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ไนโตรเจนเป็นธาตุท่ีส าคญัท่ีสุดส าหรับพืช แต่มากกว่า 60% ของธาตุไนโตรเจนมีการ

สูญเสียในระหว่างการใช้งานของเกษตรกร การใช้ไบโอพอลิเมอร์มาเป็นวสัดุเคลือบปุ๋ยได้รู้จกั
แพร่หลายในการศึกษาทางการเกษตรมาเป็นเวลาหลายปี และมีความพยายามท่ีจะน ามาใช้เป็นสาร
ควบคุมการละลายของปุ๋ย การศึกษาในคร้ังน้ีมีวตัถุประสงค์เพื่อลดการสูญเสียธาตุไนโตรเจนจาก 
ปุ๋ยยูเรียโดยการเคลือบสารไบโอพอลิเมอร์ 2 ชนิดซ่ึงแตกต่างกนั คือ สารโพลีไวนิลแอลกอฮอล์ 
(PVA) และโพลีไวนิลไพโรลิโดน (PVP) การเคลือบสาร PVA และ PVP สามารถท าไดโ้ดยการพ่น
สารละลายลงบนเมด็ปุ๋ยยเูรียในเคร่ืองหมุน จากการศึกษาการปลดปล่อยของปุ๋ยยเูรียหลงัการเคลือบ 
(EUF)โดยใชก้ฎของฟิกซ์ ซ่ึงเป็นสมการทางคณิตศาสตร์เพื่ออธิบายพฤติกรรมการปลดปล่อยของ   
ยเูรีย โดยค่า n มีค่าอยูร่ะหวา่ง 0.5 ถึง 1.0 หมายถึงการปลดปล่อยเป็นแบบ non-Fickian diffusion 
วสัดุเคลือบทั้ง PVA และ PVP ถูกน ามาใชใ้นอตัราส่วน 2:0 (EUF1), 1:0 (EUF2), 1:0.25 (EUF3), 
1:0.5 (EUF4), 1:1 (EUF5), และ 1:2 (EUF6) ตามน ้ าหนกั ผลการทดลองพบวา่ค่า n มีค่าระหวา่ง 
0.86-0.98 แสดงถึงเป็นการปลดปล่อยเป็นแบบ strong non-Fickian diffusion ในขณะท่ีปุ๋ยยเูรียท่ีไม่
ถูกเคลือบมีค่า n เท่ากบั 0.70 สรุปไดว้า่ปุ๋ยยูเรียเคลือบทุกสูตรมีการปลดปล่อยธาตุอาหารไดเ้ป็น
เวลานานกวา่ปุ๋ยยเูรียท่ีไม่เคลือบ ผลจากการศึกษาลกัษณะทางสัณฐานวิทยาโดยใช้กลอ้งจุลทรรศน์
อิเล็กตรอนแบบส่องกราด พบว่า ลกัษณะของวสัดุท่ีเคลือบผิวมีมากกว่าหน่ึงแบบ ไดแ้ก่ ลกัษณะ
แผ่น เข็ม และกอ้น จากการศึกษาหมู่พนัธะเคมีของตวัอย่างปุ๋ยเคลือบโดยใชเ้คร่ือง FT-IR พบว่า 
ช่วงความยาวคล่ืนของปุ๋ยยูเรียท่ีถูกเคลือบใกลเ้คียงกบัปุ๋ยยูเรียท่ีไม่ถูกเคลือบ เน่ืองมาจากปริมาณ
ของวสัดุเคลือบมีปริมาณน้อยกว่าตวัปุ๋ยยูเรียท่ีถูกเคลือบ จากการศึกษาการเสียสภาพของเม็ดปุ๋ย
เคลือบเน่ืองจากความร้อนโดยวิเคราะห์การเปล่ียนแปลงน ้ าหนกัของสารดว้ยเทคนิค TGA พบว่า 
ตวัอยา่งปุ๋ยเคลือบทุกสูตรมีค่าการสูญเสียน ้ าหนกัโดยสามารถแบ่งงออกเป็น 3 ช่วงอุณหภูมิ ไดแ้ก่ 
140-200, 220-340 และ 350-480 องศาเซลเซียส ขั้นแรกของการสูญเสียน ้ าหนกัเกิดข้ึนในช่วงกวา้ง 
เร่ิมตน้ก่อนจุดหลอมเหลวของยเูรียท่ี (132.5 องศาเซลเซียส) ขั้นท่ีสองเกิดช่วงอุณหภูมิการสลาย
ยูเรียท่ีเหลือ ช่วงสุดท้ายเกิดการสลายท่ีอุณหภูมิสูงกว่า 350 องศาเซลเซียส ซ่ึงท าให้โครงสร้าง    
ไฮดรอกซิลและอินทรียส์ารถูกก าจดั 

จากแบบจ าลองทางคณิตศาสตร์กฎของฟิกซ์ พบวา่ ปุ๋ยเคลือบสูตร EUF2 และ EUF3 แสดง
ค่า n ท่ีสูงท่ีสุด จึงน ามาทดสอบการเจริญเติบโตของพืชโดยเปรียบเทียบกบั EUF6 ซ่ึงแสดงค่า n 

 

 

 

 

 

 

 

 



 II 

น้อยท่ีสุด โดยวางแผนการทดลองปลูกแบบสุ่มอย่างสมบูรณ์ในเรือนปลูกพืช โดยใช้ผกัคะน้า 
(Brassica alboglabra Bailey) เป็นพืชทดสอบ ผลสรุปไดว้า่ EUF2 และ EUF3 ให้ค่าน ้ าหนกัตน้สด 
น ้ าหนกัรากสด น ้ าหนกัตน้แห้ง และน ้ าหนกัรากแห้งสูงกวา่พืชท่ีใชปุ๋้ยยเูรียชนิดไม่เคลือบและชุด
ควบคุม นอกจากน้ียงัพบว่ามีการสะสมปริมาณไนโตรเจนท่ีสูงในพืชท่ีใส่ปุ๋ยสูตร EUF2, EUF3, 
EUF6 และยเูรีย ในขณะท่ี PVA, PVP และชุดควบคุม มีการสะสมไนโตรเจนปริมาณต ่ากวา่ จึงสรุป
ไดว้า่ปุ๋ยเคลือบสูตร EUF2, EUF3 และ EUF6 สามารถพฒันาผลผลิตทางการเกษตรไดเ้น่ืองจากมี
การสะสมปริมาณธาตุไนโตรเจนท่ีสูงหรือช่วยลดการสูญเสียธาตุไนโตรเจน 
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Among plant nutrient elements, N is the most important but more than 60% is 

lost when farmers apply it into soil. Biopolymers have been an emerging field of study 

in agriculture for many years which are used as fertilizers coating. In this study, 

biopolymers were used as a nutrient release-controlling material. Urea fertilizer was 

coated with two different types of biopolymers, which are polyvinyl alcohol (PVA) 

and polyvinylpyrrolidone (PVP). These biopolymers can reduce the loss of nitrogen 

from coated fertilizer. The urea granules were sprayed with PVA and PVP solutions in 

a rotary drum, by varying the ratios per mass 2:0 (EUF1), 1:0 (EUF2), 1:0.25 (EUF3), 

1:0.5 (EUF4), 1:1 (EUF5), and 1:2 (EUF6), respectively. To understand the release of 

the nutrient in the encapsulated urea fertilizer (EUF), a mathematical model of Fick’s 

law was used to predict the releasing behaviors. The n value from 0.5 to 1.0 is a 

mechanism of nutrient release for non-Fickian diffusion. The results showed that the 

predicted n values of 0.86-0.98 illustrated a strong non-Fickian diffusion while un-

coated urea was 0.70. It could be concluded that the high n value refers to the longer 

nutrient release that benefits plant absorption. The morphology of granules was 

observed by using scanning electron micrographs, which illustrated the characteristics of 

coating materials. It was found that there were more than one form, including plates, 

needles, and bundles. Determination of the chemical functional groups in the sample 

was performed using FT-IR spectroscopy. The spectrum of the blend was similar to 
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the spectrum of urea. This might be because the amount of coating materials was 

markedly smaller than that of solid pure urea. Thermal stability and degradation steps 

of samples were analyzed by TGA technique. It was found that all of the samples 

displayed three major weight loss stages at 140-200, 220-340, and 350-480°C. The 

first stage was a wide scale weight loss that starts before the melting point (132.5°C). 

