperform DWT (X. L. Li, J. W. Zhang, and W. H. 

FANG, 2009; Manjunath and Ravikumar, 2010). Therefore, in this section the PCA, 

DWT and LWT algorithms will be presented. 
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 2.2.1 Principal Component Analysis (PCA) 

  PCA is a classical statistical technique which has found application in 

fields such as noise rejection, visualization, face recognition, image compression and 

data compression (Smith, Online, 2002). PCA is completely reversible, making it a 

suitable tool for reducing the dimensionality of a dataset, while still protecting as 

much of the dataset as possible (Kiziloren and Germen, 2009; Dwinnell, Online, 

2010). 

 

 

 

Figure 2.3 Principal component analysis (PCA) framework. 

 

  PCA was used to transform attributes of an original dataset into a new 

set of uncorrelated attributes called principal component (PCs) with the same number 

of attributes as the original dataset (Dwinnell, Online, 2010). The step to perform the 

PCA on the dataset is shown in Figure 2.3 and can be described as follows:  

  Step 1, find the mean of input dataset },,3,2,1:{ nxX    for 

each data dimension (KPI). Note that the original dataset X  has n observation index 

components and p KPIs, ( n p matrix). In order to go to next step, the mean of input  
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dataset X which is an n p  matrix is determined. 

  Step 2, subtract the mean from each data dimension, resulting in the 

adjusted data which is a n p  matrix.   

  Step 3, calculate the covariance matrix of the n p  adjusted data 

matrix previously found in step 2. The covariance matrix is a square pp  matrix of 

which 
)!2(2

!
p
p  different covariance values can be calculated (Smith, Online, 2002).  

  Step 4, calculate the eigenvalues and eigenvectors of the covariance 

matrix and order the eigenvectors by the eigenvalues from highest to lowest. The 

eigenvalues are in order of significance which helps in classifying the lesser 

significance components. The pp  covariance matrix gives p eigenvalues and 

pp  eigenvectors.  

  Step 5, select the principal components (PCs). The components of 

lesser significance can be ignored. The smaller the eigenvalues ignored, the less the 

information is lost. Therefore, if we require q KPIs data, we select the eigenvectors of 

the first q eigenvalues to form a feature vector matrix which is a p q  matrix. 

  Step 6, multiply the n p  matrix of adjusted data with the p q  

matrix of feature vectors to obtain the n q  matrix of the final dataset or compressed 

data.  

  In the PCA algorithm, we found that the total elements required for the 

computation of PCA is 23 2 2np p p pq nq     elements. If each element is a 

double type therefore PCA computation uses 28 3 2 2np p p pq nq        bytes of 

storage space. 
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 2.2.2 Discrete wavelet transforms (DWT) 

  Wavelets are mathematical functions that satisfy certain mathematical 

requirements and are used in representing data. Wavelets cut up data into different 

frequency components or resolutions or scale. The data signal can be separated into 

fine-scale information known as high pass (detail) coefficients, and rough-scale 

information known as low pass (approximate) coefficients. The original data signal 

can be represented in terms of wavelet coefficients. Therefore, data operations can be 

performed using just the corresponding wavelet coefficients. 

  The major advantage of DWT is the multi-resolution representation 

and time-frequency localization property for signals. Usually, the sketch of the 

original time series can be recovered using only the low-pass-cut off decomposition 

coefficients; the details can be modeled from the middle-level decomposition 

coefficients; the rest is usually regarded as noises or irregularities. The following 

equations describe the computation of the DWT decomposition process (Siripanadorn, 

et al., 2010): 

 

 1 0( ) ( 2 ) ( )DWT DWT
j j

m
a f h m f a f    (2.8) 

 

 1 0( ) ( 2 ) ( )DWT DWT
j j

m
d f g m f a f    (2.9) 

 

where DWT
ja  is the current rough-scale (or approximation) coefficients. 

 0h    is the wavelet function. 

 0g   is the scaling function. 
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 m   is the time scaling index. 

 f  is the frequency translation index for wavelet level j. 

 DWT
ja 1   is the next level rough-scale (or approximation) coefficients. 

 DWT
jd 1   is the next level fine-scale or detail coefficients. 

 

 

 

Figure 2.4 Discrete wavelet transforms (DWT) framework. 

 

  Figure 2.4 shows the DWT framework. In the first step, the rough-

scale (or approximation) coefficients DWT
ja  which has n observation index 

components and p KPIs ( n p  matrix), are convolved separately with 0h  and 0g , the 

wavelet function and scaling function each of length L, respectively, resulting in two 

[( ) 1]n L p    matrices of coefficients. After that, the resulting coefficient is down-

sampled by 2. This process splits DWT
ja  roughly in half, partitioning it into a set of 

fine-scale or detail coefficients DWT
jd 1  and a coarser set of approximation coefficients 

DWT
ja 1   which has 

2
n  observation index components and p KPIs thereby forming a 

2
n p  matrix (Siripanadorn, et al., 2010). 

 

 

 

 

 

 



31 
 

  In the DWT algorithm, the total number of elements required for DWT 

computation is 2 (1 ) 2( )np L L p    elements. Assuming that each element is a 

double type, therefore DWT uses  8 2 (1 ) 2( )np L L p     bytes of memory space 

  DWT has the capability to encode the finer resolution of the original 

time series with its hierarchical coefficients. Furthermore, DWT can be computed 

efficiently in linear time, which is important while dealing with large datasets. That is 

the DWT can reduce amount of the input data without losing significant features of 

the data by replacing the data with its hierarchical coefficients, i.e., its low pass and 

high pass coefficients. However, DWT calculation involve convolutions, which 

require a large number of arithmetic computation and large storage space than a 

newer mathematical formulation for wavelet transform described in the next section. 

 2.2.3 Lifting wavelet transforms (LWT) 

  In 1998, Sweldens proposed a new mathematical formulation for 

wavelet transform called lifting wavelet transform (LWT). The main feature of LWT 

is to convert the filter implementation of DWT into band matrix multiplication which 

requires fewer computations. A comparison of computational requirements with the 

convolution based DWT was provided in (Achaya and Chakrabarti, 2006). 

  

 

 

Figure 2.5 Lifting Wavelet Transform (LWT) framework. 

 

 

 

 

 

 



32 
 

  Figure 2.5 shows the LWT framework. The LWT algorithm divides the 

input dataset X  or current rough-scale (or approximation) coefficients LWT
ja  into 3 

stages as follows: 

1) Split: the input dataset or current rough-scale (or approximation) 

coefficients LWT
ja  which has n observation index components and p KPIs ( n p  

matrix), was split into an even half _
LWT
even ja  and an odd half _

LWT
odd ja  elements each 

forming a 
2
n p  matrix. 

2) Predict: the odd half _
LWT
odd ja  coefficients are then predicted by a 

linear combination of even half _
LWT
even ja  coefficients, thus producing a prediction error 

or high pass (fine-scale or detail) coefficients 1
LWT
jd   which is a 

2
n p  matrix. 

3) Update: the even half coefficients _
LWT
even ja  were then updated by 

adding them to a linear combination of the prediction error or high pass (fine-scale, 

detail) coefficients 1
LWT
jd  , resulting in a set of low pass (approximation) coefficients 

1
LWT
ja   which is a 

2
n p  matrix. 

  LWT has an in-place computation therefore it does not require extra 

buffer memory (Achaya and Chakrabarti, 2006). The total number of elements 

required for the calculation of LWT is 4np  elements. Assuming that each element is a 

double type, therefore LWT uses 8 4np  bytes of memory space, which is 

significantly fewer than DWT which required  8 2 (1 ) 2( )np L L p     bytes in 

memory where L is the length of filter or the wavelet function and scaling function 

and 1L  . 
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2.3 Summary 

 In this chapter, we presented an overview of anomaly detection and data 

compression scheme in wireless sensor networks. In particular, the self-organizing 

map (SOM) and one-class support vector machines (OCSVM) anomaly detection 

techniques were highlighted. Furthermore, the principal component analysis (PCA), 

discrete wavelet transform (DWT) and lifting wavelet transform (LWT) data 

compression techniques were also described. 

 The self-organizing map (SOM) performed well in terms of anomaly detection. 

However, SOM demanded intensive storage and computing requirements which 

deemed costly for onboard implementation for sensor nodes. Although DWT can 

accurately detect anomalies, the processing time increases with the size of input data.  

 The one-class support vector machines (OCSVM) was used to detect 

anomalous connections and successfully deployed to detect anomalies in WSN online 

with real world datasets. Furthermore, OCSVM incurred little communication 

overhead and was suitable for sensor networks deployed in homogenous 

environments where the data distribution at each node was identical but unknown. 

 The principal component analysis (PCA) is suitable tool for reducing the 

dimensionality of a dataset while maintaining a small number of attributes of the 

dataset. However, PCA has complex computation. 

 Wavelet transform separates data into fine-scale information known as high 

pass (detail) coefficients, and rough-scale information known as low pass (approximate) 

coefficients. In this chapter, we described the discrete wavelet transform (DWT) and 

the lifting wavelet transform (LWT). DWT involves the convolutions while LWT 
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requires matrix multiplication. Consequently, DWT has a larger number of arithmetic 

computations and demands more storage space than LWT. 
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CHAPTER III 

DISCRETE WAVELET TRANSFORM AND ONE-CLASS 

SUPPORT VECTOR MACHINES FOR ANOMALY 

DETECTION IN WIRELESS SENSOR NETWORKS 

 

 Data readings from wireless sensor networks (WSNs) may be abnormal due to 

detection of unusual phenomena, limited battery power, sensor malfunction, or noise, 

from the communication channel. It is thus, important to detect such data anomalies 

available in WSNs to determine a suitable course of action. This section proposes an 

integrated data compression and anomaly detection algorithm in WSNs which can 

detect anomalies accurately by employing half of sensor data measurement, instead of 

using all the sensor data measurement. The contribution of this chapter are centered on 

data compression by using Discrete Wavelet Transform (DWT) then feeding to 

anomaly detection by using One-Class Support Vector Machine (OCSVM). We tested 

our algorithm with several synthetic and real world datasets. After that, we compared 

the efficiency of our algorithm with the previous techniques such the self-organizing 

map (SOM) with DWT. Finally, we found that the proposed algorithm outperformed 

previous techniques in terms of near 100% detection rate (DR) and with marginal 

increase in false positive rates (FPR) in presence of short and noise faults. 
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3.1 Introduction 

 Wireless sensor networks (WSNs) consist of wireless sensor nodes located at 

different places in an area of interest. Data measurements are collected by these sensor 

nodes and forwarded to a central server. WSNs are formed using many sensor nodes 

that have many limitations such as memory, bandwidth, energy consumption, and 

computational capabilities (Goh, Sim, and Ewe, 2007). These limitations make 

communication unreliable which can contribute to occurrences of the anomalies in a 

set of sensor data measurements. 