The second stage was fast thermal decomposition for urea residue. In the final stage at 

above 350°C, the structures of hydroxyl and organic matter were eliminated. 

According to the mathematical model of Fick’s law from previous experiment, 

EUF2 and EUF3 showed the highest n value, so they were used to evaluate plant 

growth parameters as compared with EUF6 which showed the lowest n value. 

Treatments were arranged in a completely randomized design in the greenhouse. The 

EUF2, EUF3, and EUF6 were used as the fertilizer for Chinese kale (Brassica 

alboglabra Bailey) cultivation. EUF2 and EUF3 showed the highest stem fresh 

weight, root fresh weight, stem dry weight, and root dry weight over plants with urea 

and the control. The high N accumulation in plant was found in EUF2, EUF3, EUF6, 

and urea, whereas PVA, PVP, and the control showed low N accumulation. This 

indicates that EUF2, EUF3, and EUF6 could improve agricultural yield due to high N 

accumulation or less N loss. 
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  CHAPTER I 

INTRODUCTION 

 

1.1 Significance of the study 
 

The growth of plant depends on the soil condition, quantity of water, as well as 

mainly a function of the quantity of fertilizer. Therefore, it is very important to 

improve the utilization of plant nutrients. Fertilizers are main factors that limit the 

development of agricultural production, which is very important to improve the 

utilization of mineral nutrients. Nitrogen is the most vital nutrient for crops. It has 

been considered the yield limiting one. Among the nitrogen fertilizers, urea is the 

most widely used in the crops as well as its high nitrogen content (46%) and 

comparatively low cost for crop production.  

However, consider leaching and hydrolyzing , the utilization efficiency or plant 

uptake of urea is generally less than 50%. About 40-70% of nitrogen of the applied 

fertilizer escapes to the environment and cannot be absorbed by crops (Dave et al., 

1999; Guo et al., 2005; Liu et al., 2007). As a neutral organic molecule, urea cannot be 

absorbed easily by the charged soil particles before hydrolyzing, resulting in a great 

quantity of urea running off and serious environmental hazards as only a fraction is 

really absorbed by plants.  

One possible of this problem is the encapsulation of fertilizer beads by 

membrane to control the diffusion of water, leach, and release of this fertilizer. 

Recently, the use of slow release fertilizers is new trend to save nutrient consumption
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and minimize environmental pollution (Akelah, 1996; Jarosiewicz and Tomaszewska, 

2003).  

Controlled-release fertilizers (CRFs) are made to control the rate of nutrient 

release as well as control the slow diffusion of nutrient ions through the membrane to 

the soil (Ahmed et al., 1963; Lunt and Orteli, 1962). CRFs for urea are made by 

coating some active soluble components materials as the membrane that serve as a 

diffusion barrier. Then, coating materials should be inexpensive and exhibit a good 

coating property. CRFs are made to release their nutrient contents gradually with the 

nutrient requirement of plant. These fertilizers can be physically prepared by coating 

granules of conventional fertilizers with various materials that reduce their dissolution 

rate. The releasing and dissolution rates of water-soluble fertilizers depend on the 

coating materials. At present, coating material’s degradability is an important focus on 

the research in this field because of the renewed attention towards environmental 

protection issues (Ge et al., 2002; Shavit et al., 2002).  

Polyvinyl alcohol (PVA) has also been approved for using in controlled- 

release of fertilizer. PVA is valued for its solubility and biodegradability, which 

contributes to its very low environmental impact. PVA is a kind of excellent 

membrane material for preparation of a hydrophilic membrane that swells easily and 

even dissolves in water. One more kind of material, polyvinylpyrrolidone (PVP) using 

for water transferring through membrane, has been interested as a binder in granules 

of urea fertilizer for controlling pore size of coating substance. PVP polymer as a 

hydrophobicizer and stabilizer, can greatly improve membrane oxidative and 

chemical stabilities (Qiao et al., 2005). It has been extensively utilize and study in 

these form of its alone or mix for observed mixing behaviors and properties of the 
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blends. Therefore, it seemed worthy of interest to prepare a new type of control 

release encapsulated urea fertilizer with their polymer.  

 

1.2 Research objectives 

The purposes of this study are as follows: 

1.2.1 To apply biopolymer (polyvinyl alcohol and polyvinylpyrrolidone) for          

 encapsulate urea fertilizer. 

1.2.2 To determine the releasing rate of urea fertilizer by encapsulation 

technique. 

1.2.3  To analyze the structural properties of encapsulated urea fertilizer 

(EUF). 

1.2.4  To determine the efficiency of EUF on plant growth.  

 

1.3 Research hypothesis 

1. The hypothesis of this was to find a suitable coating material to control 

release of urea fertilizer using encapsulation technique.  

2. The encapsulation technology could improve the efficiency of plant growth 

by preventing and decreasing loss of fertilizer.  

 

1.4 Scope and limitation of the study 

Biopolymers, polyvinyl alcohol and polyvinylpyrrolidone, were used in 

various formulations and concentrations for coating urea granules. Also the thickness, 

temperature, and stirring times of coating were observed. Structure and surface 

characteristics of the biopolymers of encapsulated urea fertilizer were observed by 
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fourier transform infrared imaging, scanning electron microscopy and thermal 

gravimetric analysis. Afterward, the encapsulated urea fertilizer was examined the 

slow release behavior, and then applied them in soil for studying the plant growth.  

 

1.5 Expected results 

-  Encapsulated urea fertilizer can reduce loss of fertilizer. 

- The encapsulation can increase efficiency of urea fertilizer in agricultural 

field. 
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CHAPTER II 

LITERATURE REVIEWS 

 

2.1 Controlled-release fertilizer (CRFs) 

Fertilizers are generally classified in two groups, i.e. natural organic products 

and synthetic chemical products. Among the fertilizers widely applied for nitrogen 

delivery, one of the most interesting from an economic stand point is urea, CO(NH2)2, 

which high nitrogen (N) content (46 %) and comparatively low cost of production. 

Urea belongs to the synthetic group of fertilizers (Ramirez et al., 1997; Ramirez-Cano 

et al., 2001). Urea was first prepared by Friedrich Wöhler in 1828 by evaporating a 

solution containing a mixture of potassium isocyanate (CKNO) and ammonium 

sulphate ((NH4)2SO4). Ammonium isocyanate (CH4N2O), which is formed first, 

undergoes molecular rearrangement to give urea, as shown by the following reaction:  

 

NH4NCO ↔ NH3 + N–H=C=O ↔ (NH2)2CO 

             

Urea may be prepared in the laboratory by interaction of ammonia with 

carbonyl chloride, alkyl carbonates, chloroformates or urethans. In industry, urea is 

prepared by allowing liquid carbon dioxide and liquid ammonia to interact, and 

heating the formed ammonium carbamate at 130  150°C under about 35 atmospheric 

pressure (Tonn, 1955). The carbamate is decomposed to form urea and water 

according to the following reaction; 
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2NH3 + CO2 ↔ NH2COONH4 (ammonium carbamate) 

                   NH2COONH4 ↔ H2O +  NH2CONH2 (urea) 

 

Urea is a physiologically important plant nutrient, which is transformed to 

nitrogenous product of protein metabolism. The symmetrical structure of urea is 

shown in Fig. 1. Urea has a melting point of 132°C, soluble in water and ethanol, but 

insoluble in ether. Urea is used for preparing formaldehyde-urea resin (plastics) 

(Feldman and Barbalata, 1996), barbiturates (Finar, 1973), and other formulated 

fertilizers (Rahman et al., 1994; George et al., 1997; Wang and Douglas, 1996; 

Yerokun, 1997). Urea is also extensively used in the paper industry to soften cellulose 

and has been used to promote healing in infected wounds and many other applications 

in the field of medicine (Heinig, 1996; Gnewuch and Sosnovsky, 1997; Miyagawa, 

1986).  

 

 

 

Fig. 1 Structure of urea (Ibrahim et al., 2012). 
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Urea, when applied to soil, is hydrolyzed by urease to NH4
+
 which is then 

oxidized to NO3
-
 which can be leached or denitrified. To ensure a continuous and 

optimal supply of N, and to decrease losses, chemicals that retard either urea 

hydrolysis, or nitrification or both have been interested. Urea is rapidly hydrolyzed to 

ammonium carbonate through soil by urease activity, and if  high concentration usage, 

the resulting accumulation of ammonium rises in pH which leads to several problems, 

including damage to germinating seedlings and young plants, nitrite toxicity, and 

gaseous loss of urea N as ammonia (Gasser, 1964).  

One possible way to improve nutrient and particularly nitrogen use efficiency 

while reducing the environmental hazards is by using controlled release or slow 

release fertilizers (Hauck, 1985; Shaviv and Mikkelsen, 1993; Peoples et al., 1995; 

Bockman and Olfs, 1998; Shaviv, 1999). The terms of slow release fertilizers (SRFs) 

and controlled-release fertilizers (CRFs) are used throughout this review as a general 

description of fertilizers from which nutrient release into the environment occurs in a 

more or less slow and controlled manner. The term of CRFs recently became 

acceptable when applied to fertilizers in which the factors dominating the rate, pattern 

and duration of release are well-known and controllable during CRFs preparation 

(Shaviv, 1996). SRFs involve the release of the nutrient in a slower manner than 

common fertilizers. However, the rate, pattern and duration of release are not well 

controlled. They may be strongly affected by handling conditions such as storage, 

transportation and distribution in the field, or by soil conditions such as moisture 

content, wetting and drying, thawing and freezing, and biological activity (Goertz, 

1995; Shaviv, 1996; Raban et al., 1997).  

CRFs have been known for a several years.  About 40-70 % of nitrogen of  the 
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applied normal fertilizer escapes to the environment and cannot be absorbed by crops, 

which causes not only large economic and resource losses but also very serious 

environmental pollution (Dave et al., 1999l; Guo et al., 2005; Liu et al., 2007). CRFs 

keep the nutrient concentration at effective levels in the soil and releases the fertilizer 

when the plant most needs it. Moreover, controlled-release technology offers a 

number of advantages in relation to crop production, including sustained correction of 

a mineral deficiency, decreased application frequency, and thus reduced cost of crop 

production. Decreased fertilizer loss dues to low leaching with concurrent 

minimization of environmental hazard (e.g. pollution of water courses), and possible 

reduction in the total amount of nutrient required because sustained rather than erratic 

supply was maintained. Additionally, the risk of salt injury to roots of young seedlings 

may be reduced.  

In the following section, a detailed description of preparation methods is 

provided, with emphasis being placed primarily on the fertilizers that are common in 

practice such as organic-N compounds and the physically protected (coated forms) of 

CRFs. 

2.1.1 Detailed description of CRFs 

2.1.1.1 Organic-N compounds 

The condensation of urea with aldehydes (and particularly with formaldehyde) 

is one of the most common methods for preparing SRFs. Urea formaldehyde (UF) is 

the most popular organic-N compound used for the slow release of nitrogen, and the 

most widely used of all SRF/CRFs (Trenkel, 1997; Shaviv, 1999). Typical UF products 

contain between 37 to 40% nitrogen. UF decomposition is mainly due to microbial 

action. The release of N from these compounds thus depends strongly on soil 
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properties such as biological activity, clay content, pH, and external conditions such 

as moisture content, wetting and drying, and temperature (Alexander and Helm, 1990, 

Goertz, 1991; Aarnio and Martikainen, 1995; Trenkel, 1997).  

Other urea-aldehyde and synthetic nitrogen compounds, for example, 

isobutylidene diurea (IBDU) is a condensate product of urea and isobutyraldehyde. It 

contains about 31% nitrogen of which 90% is water insoluble. The N release is 

claimed to be the result of chemical decomposition (hydrolysis), and thus its rate 

depends strongly (and inversely) on the particle size of the granular material and 

directly on soil moisture content. The hydrolysis is also pH and temperature 

dependent. Since the release of N from IBDU has little dependence on microbial 

activity, it occurs also at low temperatures (Goertz, 1991). 

2.1.1.2 Coated Fertilizers 

Fertilizers coated with non-organic coatings 

Sulphur-coated urea (SCU) has been developed at the TVA (Tennessee Valley 

Authority) laboratories and manufactured commercially for almost 30 years (Landels, 

1994). Its preparation is based on coating preheated urea granules with molten 

sulphur. Elemental sulphur, a low-cost secondary plant nutrient, was found to be 

convenient for coating due to its ability to melt at about 156°C, thus enabling spraying 

molten sulphur over granular urea and possibly on other fertilizers as well. The 

product contains between 31 to 38% N. After coating the urea with sulphur, a wax 

sealant is sprayed in order to seal cracks in the coating and reduce the microbial 

degradation of the sulphur coating (Allen et al., 1971; MaClellan and Scheib, 1973; 

Oertli, 1974; Jarrell and Boersma, 1980). The release of N from SCU depends on 

coating quality (Oertli, 1974). A typical population of SCU granules consists of three 
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types of coatings (Jarrell et al., 1979): damaged coatings with cracks, damaged 

coatings whose cracks were sealed with wax, and perfect and thick coatings. SCU 

coated with a damaged coating immediately releases the urea when brought in contact 

with water.  

Polymer coating of sulphur-coated fertilizers 

Due to the relatively poor performance of the common SCU, several CRF 

manufacturers introduced a modified product in which the sulphur-coated fertilizer is 

coated by an additional thin layer of an organic polymer (thermoplastic or resin). A 

polymer-coated SCU is called a PSCU. According to Goertz (1995), the modified 

PSCU releases in the same way as common polymer-coated CRFs. The additional 

polymer layer was also intended to improve the attrition resistance of the coated 

granules. Indeed, the modified products showed a much better release behavior than 

the SCU. However, in comparing a PSCU with several polymercoated CRFs, Raban 

(1994) found that the PSCU had an initial “burst” of more than 20% of its content and 

a “tailing” of more than 30%. 

Fertilizers coated with organic polymers 

Resin-coated fertilizers are those whose coatings are commonly prepared by 

in-situ polymerization resulting in the formation of a cross-linked, hydrophobic 

polymer, usually classified also as thermosettic one (degrades upon heating). The two 

main families of common resins in practical use are the alkyd-type resins (e.g., 

Osmocote®) and polyurethanelike coatings (e.g., Polyon®, Plantacote® and 

Multicote®) (Trenkel, 1997). The first resin-coated CRFs to be commercially produce 

was the alkyd-type resin-coated fertilizer, Osmocote®. It was first produced in 

California in 1967. The alkyd-type resin is a copolymer of dicyclopentadiene with a 
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glycerol ester (Lambie, 1987; Goertz, 1991). The control over nutrient release is 

achieved by varying the coating composition or thickness. Hauck (1985) described the 

release from Osmocote® as follows: water penetrates the coating through microscopic 

pores and increases the osmotic pressure within the coated core, thus stretching the 

coating. The stretching increases the micro-pores, enabling the release of nutrients 

through them. The alkyd-type coating provides good control over the resin’s 

composition and thickness, making it possible to control the fertilizer’s release rate 

and pattern. Typical formulations contain urea or compound N-P-K (at various ratios) 

with or without micro-elements. It can be applied to a large variety of granular or 

prilled fertilizer products. 