 An anomaly or outlier in a set of sensor data measurements is defined as an 

observation that appears to be inconsistent with the remainder of the dataset 

(Rajasegarar, Leckie, and Palaniswami, 2008). Anomalies, which occur from unusual 

phenomena in monitor domain, can damage agricultural produce. Some applications, 

such as in a hydroponics farm that requires accurate pH level control of solution plant, 

or in a bio-organic fertilizer plant that requires temperature control in the fertilizer 

compost process, immediate anomaly detection in a set of data measurement is 

essential in order to take immediate course of actions. 

 However, due to hardware limitations WSNs require minimal energy 

consumption. Since radio communication in WSN consumes more energy than 

processing and computing (Rajasegarar et al., 2008). Siripanadorn, Hattagam, and 

Teaumroong (2010a; 2010b) used data compression by Discrete Wavelet Transform 

(DWT) prior to feeding data to an anomaly detection algorithm. Such approach was 

found to increase the efficiency of anomaly detection. Motivated by their findings, we 

extend their study to integrate DWT data compression with an alternative anomaly 

detection technique. 
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 The One-Class Support Vector Machine (OCSVM) is a popular and useful 

anomaly detection technique that does not assume any prior knowledge about the 

distribution of the data and has been found suitable for resource-constrained WSNs 

(Wang, Qian, Dai, and Wang, 2010). OCSVM can update the normal behavioral 

model of the sensed data in an online manner. Laskov, Schafer, and Kotenko (2004); 

Rajasegarar et al. (2007; 2008; 2010); and Zhang, Meratnia, and Havinga (2009) 

successfully used OCSVM to detect anomalies in WSNs, with real world datasets 

based on fitting normal data to a quarter of sphere feature space that can change in 

dynamic environment. However, to the best of our knowledge, the integration between 

OCSVM and DWT has not yet been proposed. Therefore, the underlying aim of this 

chapter is to study the effect and efficiency of DWT data compression on the OCSVM 

anomaly detection technique and assess its suitability for deployment in resource-

constrained conditions in WSNs. 

 

3.2 Anomaly Detection 

 The first step of anomaly detection involves selecting the data parameters to be 

monitored and grouping them together in a pattern vector ,px   n,...,2,1  
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where   is the observation index, p is the number of parameter types or key 

performance indices (KPIs) chosen to monitor the environmental condition. 
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 3.2.1 One-Class Support Vector Machines (OCSVM) 

  In 2004, Tax and Duin have proposed a one-class support vector 

machines (OCSVM) formulation for outlier detection. Then Laskov, Schafer, and 

Kotenko (2004) have extended this approach into a special type of SVM call “Quarter-

Sphere OCSVM”. The key idea of this algorithm is to encompass the data with a 

hypersphere anchored at the center of mass of the data in feature space. Here we 

provide the mathematical formulation of the one-class quarter-sphere SVM. 

  Consider an input dataset { : 1,2,3,..., }X x n    of p variate data 

vector ],...,,,[ 321

pxxxxx   in the input space p  where the number of data vector 

in a dataset X  is n. In principle, X  is mapped to a feature space q  via a nonlinear 

function )( , resulting in a set of the image vectors },,3,2,1:)({ nxX   
  

where a row vector of image vectors is )](),...,(),(),([)( 321
  qxxxxx  . The 

aim is to fit a hypersphere in a feature space with minimum effective radius R  

> 0, centered at the origin, encompassing a majority of the image vectors X . This 

can be formulated as an optimization problem as follows (Laskov et al., 2004): 
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 Subject to: 
  2),( Rxxk  (3.2) 

 

     0  

 

where   are the slack variables that allow some of the image vectors to lie outside  
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the sphere. The parameter )1,0(  is the regularization parameter which controls the 

fraction of image vectors that lie outside the sphere, i.e., the fraction of image vectors 

that can be anomalies. Note that Txxxxk )()(),(     for a Mercer kernel and 

),(  xxk  is a kernel function which was used to compute the similarity of any two 

vectors in the feature space using the original attribute set. Equation 3.3 is the dual 

formulation of the primal problem in equation 3.2 which can be obtained as follows 

(Laskov et al., 2004): 

 

   





n

xxk
1

),(min

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  

 

 Subject to: 



n

1

1

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
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where 0  is a Lagrangian multiplier. n,...,2,1 . This dual problem (3.3) is a 

linear optimization problem. In order to alleviate this problem, the image vectors in 

the feature space are centered in the space using center kernel matrix as follows 

(Laskov et al., 2004): 

 

 KKKK nc  1 Knn 11  n1   (3.4) 

 

where K is an nn  kernel metric consist of ),(  xxk  where n,...,3,2,1,  . If 

  , we can obtain ( , ) ( , )k x x k x x    . Therefore, we can obtain ),(  xxk  from 
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the norms of image vector )(  x . Otherwise, ),(  xxk  can obtain from the kernel 

function, such as linear, polynomial, RBF kernel. Furthermore, n1  is an nn  metric 

with all values equal to n/1 . Once the image vectors are centered, the norms of the 

kernels are no longer equal. Hence the dual problem (2.7) can now be solved. 

 

 

 

Figure 3.1 Geometry of the quarter-sphere OCSVM 

 

  The }{   can be obtained using widely available linear optimization 

techniques. The image vectors can be classified as Figure 2.2. The image vectors with 

0  will fall inside the sphere. The image vectors with 0  are called the 

support vectors. Support vectors with n /1  are termed as outliers, which fall 

outside the sphere. Support vectors with n /10   will reside on the surface of the 

sphere, and hence are called the border support vectors. Moreover, the radius of the 

sphere R can be obtained using ),(2  xxkR  , for any border support vector x  

(Rajasegarar, et al., 2007). 
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 3.2.2 Self-Organizing Map (SOM) 

  Competitive neural models such as the self-organizing map (SOM) are 

able to extract statistical regularities from the input data vectors and encode them in 

the weights without supervision. It maps a high-dimensional data manifold onto a low-

dimensional, usually two-dimensional, grid or display (Siripanadorn, Hattagam, and 

Teaumroong, 2010a; 2010b). 

 

      

 (a) (b) 

 Figure 3.2 An illustration of the SOM  (a) with rectangular lattice neighbors  

 belonging to the innermost neuron (black dot) corresponding to  

 1, 2 and 3 neighborhoods, (b) SOM updates the BMU with  

 1- neighborhood. 

 

  The basic SOM consists of a regular grid of map units or neurons as 

shown in Figure 2 (a). Each neuron, denoted by i (depicted by the black dot), has a set 

of layered neighboring neurons (depicted by the white dots) as shown in Figure 2 (a) 

(Siripanadorn, et al., 2010a; 2010b). 

  Neuron i maintains a weight vector mi. In order to follow the properties 

of the input data, such vector is updated during the training process. For example, 
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Figure 2 (b) shows a SOM represented by a 2-dimensional grid of 44 neurons. The 

dimension of each vector is equal to the dimension of the input data. In the figure, a 

vector of input data (marked by x) is used to train the SOM weight vectors (the black 

dots). The winning neuron (marked by BMU) as well as its 1-neighborhood neurons, 

adjusts their corresponding vectors to the new values (marked by the gray dots). 

  The SOM is trained iteratively. In each training step, one sample vector 

{ : 1, 2,3, , }X x s      from the input dataset },,3,2,1:{ nxX    is chosen 

where the number of sample vector X   is s and the number of data vector in a dataset 

X  is n. The distances between the sample data and all of weight vectors in the SOM 

are calculated using some distance measure. Suppose that at iteration t, neuron i whose 

weight vector ( )im t  is the closest to the input vector ( )x t . We denote such weight 

vector by  ( )cm t  and refer to it as the Best-Matching Unit (BMU), which is 

(Siripanadorn, et al., 2010a; 2010b) 

 

 ( ) ( ) arg min ( ) ( )c i
i

x t m t x t m t 


    (3.5) 

 

Where   is the Euclidian distance. 

 

  Suppose neuron i is to be updated, the SOM updating rule for the 

weight vector of neuron i is given by (Siripanadorn, et al., 2010a; 2010b) 

 

 ( 1) ( ) ( , ) ( ) ( )i i t c im t m t h i t x t m t        (3.6) 
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where t is the iteration index, ( )x t  is an input vector, t  is the learning rate, ( , )ch i t  

is the neighborhood function of the algorithm. The Gaussian neighborhood function 

may be used, that is (Siripanadorn, et al., 2010a; 2010b) 

 

 
2

2

( ) ( )
( , ) exp

2 ( )
c i

c
r t r t

h i t
t

 
  

  
 (3.7) 

 

where ( )ir t  and ( )cr t  are the positions of neurons i and the BMU c respectively, and 

( )t  is the radius of the neighborhood function at time t. Note that ( , )ch i t  defines the 

width of the neighborhood. It is necessary that lim ( , ) 0c
t

h i t


  and lim 0t
t




  for the 

algorithm to converge (Siripanadorn, et al., 2010a; 2010b). 

 

3.3 Data Compression  

 3.3.1 Discrete Wavelet Transform (DWT) 

  DWT is a mathematical transform that separates the data signal into 

fine-scale information known as detail coefficients, and rough-scale information 

known as approximate coefficients. Its major advantage is the multi-resolution 

representation and time-frequency localization property for signals. Usually, the 

sketch of the original time series can be recovered using only the low-pass-cut off 

decomposition coefficients; the details can be modeled from the middle-level 

decomposition coefficients; the rest is usually regarded as noises or irregularities. The 

following equations describe the computation of the DWT decomposition process 

(Siripanadorn, et al., 2010a; 2010b): 
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 1 0( ) ( 2 ) ( )DWT DWT
j j

n
a f h n f a f    (3.8) 

 

 1 0( ) ( 2 ) ( )DWT DWT
j j

n
d f g n f a f    (3.9) 

 

where the rough-scale (or approximation) coefficients DWT
ja are convolved separately 

with 0h  and 0g , the  wavelet function and scaling function, respectively, n is the time 

scaling index, f is the frequency translation index for wavelet level j.  The resulting 

coefficient is down-sampled by 2. This process splits DWT
ja roughly in half, 

partitioning it into a set of fine-scale or detail coefficients 1
DWT
jd   and a coarser set of 

approximation coefficients 1
DWT
ja   (Siripanadorn, et al., 2010a; 2010b). 