The release of nutrients from these products is mainly temperature dependent 

(Christianson, 1988; Raban, 1994; Moore, 1995), while moisture content in the soil, 

pH, wetting or drying, and soil microbial activity have little effect on the release 

(Christianson, 1988; Moore 1995). This, however, is not unique to this type of coating 

and it is rather common with polymer coatings (resins and thermoplastic polymers). 

Thermoplastic polymer-coated fertilizers 

The most widespread technology used for coating granular fertilizers with 

thermoplastic materials such as polyethylene is by dissolving the coating material in a 

chlorinated hydrocarbon and spraying it on the granules in a fluidized bed reactor 

(Fujita et al., 1983, Fujita et al., 1989; Shoji and Gandeza, 1992; Fujita, 1995). Control 

over nutrient release is achieved by blending low-permeability polyethylene with a 

high-permeability polymer, such as ethylene-vinyl-acetate. Gandeza et al. (1991) 

claimed that improved control over temperature dependence of the release can be 

obtained by adding a mineral powder to the coating. It offers excellent control over 
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release rates and patterns obtained by changing the ratio of polyethylene to ethylene-

vinyl-acetate and/or the percentage of added mineral powder. 

Several other products with thermoplastic polymers or latex coatings are 

available. One particular product is prepared by coating urea. The latex coating of urea 

and other granular compounds distinguishes itself from other coatings by being a 

water-borne process, whereby a suspension of poly-vinylidene chloride is sprayed on 

the granules, with no need for recycling organic solvents (Kelch and Thompson, 1992; 

Goertz, 1995).  

Moreover, several synthetic chemicals were used such as N-serve (nitrapyrin), 

dicyandiamide (DCD), carbon disulphide (CS2), sodium chlorate, benzene 

hexachloride (BHC) etc. have been examined for inhibition of urea hydrolysis or 

nitrification or both in soils (Zaman et al., 2008). However, the use of these chemicals 

has been restricted only for academic experimental studying because of high cost, lack 

of availability, and adverse effects on soil microflora (Purakayastha, 1997). 

Natural starch is a polysaccharide polymer with many hydroxyl groups that 

make the starch matrix hydrophilic and capable to absorb water and swell dramatically 

in aqueous solution. Consequently, the matrix provides an effective control over the 

fertilizer encapsulated in the starch only for a relatively short period of time after 

rainfall or irrigation, which reduce the survival life in field uses, especially in heavy 

water environments (Li et al., 2008).  

In the past few decades, the environmental and ecological pollution resulted 

from low fertilizer use efficiency has encouraged great concerns (Elizabeth 2000; Zhu 

2000; Paramasivam and Alva 1997). Slow release controlled fertilizer has been 

developed, and used to improve the efficiency as well as prevent and decrease the 
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environmental pollution from loss of fertilizers. Many studies have been done; but 

mainly focused on the membrane materials (Du and Zhou 2002; Liao et al, 2001; Sun 

et al, 2005). The membrane materials can be divided into two main varieties, 

inorganic minerals and organic polymers. Inorganic minerals are example; silicon, 

sulfur, gypsum, phosphates, zeolete, bentonite, maifanitum, diatomite, etc. (Xu, 2006; 

Wu and Liao, 2000; Feng et al, 2005; Pan et al, 2006; Zou et al, 2006).  

In the case of organic polymers consist of natural macromolecular materials 

(e.g., starch, fibrin, natural rubber, etc.), high molecular synthetic materials (e.g., 

polyethylene, polyvinyl chloride, etc.), and high molecular semi-synthetic material 

(e.g., ethyl cellulose) (Wu et al., 2002; Hanyuu et al., 1999; Rong et al., 2005). 

Moreover, inorganic minerals used are easily available with low price. And the 

membrane remaining in the soil after nutrient release may be decomposed naturally, 

which can not only supply some minor nutrients but also improve soil structure. 

However, the concentration of inorganic materials may be not high enough, leading to 

bad control of nutrients in the soil. In contrast, organic polymer as membrane material 

has shown good control of nutrients. Nevertheless, the organic polymer membrane 

requires sophisticated technical process such as some fungi or bacteria was occurred 

when fertilizer attached moisture.        

Another method of regulating plant nutrient release is the application of a 

coating. Several release mechanisms are possible depending on the type of applied 

coating. When a hydrophobic coating without pores is used, release only takes places 

after partly degradation of coating by e.g. micro-organisms. Water soluble coatings 

usually only slow down fertilizer release. After a certain uptake of water, the coating 

becomes porous or even breaks and burst release of fertilizer takes place. 
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The polysulfone coated fertilizer showed the best properties and low porosity. 

The urea fertilizer was coated with the grafted polymer composite of starch grafted 

poly-L-lactide (st-g-PLLA) (Li et al., 2008). The stability of the composite films in 

water increases with increasing graft efficiency of PLLA. Compared to the pure 

starch/urea composite film, the st-g-PLLA/urea composite films showed improved 

resistance to water. When the pure starch/urea composite film was immersed in 

distilled water, it was first swollen, and quickly broken because both starch and urea 

are sensitive to water and can absorb a quantity of water. In all cases, the presence of 

PLLA in st-g-PLLA copolymer leads to a significant improvement of the film 

hydrophobicity (Li et al., 2008). 

CRFs coatings materials should be sufficiently hydrophilic to take up water for 

making fertilizer transport possible, and on the other hand be sufficiently hydrophobic 

to prevent disruption of the coating wall. When damage occurs to a controlled-release 

coating, the product loses its controlled-release properties completely or in part, since 

coating holes, cracks or thin spots allow for rapid access of water in which the 

fertilizer is soluble. However, controlled-release coating properties are dependent on 

the type of polymer and molecular weight, which play an important role in urea 

release (Jintakanon et al., 2008).  

The methods of longevity predicting and nutrient release test CRFs have been 

studied since the early 1950. However, there is not any uniform standard method for 

the longevity predicting and nutrient release of CRFs. Based on the definition of slow 

release by Europe Standard Committee, pure water dissolving incubation at 25°C is 

described the release characteristics (Li et al., 2005).  

About 40 years  ago,  sulfur has been used for coating  urea  but  that  sulfur  is  
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friable cause easily cracks and the shell is even peeled from particle surface during 

transportation. Many works have reported the improvement of the coating quality 

(Goertz et al., 1993; Choi and Meisen, 1997). Wax was usually coated on the outer 

surface of the sulfur coated urea to seal the flaws to reduce the release rate. However, 

these have a high cost, and the wax coating made an inconvenient adhesive product.  

The polymer coating on fertilizers is an emerging field of study. Hanafi et al. 

(2000) used PVC, polyacrylamide, natural rubber and polylactic acid as coating 

compounds on fertilizers. These polymer coated fertilizers are highly stable at high 

temperature, however, these polymers are non biodegradable. The blending of 

biodegradable polymer can contribute to the CRFs. 

Recently, many reports on introducing starch, cellulose, lignin, inorganic 

clays, and chitosan into pure polymeric encapsulation in order to improve swelling 

property, reduce production costs and ensure biodegradability (Farag and Al-Afleq, 

2002; Shogren et al., 2009; Zhang et al., 2007). However, the researches on super 

absorbent polymer based on crops residues are still remaining. In addition, many 

materials have been reported to be used as coating such as polysulfone (Jarosiewicz 

and Tomaszewska, 2003) polyvinyl chloride (Hanafi et al., 2000), and polystyrene 

(Liang and Liu, 2006) were remained the coating materials in the soil. Therefore, the 

environmentally safe and biodegradable coating materials are expected to be used.  

Till now, attempting development of controlled-release fertilizer is to design device 

for preventing nutrient loss and enhancing nutrient utilization efficiency by plants.  