  DWT has the capability to encode the finer resolution of the original 

time series with its hierarchical coefficients. Furthermore, DWT can be computed 

efficiently in linear time, which is important while dealing with large datasets. 

 

3.4 Datasets for Experiment 

 We categorized faults into 3 types as shown in Figure 3.3, i.e., noisy faults, 

short faults and constant faults (Sharma, Golubchik, and Govindan, 2010). A noisy 

fault is a fault that occurs when variance of the sensor readings increases and affects a 

number of successive samples. A short fault is a sharp change in the measurement 

value between two successive data points and affects a single sample at a time. A 

constant fault is a fault that occurs when a constant value for a large number of 

successive samples is reported. 
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 We used both synthetic and real world datasets. Three real-world datasets 

were used for the performance evaluation, namely, INTEL (The INTEL Lab, Online, 

2004), SensorScope (The SensorScope Lausanne Urban Canopy Experiment Project: 

LUCE, Online, 2006), and NAMOS (Network Aquatic Microbial Observing System, 

Online, 2006) datasets. 

 
 (a) (b) 

 
(c) 

Figure 3.3 Fault in sensor readings 

(a) Noisy faults, (b) Short faults and (c) Constant faults. 
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 3.4.1 Synthetic Data 

  The synthetic data is generated from a mixture of Gaussian 

distributions with means randomly selected from (0.3, 0.35, 0.45) and with a standard 

deviation of 0.03 using MATLAB. Data was generated for 15 sensor nodes and two 

features of 106 data vectors per sensor node. The combined data comprised 1590 data 

vectors. Then we introduced a number of faults uniformly distributed ranging between 

[0.50,1] to each feature of the data (Rajasegarar, Leckie, Palaniswami, and Bezdek, 

2007). The amount of faults was represented by the notation /a s , where “ a ” is the 

amount of faults per series and “ s ” is the amount of series of faults, resulting in the 

total amount of a s faults. The generated faults added to the input data ranged from 

noisy fault which was 20/4, then 10/8, 5/16, and finally to short faults which was 

1/80. All these types of faults gave a total of 80 faulty data. The whole dataset was 

normalized to the range [0, 1]. The exact positions of the faults injected in the input 

data were predetermined and was later used to detect true and false positive alarms. 

 3.4.2 INTEL dataset 

  54 Mica2Dot motes with temperature, humidity and light sensors were 

deployed in the INTEL Berkeley Research Lab between February 28th and April 5th, 

2004 (The INTEL Lab, Online, 2004). We presented the results on the anomaly 

detection in the temperature readings. We selected the threshold value of 16 and 30 as 

the upper and lower bounds of the normal data regions. These values were obtained 

from the histogram method. By considering the positions of anomalous data, we 

found that this dataset had short faults. 
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 3.4.3 SensorScope Station no.39 dataset (SS39) 

  In this experiment, we presented the results on anomaly detection in 

one KPI of SensorScope which was collected from weather station no.39 (SS39). 

Using visual inspection and the histogram method, the lower and upper threshold 

valued used for anomaly detection were 1.5 and 9. By considering the positions of 

anomalous data, we found that this dataset depicted short faults. 

 3.4.4 SensorScope pdg2008-metro-1 dataset (pdg2008) 

  In the experiment, we used two types (KPIs) of data in the pdg2008-

metro-1 dataset for anomaly detection, i.e., the surface and ambient temperature 

readings. Using visual inspection and the histogram method, the lower and upper 

threshold values used for anomaly detection were -14 and 4 for the surface 

temperature and -12 and 4 for the ambient temperature. By considering the positions 

of anomalous data, we found that this dataset contained noisy faults. 

 3.4.5 NAMOS dataset 

  In this dataset, 9 buoys with temperature and chlorophyll 

concentration sensors (fluorimeters) were deployed in Lake Fulmor, for over 24 hours 

in August, 2006 (Network Aquatic Microbial Observing System, Online, 2006). We 

analyzed the measurements from chlorophyll sensors on buoys no. 103 for 104 

samples. In the experiment, the histogram method was used to identify anomalies in 

the NAMOS dataset from which we selected the threshold of 0 and 500 as lower and 

upper bounds of the normal region, respectively. By considering the positions of 

anomalous data, we found that constant faults were present in this dataset. 
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3.5 Experiment Results 

 This section consists of two parts. First, we evaluated the performance of the 

proposed integration of DWT and OCSVM algorithm by detecting anomalies in series 

of synthetic data and real world datasets. We then proceed to evaluate the 

performance of a previous technique using DWT and SOM (Siripanadorn, et al., 

2010a; 2010b) in comparison to our algorithm. 

 3.5.1 Evaluation of DWT with OCSVM 

  In this chapter, we use the linear kernel as the distance based kernel. 

The linear kernel function for data vectors x  and x  is given by 

( , ) ( ) ( )lineark x x x x      . 

  In each simulation, we recorded the false positives, which occurred 

when a normal measurement was identified as anomalous by the detector, and the true 

positives, which occurred when an actual anomalous measurement was correctly 

identified by the detector. The false positive rate (FPR) was computed as the 

percentage ratio between the false positives and the actual normal measurements, and 

the detection rate (DR) was computed as the percentage ratio between the true 

positives and the actual normal measurements. 

  In our proposed integration of DWT with OCSVM (OCSVM+DWT) 

algorithm, we improved the performance of the OCSVM part of the algorithm by 

replacing the original set of input data with low pass or high pass DWT coefficients 

by using Haar mother wavelet. The low (high) pass DWT coefficients obtained from 

DWT were referred as low (high) pass data with just half of the original data size, 

whereas the original data were referred as uncompressed data. 
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Figure 3.4 ROC for synthetic data inject 1/80 fault 

 

 

 

Figure 3.5 ROC for synthetic data inject 5/16 fault 
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Figure 3.6 ROC for synthetic data inject 10/8 fault 

 

 

 

Figure 3.7 ROC for synthetic data inject 20/4 fault 
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Figure 3.8 ROC for INTEL dataset 

 

 

 

Figure 3.9 ROC for SS39 dataset 
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Figure 3.10 ROC for pdg2008-metro-1 dataset 

 

 

 

Figure 3.11 ROC for NAMOS dataset. 
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  Figure 3.4 – 3.11 show the receiver operating characteristics (ROC) 

curve obtained for the OCSVM+DWT schemes for various datasets by varying the 

 parameters from 0.02 to 1 in increments of 0.02. The results showed that   

significantly affected DR and FPR in OCSVM. The value   is the fraction of 

detected outliers (Y. Zhang et al., 2009), and therefore is directly proportional to the 

radius R (see Figure 3.1). Hence, the greater   value, the more the outliers detected 

(thus the higher DR and FPR).  

  Figure 3.4 shows the synthetic dataset injected short faults results. 

Note that all algorithms performed equally well. Figures 3.5, 3.6 and 3.7 show results 

for the synthetic dataset injected with noise faults. Note that the OCSVM+DWT (LP) 

performed equally well in terms of DR as the OCSVM alone with uncompressed data. 

However, the OCSVM+DWT with high pass data gave the worst performance. This 

was because HP coefficients reflect the rate of changes between two successive 

samples. Therefore, HP coefficients were more suitable for short faults whereas LP 

coefficients were more suitable for slower changing faults like noise faults. 

  Figures 3.8 – 3.11 show the real world dataset results. Figures 3.8 and 

3.9 show that the INTEL dataset and the SS39 datasets respectively, gave 100% DR 

for all algorithms. This was because the INTEL and the SS39 dataset contain short 

faults which with high amplitude which can be easily detected. Figures 3.10 and 3.11 

illustrate the results for the pdg2008-metro-1 and the NAMOS datasets respectively. 

Note that OCSVM+DWT (LP) obtained higher DR and lower FPR, thereby 

outperforming the OCSVM alone with uncompressed data and OCSVM+DWT (HP). 

This was because the pdg2008-metro-1 dataset contained noise faults and the 

NAMOS  dataset  contained  a  constant  fault.  Both  types  of  faults  were  trend-like  
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changes and therefore were more significant when captured with LP coefficients than 

HP coefficients. Therefore, OCSVM+DWT (HP) data performed worst.  

  Note that all synthetic data and real world dataset results showed 

OCSVM+DWT (LP) performed well in terms of %DR. This was because the LP 

coefficients gave a higher amplitude of faults than the original dataset making it easier 

to detect anomaly (see Appendix I). 

 3.5.2 Comparison with previous work 

  In this section, the best result of the proposed OCSVM+DWT 

algorithm from each dataset was selected to be compared with the results from the 

OCSVM alone, SOM alone and the SOM+DWT algorithms in (Siripanadorn, et al., 

2010a; 2010b) under the same datasets described previously. For each dataset, we 

selected the values of   to use in our proposed algorithm which gave the best 

performance (the highest DR, the lowest FPR) as follows:  

 0.06   for the all synthetic datasets,  

 0.02   for the INTEL dataset and the SS39 dataset,  

 0.14   for the pdg2008-metro-1 dataset,  

 0.22   for the NAMOS dataset.  

  The SOM alone and SOM+DWT algorithms were trained with 50 

iterations to prevent under-trained conditions using a 50 by 50 neuron grid. The 

number of samples used to train the SOM alone and the SOM+DWT algorithms were 

selected from a fault-free region using 2000 samples for INTEL and pdg2008-metro-1 

datasets, 3000 samples for NAMOS datasets and 3200 samples for SS39 datasets. 

  Figure 3.12 shows that using OCSVM alone and the OCSVM+DWT 

algorithms with synthetic data injected by 1/80 short faults obtained 100% DR, 
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though OCSVM+DWT obtained marginal FPR of 2.12% and the OCSVM alone 

0.99%. The SOM alone and SOM+DWT results were more conservative attaining less 

DR and no FPR. As the faults became more bursty (more noise faults) in Figures 3.13, 

3.14, and 3.15, 100% DR was obtained by OCSVM alone and OCSVM+DWT (LP) 

whereas OCSVM+DWT (HP) obtained 75-85% DR. However, this was at the 

expense of an increase in FPR of 0.13-0.99%, 6.36-7.02%, and 7.68-8.21% 

respectively for OCSVM alone, OCSVM+DWT (LP) and OCSVM+DWT (HP). Note 

that SOM alone with uncompressed data gave 86-90% DR with no FPR. SOM+DWT 

(LP) gave 76.4-83.7% DR with no FPR but using just half of the input data.  

  As for the real world datasets, the INTEL and SS39 datasets contained 

only short faults and were therefore easy to detect. Results in Figures 3.16 and 3.17 

agree with Figure 3.12 with all OCSVM based algorithms obtaining 100% DR but 

FPR up to 1.9%. On the other hand, the SOM based algorithms obtained 100% DR 

but with FPR slightly lower of up to 1.09%. The improved performance for all 

algorithms was possibly due to the fact that the short faults in the INTEL and SS39 

datasets were detected more easily than the synthetic dataset.  

  Figure 3.18 depicts results for the pdg2008 dataset which contained 

noise faults. Note that with the presence of noise faults, FPR for OCSVM based 

algorithms was greater than the SOM based algorithms which agreed with results in 

the synthetic dataset in Figures 3.13, 3.14, and 3.15. However, OCSVM+DWT (LP) 

gave the best results obtaining 97.04% DR with 4.81% FPR, thereby outperforming 

OCSVM alone.  

  Figure 3.19 illustrates the results for the NAMOS dataset which 

comprised of constant faults. Such faults were difficult to detect since they appear as 
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normal data. Even with SOM alone and SOM+DWT (LP) can fail to detect such 

faults if under-trained (Siripanadorn, et al., 2010a; 2010b). Note that SOM alone, 

SOM+DWT (LP) near 100% DR while OCSVM+DWT (LP) attained 100%, though 

the FPR was 12.77% for OCSVM+DWT (LP) but negligible FPR for SOM alone, 

SOM+DWT (LP). These results suggest that with data compression and using just 

half of the data input, OCSVM+DWT (LP) algorithm is suited for short and noise 

faults whereas SOM+DWT (LP) is suited for short and constant faults. 

 

 

 

 

 

Figure 3.12 Detection Rate with different algorithm for 1/80 fault synthetic data. 
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Figure 3.13 Detection Rate with different algorithm for 5/16 fault synthetic data. 

 

 

 

Figure 3.14 Detection Rate with different algorithm for 10/8 fault synthetic data. 
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Figure 3.15 Detection Rate with different algorithm for 20/4 fault synthetic data. 

 

 

 

Figure 3.16 Detection Rate with different algorithm for the INTEL dataset. 

 

 

 

 

 

 



59 
 

 

 

 

 

Figure 3.17 Detection Rate with different algorithm for the SS39 dataset. 

 

 

 

Figure 3.18 Detection Rate with different algorithm for the pdg2008 dataset. 
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Figure 3.19 Detection Rate with different algorithm for the NAMOS dataset. 

 

3.6 Conclusion 

 We proposed the integration of OCSVM and DWT for anomaly detection in 

WSNs. We numerically evaluated the algorithm using MATLAB and tested it with 

both synthetic data and real world datasets. For synthetic data, our proposed algorithm 

with LP coefficients achieved 100% DR with marginal increase in FPR when 

compared with all other algorithms. For real world datasets, our proposed algorithm 

performed best by achieving nearly 100% DR although with slightly higher FPR for 

datasets containing short and noise faults. These results suggest that with data 

compression and using just half of the data input, OCSVM+DWT (LP) algorithm is 
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suited for short and noise faults whereas SOM+DWT (LP) is suited for short and 

constant faults.  

 Note that, the anomaly detection using SOM and OCSVM with LP coefficient 

of DWT gave better performance than SOM and OCSVM alone because the LP 

coefficients gave the higher amplitude of faults than the original dataset making it 

easier to detect anomaly (see Appendix I). Furthermore, OCSVM was more robust to 

dataset normalization effects (see Appendix III) which were a motivation for its use in 

the next chapter. 
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CHAPTER IV 

LIFTING WAVELET TRANSFORM AND ONE-CLASS 

SUPPORT VECTOR MACHINES FOR ANOMALY 

DETECTION IN WIRELESS SENSOR NETWORKS 

 

 This chapter proposes an integrated data compression and anomaly detection 

algorithm in WSNs. The contribution of this chapter centers on data compression by 

using the lifting wavelet transform (LWT) then feeding it to anomaly detection called 

the one-class support vector machine (OCSVM). We tested our algorithm with several 

synthetic and real world datasets and compared it with other existing data 

compression schemes such as principal component analysis (PCA) and discrete 

wavelet transform (DWT).  

 

4.1 Introduction 

 Our previous work in chapter III showed that the integration of anomaly 

detection by the one-class support vector machine (OCSVM) and data compression by 

DWT outperformed existing approaches. In addition, Kiziloren and Germen (2009) 

proposed integration between anomaly detection and data compression using the 

principal component analysis (PCA), which is a suitable tool for reducing the 

dimension of the datasets prior to feeding data to an anomaly detection algorithm. 

These approaches can increase the efficiency of anomaly detection. Motivated by their 

findings, we extend our work in chapter III to integrate OCSVM anomaly detection

 

 

 

 

 

 



63 
 

with alternative data compression. 

 The Principal Component Analysis (PCA) reduces the dimension of the 

datasets by reducing the variates or number of parameter types measured. However, it 

is possible that certain features of the dataset may be lost as a result because PCA can 

ignore some components which have lesser significance (Smith, 2002). This is likely 

to decrease the anomaly detection efficiency. 

 On the other hand, the Discrete Wavelet Transform (DWT) has the capability 

to encode the finer resolution of the original time series with its hierarchical 

coefficients. DWT reduces only the size of the data vector, it does not reduce the 

parameter variates. Furthermore, DWT can be computed efficiently in linear time, 

which is important while dealing with large datasets (Siripanadorn, et al., 2010). 

However, (Acharya and Chakrabarti, 2006; Manjunath and Ravikumar, 2010) 

proposed that DWT which has been implemented by convolutions, require a larger 

storage, a larger number of arithmetic computation and higher computational time than 

a newer wavelet transform which was proposed in 1998 by Sweldens, called the lifting 

wavelet transforms (LWT). To the best of our knowledge, the integration between 

OCSVM and LWT has not yet been proposed. Therefore, the underlying aim of this 

chapter is to study the effect and efficiency of data compression by using LWT on the 

OCSVM anomaly detection technique, we then assess its suitability for deployment in 

resource-constrained conditions in WSNs in comparison with other existing 

combinations of data compression and anomaly detection schemes.  
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4.2 Anomaly Detection 

 The first step of anomaly detection involves selecting the data parameters to be 

monitored and grouping them together in a pattern vector x     
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where n,...,3,2,1  is the observation index,  

 n  is the number of data vectors in the dataset,  

 p  is the number of parameter types or key performance indices (KPIs) chosen 

to monitor the environmental condition. 

 

 

 

 Figure 4.1 Geometry of the quarter-sphere OCSVM 

  (Rajasegarar, Leckie, Bezdek, and Palaniswami, 2007) 
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 4.2.1 One-Class Support Vector Machines (OCSVM) 

  In 2004, Tax and Duin have proposed a one-class support vector 

machines (OCSVM) formulation for outlier detection. Later, Laskov, Schafer, and 

Kotenko extended the OCSVM to one-side non-negative data which is to require the 

center of the fitted sphere be fixed at the origin called Quarter-Sphere OCSVM. The 

geometry of this approach is shown in Figure 4.1 

  Consider an input dataset { : 1,2,3,..., }X x n    of p variates data 

vector 1 2, ,..., px x x x        in the input space p  where the number of data vectors in 

a dataset X is n. In principle, X is mapped to a feature space q  via a nonlinear 

function    , resulting in a set of the image vectors  ( ) : 1,2,3,...,X x n
     

where  1 2 3( ) ( ), ( ), ( ),..., ( )qx x x x x          is a row vector of image vector. The 

normal data can be concisely described by a quarter-sphere in Figure 4.1. The aim is to 

fit a hypersphere in a feature space with minimum effective radius 0R   centered at 

the origin, encompassing a majority of the image vectors X . The presence of 

anomalies in the data can be treated by introducing slack variables  . 

Mathematically, the problem of fitting the quarter-sphere over the data is described as 

follows (Laskov, Schafer, and Kotenko, 2004): 
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     0  

 

where   are the slack variables that allow some of the image vectors to lie outside the 

sphere. The parameter (0,1)   is the regularization parameter which controls the 

fraction of image vectors that lie outside the sphere, i.e., the fraction of image vectors 

that can be treated as anomalies.  

  Note that ( ) ( ) ( ) ( , )Tx x x k x x          for a Mercer kernel and 

( , )k x x   is a kernel function which was used to compute the similarity of any two 

vectors in the feature space using the original attribute set. The primal problem (4.2) 

cannot be directly solved (Laskov, et al., 2004). Therefore, the solution is sought to the 

dual problem as follows (Laskov, et al., 2004; Rajasegarar, Leckie, Bezdek, and 

Palaniswami, 2007): 
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  This dual problem in (4.3) is a linear optimization problem, therefore 

the Lagrangian multiplier    can be obtained by using widely available linear 

optimization techniques. The parameter was used to classified the image vectors 
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 ( )x  as follows (See Figure 1). The image vectors with 0   will fall inside the 

sphere. The image vectors with 10
n 

   will reside on the surface of the sphere, 

and hence are called the border support vectors. Support vectors with 1
n 

  are 

termed as outliers, which fall outside the sphere. Moreover, the radius of the sphere R 

can be obtained using 
2 ( , )R k x x  , for any border support vector x  (Rajasegarar, 

et al., 2007). 