In order to reduce the loss of nitrogen (N) from urea, research workers 

developed different polymer coatings. Among the alternatives reported in the 

literature, the application of polyvinyl alcohols (PVA) is interesting. PVA is a 
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polyhydroxy polymer that is very commonly used in practical applications because of 

its easy preparation and biodegradability (Park et al., 2001). Also, PVA has film 

forming capacity, hydrophilic properties, and a high density of reactive chemical 

functions that are favorable for cross-linking by thermal or chemicals (Lebrun et al., 

2004). Another chemical, Poly(vinylpyrrolidone), PVP as a hydrophobicizer and 

stabilizer, can greatly improve membrane oxidative stability and chemical stability 

(Qiao et al., 2005). Based on the consideration of reported in a novel alkaline solid 

polymer electrolyte membrane composed of KOH dropped PVA/PVP (Jinli et al., 

2010). 

In order to apply biopolymer with conventional spray technique that easily 

formed membrane on the urea granule as well as easily to use. Furthermore, the 

compound materials were used PVA and PVP. There are shown excellent film 

forming, solubility, and biodegradability. Moreover, both materials are shown very 

low environmental impact that lead to environmentally safe. The effect of different 

ratios of PVA/PVP on urea granules were discussed in this thesis. Biopolymers are 

reviewed in details in the following sections. 

 

2.2 Materials for Encapsulation 

2.2.1 Polyvinyl alcohol (PVA)  

PVA was firstly prepared by Hermann and Haehnel in 1924 by hydrolyzing 

polyvinyl acetate in ethanol with potassium hydroxide. The acetate groups are 

hydrolyzed by ester interchange with methanol in the presence of anhydrous sodium 

methylate or aqueous sodium hydroxide. The physical characteristics of PVA are 

dependent on its method of preparation from the above mention. PVA generally 
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classified into two groups, fully hydrolyzed and partially hydrolyzed, are shown in 

Fig. 2. Partially hydrolyzed PVA is used in the foods.  

PVA has a simple chemical structure of vinyl alcohol as monomer unit with 

pendant hydroxyl groups. PVA is obtained by the vinyl acetate polymerization in 

alcoholic solutions followed by partial hydrolysis. It is possible that not all acetate 

groups be substituted by OH radicals (Zhu and Qian, 2007), consequently polymers 

with different hydrolysis degree will be obtained (Constantin and Claudia, 2006).  

 

 

                                                                                  

 

Fig. 2  Chemical structure for PVA: (a) partially hydrolyzed polymer and (b) fully 

   hydrolyzed polymer (Demerlis and Schoneker, 2003). 

  

The PVA melting temperature is 230°C for fully hydrolyzed polymer and 

melting point between 180 to 190°C for partial hydrolyzed polymer (Judit et al., 

2001). The PVA density is 1.26 g/cm
3
 for the amorphous phase at 25°C and 1.35 

g/cm
3
 for the crystalline phase at the same temperature (Saxena, 2004). 

PVA is synthetic polymers used since the early 1930s in a wide range of 

industrial, commercial, medical and food applications including resins, lacquers, 

surgical threads and food-contact applications. PVA is one of the hydrogels often used 

in biomedical applications (Aleyamma and Sharma, 1988; Hyon and Ikada, 1986). It 
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is a water-soluble synthetic polymer with excellent film forming, emulsifying and 

adhesive properties. This polymer has outstanding resistance to oil, grease and 

solvents (Schellekens and Bastiaansen, 1991). PVA was evaluated for its food use by 

the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in June 2003. 

PVA for food use is an odourless and tasteless, translucent, white or cream 

colored granular powder. It is soluble in water, slightly soluble in ethanol, but 

insoluble in other organic solvents. Typically a 5% solution of PVA exhibits a pH in 

the range of 5.0 to 6.5. PVA has a melting point between 180 and 190°C. It has a 

molecular weight of between 26,300 and 30,000 and a degree of hydrolysis of 86.5 to 

89%. PVA may be used in high moisture foods in order to retain the overall 

satisfactory taste, texture and quality of the foods. Confectionery products may also 

contain PVA in order to preserve the integrity of the moisture sensitive constituents. 

Use levels for PVA were developed by application of 2.3 mg PVA/cm
2
 in aqueous 

film coatings. Maximum use levels of PVA were derived for the final foods by 

selecting products within each food category with the greatest proportion of moisture 

sensitive components, estimating the surface area of those components, and assuming 

coating of the entire surface area with PVA.  

In the USA, the majority of PVA is used in the textile industries as a sizing and 

finishing agent. PVA is also widely used in the manufacture of paper products. PVA is 

used as a thickening agent for latex paint and common household white glue or in 

other adhesive mixtures and seals, as well as gypsum-based cements such as is used 

for ceramic tiles. PVA is relatively insoluble in organic solvents and its solubility in 

aqueous solutions is adaptable to its necessary application. 

PVA is approved for using in several medical applications  such as transdermal  
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patches, the preparation of jellies that dry rapidly when applied to the skin and in 

immediate and sustained release tablet formulations. Cross-linked PVA microspheres 

are also used for controlled release of oral drugs. Ophthalmic solutions, such as 

synthetic tears, may also contain PVA because it provides good dispersion and coating 

properties (Wade and Weller, 1994). PVA is valued for its solubility and 

biodegradability, which contributes to its very low environmental impact.  In addition, 

the intermolecular hydrogen bonds between hydroxyl groups belonging to monomer 

units of PVA with water molecules assist the dissolution of PVA in water (Gao et al., 

2010). PVA is increasingly being used in the field of biomedical applications due to 

its biocompatibility (Lin et al., 2006; Qi et al., 2004; Yang et al., 2004; Kobayashi et 

al., 2005).  

2.2.2 Polyvinylpyrrolidone (PVP) 

PVP belongs to the class of water soluble polymers. From a chemical point of 

view, PVP is a polymeric lactam with an internal amide bond. Considering the 

structure of monomer unit (Fig. 3), PVP has amphiphilic character since it contains a 

highly polar amide group that confers hydrophilic and polar-attracting properties, and 

also non-polar methylene groups in the backbone and in the ring that confer 

hydrophobic properties. 

 

 

 

Fig. 3 Chemical structure of PVP (Hassouna et al., 2009). 
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PVP is used in wide variety of applications. It is also interesting for biological 

point of view, since it has structural feature similar to those of proteins and has great 

potential for applications in medical domain. Specifically, PVP is a bio- and 

hemocompatible polymer with very low toxicity, so that materials can be used as 

medical devices intended for implanting in the human body as well as coating could 

be used also (Doneux et al., 1997). 

PVP is also interesting for technological applications. Its film forming and 

adhesive qualities are utilized in aerosol hair sprays, adhesives, and lithographic 

solutions. As a protective colloid, it is used in drug and detergent formulations, 

cosmetic preparations, polymerization reactions, and in pigment or dyestuff 

dispersions (Blecher et al., 1980). Moreover, PVP is miscible with hydroxyl-

containing polymers, such as PVA. Since, water-soluble polymers are potential 

contributors to environmental problems, it is particularly important to determine their 

fate in conditions of natural weathering. After using, depending on the domains of 

application, PVP can be discarded into solid waste disposal systems or as a dilute 

aqueous solution. In biodegradable tests have showed that PVP is recalcitrant fraction 

(Trimpin et al., 2001). 

PVA/PVP interactions have been described in many papers because of 

interesting properties of the resulting blend, which combines the features of both 

polymers (Taleb, 2009). Cassu et al. (1979) attributed the good blending of PVA and 

PVP to hydrogen bonding which may take place between the proton-accepting 

carbonyl moiety in pyrrolidone rings and the hydroxyl side group of PVA. Hydrogen 

bonding is also responsible for solubility of both PVA and PVP in water. This present 
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work is aimed at synthesizing copolymeric of blended PVA/PVP in aqueous solution 

for urea fertilizer coating which used encapsulation technique. 

 

2.3 Encapsulation Technology 

Encapsulation is a technique by which one material or a mixture of materials is 

coated with or entrapped within another material or system (Green and Scheicher, 

1995). Encapsulation may be defined as the process of forming a continuous, thin 

coating around encapsulants (solid particles, droplets of liquids), which are wholly 

contained within the capsule wall as a core of encapsulated material. On the other 

hand, entrapment refers to the trapping of encapsulants within or throughout a matrix 

(e.g., gel, crystal, etc.).  