  Furthermore, the solution to the dual problem in (4.3) is affected by the 

norms of the non-linear mapping of data vectors using kernels ),(  xxk . This created 

the problem for the application of this solution with the distance-based kernel, as the 

norms of the kernel are equal for all data vectors and no meaningful solution to the 

dual problem. In order to solve this problem, the image vectors in the feature space are 

centered in the space by subtracting the mean from all image vectors (Laskov, et al., 

2004; Rajasegarar, et al., 2007): 
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  The dot product of the centered image vector )(~  x  can be easily 

computed by using a center kernel matrix cK  as follows (Laskov, et al., 2004; 

Rajasegarar, et al., 2007): 
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where 1n  is an n n  metric with all values equal to 
1
n

, K is an n n  kernel metric 

consisting of ( , )k x x   where , 1, 2,3,..., n   . If   , we have that ( , )k x x   =  

( , )k x x   and thus obtain the norm of image vector ( )x . Otherwise,  ( , )k x x   can 

be obtained from a kernel function, such as linear, polynomial or RBF kernel. Once 

the image vectors are centered, the norms of the kernels are no longer equal. Hence the 

dual problem (4.3) can now be easily solved (Laskov, et al., 2004; Rajasegarar, et al., 

2007). 

 

4.3 Data Compression 

 4.3.1 Principal Component Analysis (PCA) 

  The principal component analysis (PCA) was proposed as a tool for 

reducing the dimensionality of a dataset (Kiziloren and Germen, 2009). PCA is a 

classical statistical method which is completely reversible (the original data may be 

recovered exactly from the PCs), making it a versatile tool, useful for data reduction, 

noise rejection, visualization and data compression. (Dwinnell, Online, 2010). 

However, PCA allows ignoring some components of data which has lesser 

significance by considering the eigenvalues of the covariance matrix of the data. If 

small eigenvalues are ignored, less information is lost (Smith, Online, 2002). 

The PCA framework in Figure 4.2 can be described as follows. First, we find the mean 

of the input dataset X and subtract it from X, resulting in the adjusted data. Then, we 

find the covariance matrix of the adjusted data, in order to find its eigenvectors and 

eigenvalues, respectively. After that, we selected the maximum eigenvalues to obtain 

the first PCs. The next orders of PCs are selected from the next highest eigenvalues. 
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Then, the transposed PCs (called feature vector) are multiplied with the adjusted data. 

At the end, we obtain the compressed data with the same number of data but fewer 

KPIs than the original dataset X. 

  

 

 

Figure 4.2 Principal Component Analysis (PCA) frameworks. 

 

 4.3.2 Discrete Wavelet Transform (DWT) 

  DWT is a mathematical transform that separates the data signal into 

fine-scale information known as detail coefficients, and rough-scale information 

known as approximate coefficients by using the convolution (filtering) based 

approach. Its major advantage is the multi-resolution representation and time-

frequency localization property for signals (Siripanadorn, et al., 2010). Usually, the 

sketch of the original time series can be recovered using only the low-pass cut-off 

decomposition coefficients; the details can be modeled from the middle-level 

decomposition coefficients; the rest is usually regarded as noises or irregularities. The 

following equations describe the computation of the DWT decomposition process 

(Siripanadorn, et al., 2010): 
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 )()2()( 01 fafnhfa DWT
j

n

DWT
j     (4.6) 

 

 )()2()( 01 fafngfd DWT
j

n

DWT
j     (4.7) 

 

where the rough-scale (or approximation) coefficients DWT
ja  are convolved separately 

with the wavelet function 0h and the scaling function 0g , n  is the time scaling index, 

f  is the frequency translation index for wavelet level j .  The resulting coefficient is 

down-sampled by 2. This process splits DWT
ja  roughly in half, partitioning it into a set 

of fine-scale or detail coefficients- DWT
jd 1 and a coarser set of approximation 

coefficients- DWT
ja 1 .  

  For data compression, DWT decreases the number of data by half while 

maintaining the same number of KPIs. DWT has the capability to encode the finer 

resolution of the original time series with its hierarchical coefficients. Furthermore, 

DWT can be computed efficiently in linear time, which is important while dealing 

with large datasets. However, DWT which has been implemented by convolutions 

requires a larger number of arithmetic computation and larger storage than the lifting 

wavelet transforms (LWT) (Achaya and Chakrabarti, 2006). 

 4.3.3 Lifting Wavelet Transform (LWT) 

  The Lifting Wavelet Transform (LWT) was proposed as the second 

generation wavelets (Sweldens, 1998). LWT inherits the multi-resolution 

characteristics of the first generation wavelets and its main feature is to convert the 

convolution implementation of DWT into band matrix multiplication by in-place 

computation. Therefore, LWT requires fewer computations and memory space than 
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DWT (Sweldens, 1998; Achaya and Chakrabarti, 2006; X. L. Li, J. W. Zhang, and W. 

H. Fang, 2009). 

  As shown in Figure 4.3, the LWT algorithm divides the input dataset 

{ : 1,2,3,..., }X x n    or current rough-scale (or approximation) coefficients LWT
ja  

into 3 stages as follows: 

1) Split: the input dataset or current rough-scale (or approximation) 

coefficients LWT
ja  is split into the even half _

LWT
even ja  and the odd half  _

LWT
odd ja . 

2) Predict: the odd half is predicted by subtracting the linear 

combination of even half from the odd half resulting in the prediction error or high 

pass coefficients or detail coefficients DWT
jd 1 . 

3) Update: the even half is updated by adding them to a linear 

combination of the prediction error resulting in low pass or approximation coefficients 

DWT
ja 1 . 

 

 

 

Figure 4.3 Lifting Wavelet Transform (LWT) frameworks. 
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  Note that LWT uses linear combination to find the wavelet coefficients 

while DWT uses the convolution, indicating that LWT is less computationally 

intensive than DWT (Manjunath and Ravikumar, 2010).  

 

4.4 Experiment Results 

 In this section, we used MATLAB to numerically evaluate the performance of 

four data compression algorithms namely, our proposed OCSVM+LWT, and 

compared it with OCSVM alone (uncompressed data), OCSVM+PCA (Kiziloren and 

Germen, 2009) and OCSVM+DWT (Takianngam, et al., 2011), by detecting 

anomalies in series of synthetic data and real world datasets.  

 We used the linear kernel as the distance based kernel. The linear kernel 

function for data vectors x  and x  is given by ( , ) ( ) ( )lineark x x x x        

 In each simulation, we varied the   parameter in (4.3) from 0.02 to 1 in 

increments of 0.02. After that, we recorded the false positives, which occurred when a 

normal measurement was identified as anomalous by the detector, and the true 

positives, which occurred when an actual anomalous measurement was correctly 

identified by the detector. The false positive rate (FPR) was computed as the 

percentage ratio between the false positives and the actual normal measurements, and 

the detection rate (DR) was computed as the percentage ratio between the true 

positives and the actual normal measurements. Finally, we showed the results in the 

Receiver Operating Characteristics (ROC) curve.  

 4.4.1 Datasets for Experiment 

  We categorized faults into 3 types as shown in Figure 4.4, i.e., noise, 

short and constant faults (Sharma, Golubchik, and Govindan, 2010). A noise fault is a 
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fault that occurs when the variance of the sensor readings increases and affects a 

number of successive samples. A short fault is a sharp change in the measurement 

value between two successive data points and affects a single sample at a time. A 

constant fault is a fault that occurs when a constant value for a large number of 

successive samples is reported.  

  We studied both synthetic and real world datasets. Three real-world 

datasets were used for the performance evaluation, namely, INTEL (The Intel Lab, 

Online, 2004), SensorScope pdg2008-metro-1 (The SensorScope Lausanne Urban 

Canopy Experiment Project (LUCE), Online, 2006), and NAMOS (Network Aquatic 

Microbial Observing System, Online, 2006) datasets. 

 

 

 (a) (b) (c) 

Figure 4.4 Faults in sensor readings 

(a) noise faults, (b) short faults and (c) constant faults. 

 

  4.4.1.1 Synthetic Data 

   The synthetic data in Figure 4.5 – 4.10 were generated from a 

mixture of Gaussian distributions with means randomly selected from (0.3, 0.35, 0.45) 

and with a standard deviation of 0.03 using MATLAB. Data were generated for 15 

sensor nodes and two KPIs of 106 data vectors per sensor node. The combined data 
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comprised 1590 data vectors. Then we introduced a number of faults uniformly 

distributed ranging between [0.50, 1] to each KPI of the data. The amount of faults 

was represented by the notation a/s, where “a” is the amount of faults per series and 

“s” is the amount of series of faults, resulting in the total amount of as faults. The 

generated faults added to the input data ranged from constant fault (80/1), then noisy 

faults (20/4), and finally short faults (1/80). All these types of faults gave a total of 80 

faulty data. The whole dataset was normalized to the range [0, 1]. The exact positions 

of the faults injected in the input data were predetermined and later used to detect true 

and false positive alarms. 

  

 

 

Figure 4.5 2KPI Synthetic data with 1/80 faults. 
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Figure 4.6 3KPI Synthetic data with 1/80 faults. 

 

 

 

Figure 4.7 2KPI Synthetic data with 20/4 faults. 
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Figure 4.8 3KPI Synthetic data with 20/4 faults. 

 

 

 

Figure 4.9 2KPI Synthetic data with 80/1 fault. 
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Figure 4.10 3KPI Synthetic data with 80/1 fault. 

 

  4.4.1.2 Real world datasets 

   For the real world datasets, we did not have ground truth 

information about the actual faults in each dataset. Therefore, we used the histogram 

method to separate the normal data from abnormal data. 

   1) INTEL dataset: 54 Mica2Dot motes with temperature, 

humidity light and voltage were deployed in the Intel Berkeley Research Lab between 

February 28th and April 5th, 2004 (The Intel Lab, Online, 2004). In the experiment, 

we selected 20,000 samples from temperature, humidity and voltage readings. In the 

first part of experiment, we presented the results on the anomaly detection in the 

temperature readings. We selected the threshold value of 16 and 30 as the upper and 

lower bounds of the normal data regions. In the second part, we presented the 

humidity and voltage readings. We selected the threshold value of 24 and 47 as the 

 

 

 

 

 

 



78 
 

upper and lower bounds for humidity readings, and 2.5 and 2.8 for voltage readings. 

Using the histogram method, we found that this dataset had short faults. 

 

 

 

Figure 4.11 INTEL dataset (temperature reading). 

 

 

 

Figure 4.12 INTEL dataset (humidity reading). 
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Figure 4.13 INTEL dataset (voltage reading). 

 

   2) NAMOS dataset: In this dataset, 9 buoys with temperature 

and chlorophyll concentration sensors (fluorimeters) were deployed in Lake Fulmor, 

for over 24 hours in August, 2006 (Network Aquatic Microbial Observing System, 

Online, 2006). We analyzed 10,000 sample measurements from fluorimeters on buoys 

no. 103. In the first part of experiment, we used the fluorimeter readings and selected 

the threshold of 0 and 500 as lower and upper bounds of the normal region, 

respectively. By considering the positions of anomalous data, we found that constant 

faults were present in this dataset. In the second part, we selected the readings from 2 

temperature sensors and considered them as normal because the histogram method 

cannot clearly separate normal and anomalous region. 
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Figure 4.14 NAMOS dataset (fluorimeter reading). 

 

 

 

Figure 4.15 NAMOS dataset (temperature reading from sensor 1). 
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Figure 4.16 NAMOS dataset (temperature reading from sensor 2). 

 

   3) SensorScope pdg2008-metro-1 (pdg2008) dataset: In the 

first part of experiment, we used two types (KPIs) of data in the pdg2008 dataset for 

anomaly detection, i.e., the surface and ambient temperature readings. The lower and 

upper threshold values used for anomaly detection were -12 and 4 for the ambient 

temperature and -14 and 4 for the surface temperature. By considering the positions of 

anomalous data, we found that this dataset contained noise faults. In the second part, 

we included the solar radiation readings as normal data, since the histogram method 

cannot clearly separate normal and anomalous region. 

 4.4.2 Performance evaluation 

  This research proposed the integration between OCSVM anomaly 

detection and data compression using LWT, and then compared it with the OCSVM + 

DWT  and  OCSVM  +  PCA.  For  the  OCSVM  +  LWT  and  OCSVM  +  DWT.  We 
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Figure 4.17 pdg2008 dataset (ambient temperature reading). 

 

 

 

Figure 4.18 pdg2008 dataset (surface temperature reading). 
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Figure 4.19 pdg2008 dataset (solar radiation reading). 

 

 4.4.2 Performance evaluation 

  This research proposed the integration between OCSVM anomaly 

detection and data compression using LWT, and then compared it with the OCSVM + 

DWT and OCSVM + PCA. For the OCSVM + LWT and OCSVM + DWT. We 

replaced the original set of input data with low pass or high pass LWT coefficients by 

using Haar mother wavelet. The low (high) pass wavelet coefficients obtained were 

referred to as “low (high) pass data” with the same number of KPIs and with a length 

(i.e., observation length) of just half of the original data vector. The original data were 

referred to as “uncompressed data”.  

  For the OCSVM with PCA algorithm, we replaced the original set of 

input data with the PCA 1KPI (2KPI, 3KPI) dataset which had 1 KPI (2 KPIs, 3 KPIs) 

with the same observation length as the original data vector. We referred them 

respectfully as PCA 1KPI (2KPI, 3KPI) data. 
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  Figure 4.20 shows the 2KPI synthetic dataset injected with short faults 

results. Figure 4.21 shows the results for the 1KPI INTEL dataset containing short 

faults, which agreed with results for synthetic data injected with 1/80 short faults, 

where all algorithms performed equally well. This was because short faults had high 

amplitude which can be easily detected.  

  Figure 4.22 is the result for the synthetic dataset injected with noise 

faults. Results showed that all algorithms performed equally well except for 

OCSVM+DWT (HP) and OCSVM+LWT (HP) which gave the worst performance.  

  Figure 4.23 shows results for the pdg2008 dataset. Since faults in the 

pdg2008 dataset had lower amplitude which were more difficult to detect, OCSVM 

alone and OCSVM+PCA did not perform as well as OCSVM+DWT (LP) and 

OCSVM+LWT (LP). On the other hand, OCSVM+DWT (HP) and OCSVM+LWT 

(HP) gave the worst performance which agreed with synthetic data results. This was 

because HP coefficients reflect the rate of changes between two successive samples. 

Therefore, HP coefficients were more suitable for short faults whereas LP coefficients 

were more suitable for slower changing faults like noise faults.  

  Figures 4.24 and 4.25 show the synthetic dataset injected with constant 

faults and the NAMOS dataset results, respectively. The results for NAMOS dataset 

agreed with the results for synthetic dataset injected with constant faults. The 

OCSVM+LWT [LP] and OCSVM+DWT [LP] performed better than the OCSVM 

alone and OCSVM+PCA. The OCSVM+LWT [HP] and OCSVM+DWT [HP] gave 

the worst performance. Note that the results for constant faults were similar to the 

results for noise faults. This was because both types of faults were trend-like changes 
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and therefore their features were more significant when captured with LP coefficients 

than HP coefficients. 

 

 

 

 

 

Figure 4.20 ROC curve for 2KPI Synthetic data injected with 1/80 faults. 

 

 

 

Figure 4.21 ROC curve for 1KPI INTEL dataset (containing short faults). 
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Figure 4.22 ROC curve for 2KPI Synthetic data injected with 20/4 faults. 

 

 

 

Figure 4.23 ROC curve for 2KPI pdg2008 dataset (containing noise faults). 
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Figure 4.24 ROC curve for 2KPI Synthetic data injected with 80/1 fault. 

 

 

 

Figure 4.25 ROC curve for 1KPI NAMOS dataset (containing constant fault). 
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 4.4.3 Extending to 3 KPI datasets 

  Figure 4.26 shows the 3KPI synthetic data injected with short faults 

results which all algorithms perform equally well. This is because the short fault has 

high amplitude which can be easily detected, except for the OCSVM+PCA [1 KPI] 

which gave the worst performance. This is because the synthetic data was generated 

by different injected fault positions, the appearance of data in each KPI were different 

(see Figure 4.6). Compression to PCA with just 1KPI ignored some components of the 

data, and the appearance of data was thus distorted. Therefore, the positions of faults 

were distorted making it difficult to detect. 

  Figure 4.27 shows the 3KPI INTEL dataset which contained short 

faults in 3KPIs results. The results showed that all algorithms performed equally well. 

This is because HP coefficients reflect the rate of changes between two successive 

samples and the short fault has high amplitude. Therefore, the short fault can be easily 

detected. Furthermore, each KPI of INTEL dataset contained faults in the same 

position (see Figure 4.11-4.13). Compression to PCA with 1KPI ignored some 

components of the data thereby distorting its appearance. However, the positions of 

the faults still clearly appear and can be easily detected although compressed to PCA 

1KPI. 

  Figure 4.28 shows the 3KPI synthetic data injected with noise faults 

results. The results shows that the OCSVM+LWT [LP] and OCSVM+DWT [LP] 

performed equally well as the OCSVM alone, OCSVM+PCA [2KPI and 3KPI]. The 

OCSVM+LWT [HP] and OCSVM+DWT [HP] gave worse performance than these 

algorithm. This is because HP coefficients reflect the rate of changes between two 

successive samples. Therefore, HP coefficients were more suitable for short faults 
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whereas LP coefficients were more suitable for slower changing faults like noise 

faults. In addition, The OCSVM+PCA [1 KPI] gave the worst performance of all. 

Since, the synthetic data was generated by different injected fault positions, the 

appearance of data in each KPI are different (see Figure 4.8). Compression to PCA 

[1KPI] distorted the data. Therefore, the positions of faults were distorted making it 

difficult to detect.   

  Figure 4.29 shows the results for the 3 KPI pdg2008 dataset which 

contained noise faults. The OCSVM+LWT [LP] and OCSVM+DWT [LP] performed 

better than the OCSVM alone and OCSVM+PCA. The OCSVM+LWT [HP] and 

OCSVM+DWT [HP] gave the worst performance while the synthetic data result in 

Figure 4.28 show that the OCSVM+PCA [1KPI] gave the worst performance. This 

was because HP coefficients reflect the rate of changes between two successive 

samples. Moreover, the pdg2008 dataset (see Figure 4.17-4.18) had lower noise 

amplitude than the synthetic data (see Figure 4.8). Therefore, the 3KPI pdg2008 

dataset results shows that the OCSVM+LWT [HP] and OCSVM+DWT [HP] gave the 

worst performance. 

  Figures 4.30 show the 3KPI synthetic dataset injected with constant 

faults result. All algorithm perform equally well except for the OCSVM+LWT [HP] 

and OCSVM+DWT [HP] which gave the worst performance.  

 Figures 4.31 show the 3KPI NAMOS dataset results which agreed with results 

for synthetic data in Figure 4.30. The OCSVM+LWT [LP] and OCSVM+DWT [LP] 

performed better than the OCSVM alone and OCSVM+PCA. The OCSVM+LWT 

[HP] and OCSVM+DWT [HP] gave the worst performance. Note that the results for 

constant faults were similar to the results for noise faults. This was because both types 
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of faults were trend-like changes and therefore their features were more significant 

when captured with LP coefficients than HP coefficients. 

 

 

 

 

 

Figure 4.26 ROC curve for 3KPI Synthetic data injected with 1/80 faults. 

 

 

 

Figure 4.27 ROC curve for 3KPI INTEL dataset (containing short fault). 

 

 

 

 

 

 



91 
 

 

 

 

 

Figure 4.28 ROC curve for 3KPI Synthetic data injected with 20/4 faults. 

 

 

 

Figure 4.29 ROC curve for 3KPI pdg2008 dataset (containing noise fault). 
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Figure 4.30 ROC curve for 3KPI Synthetic data injected with 80/1 fault. 

 

 

 

Figure 4.31 ROC curve for 3KPI NAMOS dataset (containing constant fault). 
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 4.4.4 Computation time evaluation 

  There are many researchers have mentioned that the data compression 

technique using DWT which has been implemented by convolutions, require a larger 

number of arithmetic computation, storage space and more computation time than 

LWT (Sweldens, 1998; Achaya and Chakrabarti, 2006; X. L. Li, J. W. Zhang, and W. 

H. FANG, 2009). Therefore, an experiment was conducted by repeatedly feeding runs 

of vectors of 1590 data elements into each data compression method in order to 

measure the computational time required for each method.  