The purpose of encapsulation is often to stabilize an active ingredient, control 

its release rate. Encapsulates for typical industrial applications can vary from several 

microns to several millimeters in diameter although there is an increasing interest in 

preparing nano-encapsulates. Encapsulates are basically particles with a core-shell 

structure, but some of them can have a more complex structure, e.g. in a form of 

multiple cores embedded in a matrix. Particles have physical, mechanical and 

structural properties, including particle size, size distribution, morphology, and wall 

thickness. Information about the properties of encapsulates is very important to 

understanding their behaviors in different environments, including their manufacturing 

processes and end-user applications.  

Normally, the material is coated which most often used a liquid form. The 

coated material is called various names such as core, shell, wall material, carrier, or 

encapsulant. With some encapsulation techniques, the product can be designed to 
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either release slowly over time or to release at a certain point. The protection provided 

by encapsulation can be to prevent degradation due to exposure to light or oxygen or 

to retard evaporation. In addition, encapsulation technology is well developed and 

accepted within pharmaceutical, chemical, cosmetic, and food industries (Augustin et 

al., 2001; Heinzen, 2002).  

 

 

 

Fig. 4 Scheme of core/shell particle. 

 

Many encapsulation techniques have been developed, such as spray drying, 

spray chilling, cooling, coacervation and fluidized bed coating (Madene et al., 2006).  

The widely used wall materials include polysaccharides and proteins, the key 

components in both natural processed foods (Tolstoguzov and Rivier, 1997). Such 

polymers have critical impact on the structure and stability (Sanchez and Renard, 

2002). 

Hydrocolloids, which lists of polymer used for encapsulation are quite 

extensive used which are synthetic and natural polymers (Bissery et al., 1984). 

Properties such as permeability, temperature stability, mechanical stability, and 
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stability to various ingredients are critical to successful encapsulation applications. 

Each hydrocolloid will offer different properties, but even within an individual 

polymer type, significant variations in these properties may exist. Consequently, 

control of critical capsule properties is very important.  

 

2.4  Physical characterization techniques of polymer coated fertilizers 

2.4.1 Microscopy 

Optical and electron microscope have been widely used to provide important 

information about size, surface topography, shell thickness and sometimes porosity of 

the shell materials of encapsulation product. The performance and dissolution 

properties of encapsulates with active ingredients are often related to the physical 

properties.  

Polarizing microscopes are extremely useful for specialized medical and 

industrial applications, such as identifying crystals or fibers suspended in liquid, 

identifying minerals in core samples and detecting defects in semiconductors or 

finding stress points in metal, glass and other materials. A polarizing microscope is a 

special microscope that uses polarized light for investigating the optical properties of 

specimens. Although originally called a mineral microscope because of its 

applications in petrographic and mineralogical research, in recent years it has now 

come to be used in such diverse fields as biology, medicine, polymer chemistry, liquid 

crystals, magnetic memory, and state-of-the-art materials. 

Scanning Electron Microscopy (SEM) that is capable of resolving structures 

with smaller dimensions than optical microscopy has often been used. SEM focuses 

electrons emitted by a heated filament to provide images restricted only by 
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wavelength of electrons. SEM must be operated under high vacuum to prevent 

collisions of electrons with air molecules, which can cause losses in resolution. SEM 

has a resolution of approximately 3 nm, which has the feature of simplicity in sample 

preparation and ease of operation. It has a great advantage because of its capability to 

analyse samples ranging in size from nano-metre to centimtre scale (Weiss et al., 

1995; Shu et al., 2006; Yan-yu et al., 2006; Roueche et al., 2006). The specious 

chamber and goniometer of scanning electron microscope can accommodate relatively 

large samples as compared to a transmission electron microscope and provide nearly 

unlimited points of viewing with the assistance of translational, tilting, and rotary 

movements. Nonetheless, SEM does not distinguish colours as optical microscopy 

does and has lower resolution compared to TEM. 

2.4.2 Thermal analysis techniques 

The structure of encapsulates defines how the molecules in encapsulates are 

organized. Two parameters are often used to characterize the fine structure of 

encapsulates: glass transition temperature (Tm) of encapsulates and crystallinity of 

encapsulate shell materials. Theses parameters may be used in designing encapsulates 

with desirable mass transfer properties (Meste et al., 2002).  

Ricciardi et al. (2004) used differential scanning calorimeter (DSC), x-ray 

diffractometer (XRD), and nuclear magnetic resonance spectrometer (NMR) to 

measure the degree of crystallinity of PVA hydrogels, and demonstrated that these 

three methods had different accuracies, which depended on the complexity of their 

structure. 

 DSC is a thermal analysis technique for measuring the energy required to 

maintain zero temperature difference between a sample and a reference (Hu et al., 
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2007). A similar technique to DSC is thermal gravimetric analysis (TGA), which is 

based on measuring weight changes associated with transformations of a material on 

heating (Foster and Clifford. 1996) and has been used to identify the thermal 

decompositions of a copolymer (Shukla and Srivastava, 2004).  

2.4.3  Fourier transform infrared (FTIR) spectroscopy   

Infrared (IR) spectroscopy is one of the most common spectroscopic 

techniques used by organic and inorganic chemists. Simply, it is the absorption 

measurement of different IR frequencies by a sample positioned in the path of an IR 

beam. The main goal of IR spectroscopic analysis is to determine the chemical 

functional groups in the sample. Different functional groups absorb characteristic 

frequencies of IR radiation. Using various sampling accessories, IR spectrometers can 

be accepted a wide range of sample types such as gases, liquids, and solids. Thus, IR 

spectroscopy is an important and popular tool for structural elucidation and compound 

identification (Sherman, 1997). 

Fourier transform spectrometers have recently replaced dispersive instruments 

for most applications due to their superior speed and sensitivity. They have greatly 

extended the capabilities of infrared spectroscopy and have been applied to many 

areas that are very difficult or nearly impossible to analyze by dispersive instruments. 

Instead of viewing each component frequency sequentially, as in a dispersive IR 

spectrometer, all frequencies are examined simultaneously in Fourier transform 

infrared (FTIR) spectroscopy (Sherman, 1997). 

 

2.5 Theoretical modeling based on Fick’s laws models 

A  serious  experimental  study  of  the  diffusion  of  one solution  into another  
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was first undertaken by Thomas Graham (1850), who  devised  a number of  

experimental techniques for studying  the  phenomenon  and  obtained  a great  deal  

of  qualitative  and quantitative  data.  His achievements in  this field have perhaps  

been  overrated and  he  is  more  justly remembered  for  his distinction  between  

crystalloids and colloids in terms of  the different rates at which they pass through 

membranes, and for his description of  the process of  dialysis.  A far more important 

name in the early literature of the subject is that of Adolf Fick (1829-1901). Fick's 

laws  of  diffusion and  the Fickian  frame  of  reference are  terms  which  frequently 

appear  in modern papers  on  transport  properties. Virtually  all  experimental papers 

on  diffusion are  concerned,  in the  first  instance,  with  the  determination  of  

diffusion  coefficients  defined in  a manner similar to that proposed by Fick, namely.  

Fick's principal paper on diffusion entitled "Ueber Diffusion" appeared in 

Poggendorff's Annalen in 1856. It was clearly intended to be read by physical 

scientists. Most of the theoretical studies used to model the diffusion process are based 

on Fick’s laws. That is the rate of transport through a unit area is proportional to the 

concentration gradient measured normal to area. The easiest assumption is that the 

proportionality (diffusion coefficient, D) is constant. A frequently used assumption is 

that the surface concentration immediately attains its equilibrium value and remains 

constant through the sorption process. 

Numerous investigators have unsuccessfully to develop a unified theoretical 

framework that could explain and model non-Fickian diffusion and its associated 

swelling (Aminabhavi et al., 1988; Chan et al., 1885-1889). 

Frisch (1966) and Crank (1979) were among the first researchers to attribute 

non-Fickian transport to time-dependent mechanisms within a polymer. Crank and 
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Park (1968) proposed a history dependent diffusion coefficient that contained a term 

that instantaneously changed with concentration to an equilibrium value. That model 

was able to predict many of the features of non-Fickian diffusion, but did not predict 

the sharp front. Their approach introduced the concept of differential swelling stresses 

at the boundary due to expansive and compressive forces of the swollen and non-

swollen regions.  

Frisch (1964) suggested that a polymer below its grassing temperature value 

(Tg) must possess history-dependent diffusion coefficients and experience time-

dependent changes in surface concentration in order to maintain sorption-equilibrium 

at its boundaries. These time dependencies are intrinsically related to the relaxation 

times for molecular rearrangement in the polymer. 

Long and Richman (1960) proposed that the concentration of solvent at the 

polymer surface does not instantaneously reach its equilibrium value. They assumed 

that the diffusion process can be divided into two states. The first stage “initial state” 

involves molecular rearrangements that occur almost instantaneously. The second 

stage is a slower process, leading to a final equilibrium. Thus, the diffusion process 

consists of two parts: the absorption due to the concentration gradient set by the initial 

surface concentration and that due to penetrate transport as a result of the time-

dependence of the surface concentration. This theory explains some non-Fickian 

diffusion behaviour, such as the two-stage sorption process. This concept introduced 

the relaxation idea of rather than a discontinuous jump or change in the diffusion 

coefficient as expressed previously by Crank. 

From modeling of Fick’s laws can be mentioned follows: equations 1 and 2 are 

frequently used  because of  its  simplicity  and  mathematical tractability.  This is also 
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known as Case I or Fickian diffusion.  

                                               
xd

cd
DJ                                                       (1) 

                                            
xd

Jd

td

cd
                                                             (2) 

Fick’s first law (equation 1) assumes that the flux (J) through a unit area of 

material which is proportional to the concentration (c) gradient of material. The 

constant of proportionality is known as the diffusion coefficient (D) where ρ is the 

fluid density. Note that the density is outside the gradient operator (Crank, 1979). 

Fick’s second law (equation 2) relates the concentration change as a function of time 

to change in flux with respect to position. The concentration in dimensions of amount 

of substance (mol/m
3
) is represent by C, t is time (s), and D is the diffusion coefficient 

in dimensions of [length
2
 time

−1
], example (m

2
/s) whereas, x is the length (m). A 

fundamental criterion for Fickian diffusion is that the surface concentration attains its 

equilibrium value immediately upon a change in conditions and remains constant 

through the sorption process, i.e., in a resin matrix system the polymer chain segments 

at the surface must instantaneously reach saturation. Although Fickian diffusion 

theories have been completely developed, most of the polymer-solvent systems do not 

obey such a simplified description (Vrentas et al, 1997; Neogi, 1983).  

Fickian diffusion is rarely observed for the transport of a liquid through a 

glassy polymer (Vrentas, 1993; Petropoulos et al., 1999). In the case of non-Fickian 

diffusion, a sharp front, which separates the dry polymer from the swollen polymer, is 

assumed to move linearly with time (Alfrey et al., 1966). If the mass uptake M can 

initially be represented by 
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                                             M = k t
n
                                                                (3) 

 

Where t is the time and k and n are constants, then Fickian sorption 

corresponds to n = 0.5. Case II sorption associated with n = 1. Anomalous sorption is 

characterized by: 0.5 < n < 1. Fig. 5 showed different classes of non-Fickian sorption 

or diffusion (Neogi, 1996). By applying the approach presented in this work, it is 

possible to control the rate of release for long period of time (from few minute to an 

estimated the un-dissolved nutrients and fertilizer solution period of several days). It is 

also possible to design devices with a particular time pattern of the release profile. So, 

Fickian, non-Fickian, and linear play an important role in controlling the rate of 

patterns can be obtained.  

The release results can be analyzed by using an empirical equation to estimate 

the value of n and K as follows (Al-Zahrani, 2000; Peng et al., 2006): 

 

                                             log (Mt/M) = log(K) + nlog(t)                                          (4) 

 

Where Mt/M is the release fraction at time t, n is the release exponent, and K is 

the release factor. From the slope and intercept of the plot of log (Mt/M) versus log (t), 

kinetic parameters n and K can be calculated. 

The n value is an empirical parameter characterizing the release mechanism 

(Shaviv, 2000). On the basis of the diffusion exponent, n value of 0.5 indicates the 

nutrient release mechanism approaches to a Fickian diffusion controlled release, 

whereas n equal to 0.1 indicates the nutrient release mechanism approaches to zero-

order release. The n value from 0.5 to 1.0 is a nutrient release mechanism for non-

Fickian diffusion or chain relaxation control release.  
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  Fig. 5 Different classes of non-Fickian sorption: (a) classical, (b) sigmodial, (c) 

two-step, and (d) Case II (Kee et al., 2005). 
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CHAPTER III 

CONTROLLED-RELEASE UREA FERTILIZER BY 

BIOPOLYMERIC ENCAPSULATION 

 

3.1 Abstract 

Biopolymers are currently the most popular controlled-release fertilizers, and 

offer great advantages over conventional fertilizers. PVA and PVP as the 

biodegradable polymers were desired for this studying. Experiments of urea granule 

based on PVA and PVP coating were carried in a rotary drum and polymer solutions 

were sprayed on the granules. To understand the releasing of encapsulated urea 

fertilizer (EUF), a mathematical of Fick’s law was obtained to predict urea releasing 

behaviors. The coating material was conducted PVA and PVP in various ratio 2:0 

(EUF1), 1:0 (EUF2), 1:0.25 (EUF3), 1:0.5 (EUF4), 1:1 (EUF5), and 1:2 (EUF6) by 

mass. The results showed that the predicted n values of between 0.86-0.98 were strong 

non-Fickian diffusion while un-coated urea was n values of 0.70 which released faster 

than all EUFs. The PVA coating polymer showed releasing control properties better 

than PVP. However, results revealed that PVP concentration had some effects on the 

controlled release. The reduction of PVP ratio was found to increase controlled release 

properties. Moreover, the ability of their polymer could control both the rate and time 

pattern of the release through different combinations. Consequently, EUFs could be 

easily produced with conventional process and had better controlled release  
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properties. Therefore, the EUF products have widely potential application in 

agricultural industry as urea encapsulated fertilizer. 

 

Keywords: controlled-release fertilizer, encapsulated urea fertilizer (EUF), non-Fickian 

diffusion, polymer-coated fertilizer, polyvinyl alcohol (PVA), polyvinylpyrrolidone 

(PVP) 

 

3.2 Introduction 
 

The growth of plant depends on the soil condition, quantity of water, as well as 

mainly a function of the quantity of fertilizer. Therefore, it is very important to 

improve the utilization of fertilizer nutrients. Fertilizers are the main factors that limit 

the development of agricultural production, which is very important to improve the 

utilization of fertilizer nutrients. Nitrogen is the most vital nutrient for crops, it has 

been considered the yield limiting one. Among the nitrogen fertilizers, urea is the 

most widely used in the crops as well as its high nitrogen content (46%) and 

comparatively low cost of production.  

However, consider leaching and vaporization, the utilization efficiency or plant 

uptake of urea is generally less than 50%. About 40-70% of nitrogen of the applied 

fertilizer is escaped to the environment and cannot be absorbed by crops (Dave et al., 

1999; Guo et al., 2005; Liu et al., 2007). As a neutral organic molecule, urea cannot 

be absorbed easily by the charged soil particles before hydrolyzing, resulting in a 

great quantity of urea running off and serious environmental hazards as only a fraction 

is really absorbed by plants.  

 One possible of this problem is the encapsulation of  fertilizer by membrane to  
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control the diffusion of water, leach, and release of the fertilizer. Recently, the use of 

slow release fertilizers is a new trend to save fertilizer consumption and minimize 

environmental pollution (Akelah, 1996; Jarosiewicz and Tomaszewska, 2003).  