 

 

 

 

 

Figure 4.32 Computation time of each data compression technique 

 

  Figure 4.32 shows the computation time each technique spends for 

processing each magnitude increase of runs of the input dataset. Note that LWT used 

less computation time than DWT and PCA. 
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4.5 Conclusion 

 We proposed the integration of OCSVM with LWT for anomaly detection in 

WSNs. We numerically evaluated the algorithm using MATLAB and tested it with 

both synthetic data and real world datasets. For synthetic data and real world dataset 

with the short faults, the OCSVM with LWT performed equally well as OCSVM 

alone, OCSVM with DWT and OCSVM with PCA. For synthetic data and real world 

dataset with the noise and constant faults, the OCSVM with LWT [LP] and the 

OCSVM with DWT [LP] gave better performance than the OCSVM alone and 

OCSVM with PCA, while the OCSVM with LWT [HP] and the OCSVM with DWT 

[HP] gave the worst performance.  

 However, LWT had a simpler computation and required less computation time 

than DWT. Therefore, OCSVM with LWT is more suitable for WSN. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

 This thesis proposed an integration of an anomaly detection technique called 

the one-class support vector machines (OCSVM) and a data compression techniques 

called the discrete wavelet transform (DWT) and lifting wavelet transform (LWT), to 

compress data and detect anomalies in wireless sensor networks (WSNs). Our 

proposed algorithm was designed for sending the compressed anomaly measurement 

data to the base station in order to help reduce wasted energy caused by transmitting 

all the measurement data. We numerically evaluated the algorithm using MATLAB 

and tested it with both synthetic data and real world datasets which contained three 

types of real-world fault including short, noise and constant faults. Our experiment 

was divided into 2 parts which can be summarized as follows. 

 5.1.1 Anomaly detection DWT coefficients 

  The OCSVM was integrated with DWT first in order to study the 

effect of data compression on anomaly detection. We found that this integration can 

increase the efficiency of anomaly detection by achieving accurate detection rate 

(DR) while transmitting just half of the original data length. For synthetic data, the 

OCSVM+DWT with LP coefficients achieved 100% DR with marginal increase in 

false positive rate (FPR) when compared with all other algorithms which including 

the OCSVM alone, OCSVM+DWT with HP coefficients and the self-organizing map 
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(SOM)-based algorithm. For real world datasets, the OCSVM+DWT with LP 

coefficients performed best by achieving nearly 100% DR although with slightly 

higher FPR for datasets containing short and noise faults. These results suggested that 

with data compression and using just half of the data input, OCSVM+DWT (LP) 

algorithm was suited for short and noise faults whereas SOM+DWT (LP) was suited 

for short and constant faults. 

 5.1.2 Anomaly detection LWT coefficients 

  From the study, we studied a second generation wavelet transform data 

compression technique called the lifting wavelet transform (LWT) which required 

simpler computation, less memory space and lower computation time than DWT. We 

integrated the OCSVM with LWT and tested it with both synthetic data and real 

world datasets. For synthetic data and real world dataset with short faults, the 

OCSVM with LWT performed equally well as OCSVM alone, OCSVM with DWT 

and OCSVM with PCA. For synthetic data and real world dataset with noise and 

constant faults, the OCSVM with LWT [LP] and the OCSVM with DWT [LP] gave 

better performance than the OCSVM alone and OCSVM with PCA. On the contrary 

the OCSVM with LWT [HP] and the OCSVM with DWT [HP] gave the worst 

performance. It was also demonstrated that LWT was less demanding in term of 

computation and computation time than DWT. Our results therefore suggested that 

OCSVM with LWT was more suitable for implementation in WSNs. 

 

5.2 Future work 

In the future, there are issues worthwhile investigating. 

 5.2.1  Increasing DWT and LWT level 
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  The DWT and LWT obtains the hierarchical coefficients which can 

extract interesting the features of data. However, in our experiment we considered just 

the first level of the DWT and LWT coefficients. Considering higher DWT and LWT 

coefficients levels may be able to improve the anomaly detection performance. 

 5.2.2  Exploring other types of wavelets 

 To facilitate calculation by hand and allow comparison with the 

coefficients calculated from MATLAB program, we chose the Haar as mother 

wavelets. However, there are many types of the wavelets family which may affect the 

performance of the proposed anomaly detection algorithm. 

 5.2.3  Implementation on the sensor nodes 

Another interesting direction is to investigate ways to identify and 

eliminate erroneous sensor readings directly at the sensor nodes (Liu, and Zhou, 

2010), which could help further reduce wasted energy from transmitting unwanted 

erroneous measurements to the base station. 

5.2.4  Comparison with other data compression techniques  

WSNs are resource constrained, i.e., with limited power supply, 

bandwidth for communication, processing speed, and memory space. One possible 

way of achieve maximum utilization of such resources is to apply data compression 

on sensor data (Kimura, and Latifi, 2005; Sadler, and Martonosi 2006). Alternative 

data compression algorithms for anomaly detection in WSNs in the recent literature 

may be worthwhile investigting. 

5.2.5  Enhancing to fault predictability  

  The anomaly detection algorithm in this thesis can support detection 

when faults have already occurred. A challenging issue is not only to be able to detect 
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faults when they have already occurred but to predict them before a fault actually 

occurs or fault prediction. Such extension allows the user to take a suitable course of 

action to prevent the monitored environment before any significant damage occurs. 

 5.2.6 Normalize data prior feeding to anomaly detection 

  From the experiments carried out in this thesis, it was found that data 

preprocessing by means of normalization can improve the performance of certain 

anomaly detection algorithms. Therefore, a worthwhile future direction may also 

include studying alternative normalization and data preprocessing method prior to 

anomaly detection. 
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Datasets for Chapter 3 

 

1. Synthetic Data 

 

 

 

Figure A.1 Synthetic data without fault for training the SOM algorithm. 

 

 

 

Figure A.2 Synthetic data with 1/80 faults. 
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Figure A.3 DWT low-pass coefficient of synthetic data with 1/80 faults. 

 

 

 

Figure A.4 DWT high-pass coefficient of synthetic data with 1/80 faults. 
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Figure A.5 Synthetic data with 5/16 faults. 

 

 

 

Figure A.6 DWT low-pass coefficient of synthetic data with 5/16 faults. 
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Figure A.7 DWT high-pass coefficient of synthetic data with 5/16 faults. 

 

 

 

Figure A.8 Synthetic data with 10/8 faults. 
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Figure A.9 DWT low-pass coefficient of synthetic data with 10/8 faults. 

 

 

 

Figure A.10 DWT high-pass coefficient of synthetic data with 10/8 faults. 

 

 

 

 

 

 

 



112 
 

 

 

Figure A.11 Synthetic data with 20/4 faults. 

 

 

 

Figure A.12 DWT low-pass coefficient of synthetic data with 20/4 faults. 
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Figure A.13 DWT high-pass coefficient of synthetic data with 20/4 faults. 

 

2. INTEL dataset 

 

 

 

Figure A.14 Histogram of INTEL dataset (temperature reading). 
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Figure A.15 INTEL dataset (temperature reading). 

 

 

 

Figure A.16 DWT low-pass coefficient of INTEL dataset (temperature reading). 
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Figure A.17 DWT high-pass coefficient of INTEL dataset (temperature reading). 

 

3. SensorScope Station no.39 dataset (SS39) 

 

 

 

 Figure A.18 Histogram of SensorScope Station no.39 (SS39) dataset 

  (global current reading). 
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Figure A.19 SensorScope Station no.39 (SS39) dataset (global current reading). 

 

 

 

 Figure A.20 DWT low-pass coefficient of SensorScope Station no.39 

  (SS39) dataset (global current reading). 
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 Figure A.21 DWT high-pass coefficient of SensorScope Station no.39  

  (SS39) dataset (global current reading). 

 

4. SensorScope pdg2008-metro-1 dataset (pdg2008) 

 

 

 

Figure A.22 Histogram of pdg2008 dataset (surface temperature reading). 
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Figure A.23 Histogram of pdg2008 dataset (ambient temperature reading). 

 

 

 

Figure A.24 pdg2008 dataset (surface temperature reading). 
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 Figure A.25 DWT low-pass coefficient of pdg2008 dataset 

  (surface temperature reading). 

 

 

 

 Figure A.26 DWT high-pass coefficient of pdg2008 dataset  

  (surface temperature reading). 
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Figure A.27 pdg2008 dataset (ambient temperature reading). 

 

 

 

 Figure A.28 DWT low-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 
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 Figure A.29 DWT high-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 

 

5. NAMOS dataset 

 

 

 

Figure A.30 Histogram of NAMOS dataset (fluorimeters reading). 
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Figure A.31 NAMOS dataset (fluorimeter reading). 

 

 

 

Figure A.32 DWT low-pass coefficient of NAMOS dataset (fluorimeter reading). 
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Figure A.33 DWT high-pass coefficient of NAMOS dataset (fluorimeter reading). 
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Datasets for Chapter 4 

 

1. Synthetic Data 

 

 

 

Figure B.1 2KPI Synthetic data with 1/80 faults. 

 

 

 

Figure B.2 DWT low-pass coefficient of 2KPI synthetic data with 1/80 faults. 
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Figure B.3 DWT high-pass coefficient of 2KPI synthetic data with 1/80 faults. 

 

 

 

Figure B.4 LWT low-pass coefficient of 2KPI synthetic data with 1/80 faults. 
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Figure B.5 LWT high-pass coefficient of 2KPI synthetic data with 1/80 faults. 

 

 

 

Figure B.6 3KPI Synthetic data with 1/80 faults. 
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Figure B.7 DWT low-pass coefficient of 3KPI synthetic data with 1/80 faults. 

 

 

 

Figure B.8 DWT high-pass coefficient of 3KPI synthetic data with 1/80 faults. 
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Figure B.9 LWT low-pass coefficient of 3KPI synthetic data with 1/80 faults. 

 

 

 

Figure B.10 LWT high-pass coefficient of 3KPI synthetic data with 1/80 faults. 
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Figure B.11 2KPI Synthetic data with 20/4 faults. 

 

 

 

Figure B.12 DWT low-pass coefficient of 2KPI synthetic data with 20/4 faults. 

 

 

 

 

 

 

 



131 
 

 

 

Figure B.13 DWT high-pass coefficient of 2KPI synthetic data with 20/4 faults. 

 

 

 

Figure B.14 LWT low-pass coefficient of 2KPI synthetic data with 20/4 faults. 
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Figure B.15 LWT high-pass coefficient of 2KPI synthetic data with 20/4 faults. 

 

 

 

Figure B.16 3KPI Synthetic data with 20/4 faults. 
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Figure B.17 DWT low-pass coefficient of 3KPI synthetic data with 20/4 faults. 

 

 

 

Figure B.18 DWT high-pass coefficient of 3KPI synthetic data with 20/4 faults. 

 

 

 

 

 

 

 



134 
 

 

 

Figure B.19 LWT low-pass coefficient of 3KPI synthetic data with 20/4 faults. 

 

 

 

Figure B.20 LWT high-pass coefficient of 3KPI synthetic data with 20/4 faults. 
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Figure B.21 2KPI Synthetic data with 80/1 fault. 

 

 

 

Figure B.22 DWT low-pass coefficient of 2KPI synthetic data with 80/1 faults. 
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Figure B.23 DWT high-pass coefficient of 2KPI synthetic data with 80/1 faults. 

 

 

 

Figure B.24 LWT low-pass coefficient of 2KPI synthetic data with 80/1 faults. 

 

 

 

 

 

 

 



137 
 

 

 

Figure B.25 LWT high-pass coefficient of 2KPI synthetic data with 80/1 faults. 

 

 

 

Figure B.26 3KPI Synthetic data with 80/1 faults. 
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Figure B.27 DWT low-pass coefficient of 3KPI synthetic data with 80/1 faults. 

 

 

 

Figure B.28 DWT high-pass coefficient of 3KPI synthetic data with 80/1 faults. 
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Figure B.29 LWT low-pass coefficient of 3KPI synthetic data with 80/1 faults. 

 

 

 

Figure B.30 LWT high-pass coefficient of 3KPI synthetic data with 80/1 faults. 
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2. INTEL dataset 

 

 

 

Figure B.31 Histogram of INTEL dataset (temperature reading). 

 

 

 

Figure B.32 Histogram of INTEL dataset (humidity reading). 

 

 

 

 

 

 



141 
 

 

 

 

Figure B.33 Histogram of INTEL dataset (voltage reading). 

 

 

 

Figure B.34 INTEL dataset (temperature reading). 
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Figure B.35 DWT low-pass coefficient of INTEL dataset (temperature reading). 

 

 

 

Figure B.36 DWT high-pass coefficient of INTEL dataset (temperature reading). 
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Figure B.37 LWT low-pass coefficient of INTEL dataset (temperature reading). 

 

 

 

Figure B.38 LWT high-pass coefficient of INTEL dataset (temperature reading). 
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Figure B.39 INTEL dataset (humidity reading). 

 

 

 

Figure B.40 DWT low-pass coefficient of INTEL dataset (humidity reading). 
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Figure B.41 DWT high-pass coefficient of INTEL dataset (humidity reading). 

 

 

 

Figure B.42 LWT low-pass coefficient of INTEL dataset (humidity reading). 
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Figure B.43 LWT high-pass coefficient of INTEL dataset (humidity reading). 

 

 

 

Figure B.44 INTEL dataset (voltage reading). 
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Figure B.45 DWT low-pass coefficient of INTEL dataset (voltage reading). 

 

 

 

Figure B.46 DWT high-pass coefficient of INTEL dataset (voltage reading). 
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Figure B.47 LWT low-pass coefficient of INTEL dataset (voltage reading). 

 

 

 

Figure B.48 LWT high-pass coefficient of INTEL dataset (voltage reading). 
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3. SensorScope pdg2008-metro-1 dataset (pdg2008) 

 

 

 

Figure B.49 Histogram of pdg2008 dataset (surface temperature reading). 

 

 

 

Figure B.50 Histogram of pdg2008 dataset (ambient temperature reading). 
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Figure B.51 Histogram of pdg2008 dataset (solar radiation reading). 

 

 

 

Figure B.52 pdg2008 dataset (surface temperature reading). 

 

 

 

 

 

 

 



151 
 

 

 

 Figure B.53 DWT low-pass coefficient of pdg2008 dataset  

  (surface temperature reading). 

 

 

 

 Figure B.54 DWT high-pass coefficient of pdg2008 dataset  

  (surface temperature reading). 
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 Figure B.55 LWT low-pass coefficient of pdg2008 dataset  

  (surface temperature reading). 

 

 

 

 Figure B.56 LWT high-pass coefficient of pdg2008 dataset  

  (surface temperature reading). 
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Figure B.57 pdg2008 dataset (ambient temperature reading). 

 

 

 

 Figure B.58 DWT low-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 
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 Figure B.59 DWT high-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 

 

 

 

 Figure B.60 LWT low-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 
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 Figure B.61 LWT high-pass coefficient of pdg2008 dataset  

  (ambient temperature reading). 

 

 

 

Figure B.62 pdg2008 dataset (solar radiation reading). 
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 Figure B.63 DWT low-pass coefficient of pdg2008 dataset 

  (solar radiation reading). 

 

 

 

 Figure B.64 DWT high-pass coefficient of pdg2008 dataset 

  (solar radiation reading). 
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 Figure B.65 LWT low-pass coefficient of pdg2008 dataset 

  (solar radiation reading). 

 

 

 

 Figure B.66 LWT high-pass coefficient of pdg2008 dataset 

  (solar radiation reading). 
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4. NAMOS dataset 

 

 

 

Figure B.67 Histogram of NAMOS dataset (fluorimeters reading). 

 

 

 

Figure B.68 Histogram of NAMOS dataset (temperature reading from sensor 1). 
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Figure B.69 Histogram of NAMOS dataset (temperature reading from sensor 2). 

 

 

 

Figure B.70 NAMOS dataset (fluorimeters reading). 
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Figure B.71 DWT low-pass coefficient of NAMOS dataset (fluorimeters reading). 

 

 

 

Figure B.72 DWT high-pass coefficient of NAMOS dataset (fluorimeters reading). 
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Figure B.73 LWT low-pass coefficient of NAMOS dataset (fluorimeters reading). 

 

 

 

Figure B.74 LWT high-pass coefficient of NAMOS dataset (fluorimeters reading). 
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Figure B.75 NAMOS dataset (temperature reading from sensor 1). 

 

 

 

 Figure B.76 DWT low-pass coefficient of NAMOS dataset  

  (temperature reading from sensor 1). 
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 Figure B.77 DWT high-pass coefficient of NAMOS dataset  

  (temperature reading from sensor 1). 

 

 

 

 Figure B.78 LWT low-pass coefficient of NAMOS dataset  

  (temperature reading from sensor 1). 
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 Figure B.79 LWT high-pass coefficient of NAMOS dataset  

  (temperature reading from sensor 1). 

 

 

 

Figure B.80 NAMOS dataset (temperature reading from sensor 2). 
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 Figure B.81 DWT low-pass coefficient of NAMOS dataset  

 (temperature reading from sensor 2). 

 

 

 

 Figure B.82 DWT high-pass coefficient of NAMOS dataset  

 (temperature reading from sensor 2). 
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 Figure B.83 LWT low-pass coefficient of NAMOS dataset  

 (temperature reading from sensor 2). 

 

 

 

 Figure B.84 LWT high-pass coefficient of NAMOS dataset  

 (temperature reading from sensor 2). 
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Normalization Effect 
 

 In (Siripanadorn, et al., 2010a; 2010b), their synthetic data were normalized by 

using equation (C.1). Their synthetic data were thus normalized to a normal 

distribution with mean 0 and standard deviation 1 

 

 ( )
var( )

k k

k

x mean x
x

 . (C.1) 

 

 where k  is an index of KPI, kx  is a column vector of data in k th KPI.  

 The synthetic data in this thesis were generated from a mixture of Gaussian 

distributions with means randomly selected from (0.3, 0.35, 0.45) and with a standard 

deviation of 0.03 and normalized to the range [0, 1] using equation (C.2) 

 

 min( )
max( ) min( )

k k

k k

x x
x x



. (C.2) 

 

 In order to study the effect of normalization on anomaly detection, the 

synthetic data were generated from a mixture of Gaussian distributions with means 

randomly selected from (0.3, 0.35, 0.45) and with a standard deviation of 0.03 and 

normalized by both equations prior feeding to the anomaly detection algorithms. 
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Figure C.1 Normalization effect on synthetic data with 1/80 faults. 

 

 

 

Figure C.2 Normalization effect on synthetic data with 20/4 faults. 

 

 

 

 

 

 

 



170 
 

 Figure C.1, C.2 show the normalization effect on anomaly detection with 

synthetic data injected with 1/80 and 20/4 faults, respectively. For the SOM algorithm 

, normalization to normal distribution N(0, 1) using equation (C.1) gave better DR 

than normalization to the range [0, 1] using equation (C.2). On the other hand, 

OCSVM performed equally well for both types of normalizations and was therefore 

insensitive to the distribution of the input data. In addition, SOM with synthetic data 

normalization to N(0, 1) perform equally well as OCSVM. Therefore, SOM algorithm 

is suitable for dataset with normal distribution. However, datasets may not always be 

normally distributed, and consequently, affect SOM's performance. Therefore, in this 

thesis, a normalization method irrespective of data distribution such as in equation 

(C.2) was selected to preprocess the data prior to anomaly detection. 
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Takianngam, S., and Hattagam, W., (2011). Discrete Wavelet Transform and One-
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173 
 

 

 

 

 

 

 

 



174 
 

 

 

 

 

 

 



175 
 

 

 

 

 

 

 



176 
 

 

 

 

 

 

 



177 
 

 

 

 

 

 

 



178 
 

 

 

 

 

 

 

 



179 
 

BIOGRAPHY 

 

 Ms.Saowaluk Takianngam was born on January 15, 1988 in 

Nakhonratchasima, Thailand. She finished high school education from Suranaree 

Wittaya School, Nakhonratchasima. In 2009, she received her Bachelor’s Degree in 

Engineering (Computer) from King Mongkut’s Institute of Technology Ladkrabang, 

Bangkok, Thailand.  For her post-graduate, she continued to study for her Master’s 

degree in the Telecommunication Engineering Program, Institute of Engineering, 

Suranaree University of Technology.  

 

 

 

 

 

 

 

 