 Controlled-release fertilizers (CRFs) are made to control the rate of nutrient 

release as well as control the slow diffusion of nutrient ions through the membrane to 

the soil (Ahmed et al., 1963; Lunt and Orteli, 1962). The CRFs for urea are made by 

coating the active soluble component as the membrane that serves as a diffusion 

barrier. Then, coating materials should be inexpensive and exhibited a good coating 

property. CRFs are made to release their nutrient contents gradually with the nutrient 

requirement of plant. These fertilizers can be physically prepared by coating the 

conventional fertilizer granules with various materials that reduce their dissolution 

rate. The release and dissolution rates of water-soluble fertilizers depend on the 

coating materials properties. At present, degradability of materials is an important 

focus on the research in this field because of the renewed attention towards 

environmental protection issues (Li, 2002; Shavit et al., 2002).  

 Polyvinyl alcohol (PVA) is a kind of excellent membrane material for 

preparation of a hydrophilic membrane that swells easily and even dissolves in water. 

PVA is valued for its solubility and biodegradability, which contributes to its very low 

environmental impact. PVA has also been approved for using in controlled releasing 

of fertilizer. Polyvinylpyrrolidone (PVP) has been interested as a binder in granules of 

urea fertilizer for controlling pore size of coating membrane. PVP polymer as a 

hydrophobicizer and stabilizer, can greatly improve membrane oxidative stability and 

chemical stability (Qiao et al., 2005). Moreover, PVP is miscible with hydroxyl-

containing  polymers,  such  as  PVA.  PVP  was  thus  interpenetrated  into  the  PVA  
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network due to increased cross-linking density. It has been extensively utilize and 

study in these form of its alone or mix for observed mixing behaviors and properties 

of the blends. Therefore, it seemed worthy of interest to prepare a new type of 

encapsulated urea fertilizer (EUF) with their polymer.   

 

3.3  Materials and Methods 

3.3.1  Materials  

 

Commercial urea fertilizer granules with diameter in the range 2-3 mm were 

purchased from the C.P. Company, Thailand. Polyvinyl alcohols (PVA) (CAS no. 

9002-89-5) are synthetic polymers used in a wide range of industrial, commercial, 

medical and food applications. It has a molecular weight between 26,300 to 30,000 

and a degree of hydrolysis of 86.5 to 89%. PVA was purchased from Aldrich 

chemicals. Polyvinylpyrrolidone (PVP) was purchased from Acros Organics. Other 

chemicals and solvents were all of analytical grade. Deionized water was used 

throughout the experiment. Osmocote® (13-13-13) was purchased from sotus 

international Co., Ltd.  

3.3.2  Methods 

3.3.2.1 Preparation of EUF 

Urea fertilizer granules were sieved to about 2-3 mm in diameter and 

were placed into a rotary drum, and 10% (w/v) of biopolymer solutions were sprayed 

on the granules. The adhesive was applied by spraying at regular time intervals. The 

urea coated granules were dried to a constant mass at 70°C overnight. The polymeric 

EUF granules were obtained for further structure and releasing analysis. Six 
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combinations among PVA and PVP were shown in Table 1. A controlled experiment 

without EUF was also carried out. 

 

Table 1  The combinations among PVA/PVP in different ratio. 

Combination PVA PVP 

  EUF 1   2   0 

  EUF 2   1   0 

  EUF 3   1   0.25 

  EUF 4   1   0.5 

  EUF 5   1   1 

  EUF 6   1   2 

 

 

3.3.2.2 Determination of urea  

A solution (0.5 ml) containing 4% (w/v) of p-dimethylamino-

benzaldehyde and 4% (v/v) sulfuric acid in absolute ethanol was added to 2 ml of a 

solution of urea. After 10 min of reaction at 25°C the absorbance of the solution was 

measured at 422 nm against a reagent blank using a spectrophotometer (Spectronic 21, 

Milton Roy Company). The concentrations of the yellow-coloured compound in the 

samples were determined by reference to the calibration curve. The absorption spectra 

were recorded against a reagent blank (Knorst et al., 1996). 

3.3.2.3 Controlled-release behavior of EUF  

To study the slow releasing behavior of EUF, the following experiment 

was carried out: Five grams of EUF was kept in a 10 mL syringe and allowed to 
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penetrate with deionized water and incubated at 25°C. Every one minute of incubation 

period, the deionized water was continuous feeding. The release urea solution of EUF 

in the containers were obtained and kept at 4°C to determine the content of urea, a 

spectrophotometer was used. For triplicate experiments were prepared at the same 

time. The release results were analyzed by using an empirical equation to estimate the 

value of n and K as follows (Al-Zahrani, 1999; Peng, Zhang and Kennedy, 2006): 

 

         Mt/M = Kt
n
 or log (Mt/M) = log(K) + nlog(t)                           (5) 

 

Where Mt/M is the release fraction at time t, n is the release exponent 

value, and K is the release factor. From the slope and intercept of the plot of 

log(Mt/M) versus log(t), the kinetic parameters n and K were calculated. 

3.3.2.4 Measurement of the water retention of EUF in sand 

Two grams of EUF were well mixed with 200 g of dry sand and kept in a 

container and then 200 g of deionized water was slowly added into the container and 

weighed (W1). A controlled experiment, i.e., without EUF, was also carried out. The 

containers were maintained at 25°C and were weighed every 4 days (Wi) over a period 

of 28 days (Wu & Liu, 2008). The water retention ratio (WR%) of sand was calculated 

using the following equation:  

 

                                               WR% = (Wi– W1) x 100 / 200                                       (6) 
 

 

3.3.2.5 Morphological analysis of EUF  

Morphological investigations of EUF were observed by using scanning 

electron microscopy (SEM) (Jeol, JSM-5600LV, Japan). The samples were dried at 
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70°C. Each sample was covered by gold dust in a vacuum in order to fix the sample 

and to make the detail visible to the SEM. The SEM images have been taken at 

different magnifications by mounting on metal stubs.  

3.3.2.6  Characterization of the outer coating material of EUF by 

FT-IR 

FT-IR spectra of pure PVA, PVP, urea, and urea coated with PVA/PVP 

in various ratios were recorded at room temperature using a Bruker TENSER 27 

spectrometer (Germany) at a resolution of 4 cm
-1

 in the range 4000-400 cm
-1

. The 

samples were mounted directly on the sample holder. Data processing was performed 

by OPUS version 7.0 (Bruker Optic GmbH, Germany). 

3.3.2.7 Thermal gravimetric analysis (TGA) 

 

TGA system of type TA Instruments SDT 2960 Simultaneous DTA-TGA 

(USA) under nitrogen atmosphere (100 mL/min) was used in this study. Sample 

weights between 5-10 mg were used and placed into alumina pans. The temperature 

was ranged from ambient to 600°C at heating rate of 10 °C/min. TGA data were 

recorded using a TA Instruments SDT-2960 DTA-TGA analyzer. 

3.3.2.8  Apparent viscosity measurement 

The apparent viscosity of PVA and PVP aqueous solution was analyzed 

with viscometer (Well-Brookfield LVT, series 82198, USA). The determination was 

carried out at room temperature (25°C). The viscosity of long-term retardant products 

is normally measured using a #1 spindle for products having a viscosity between 1 

and 100 centipoise (cP).  

3.3.2.9  Determination the efficiency of EUF on plant growth 

3.3.2.9.1  Experiment design 
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          In the experiment, eight different materials coating of urea 

granules, un-coated urea and osmocote® (13-13-13) were applied, as follows: (1) 

Unfertilized control (N = 0); (2) un-coated urea (N = 46); (3) EUF2 (N = 46); (4) 

EUF3 (N = 46); (5) EUF6 (N = 46); (6) Osmocote® (13-13-13) (N = 13); (7) PVP (N 

= 12.6) and (8) PVA (N = 0). Pots were arranged in a completely randomized design 

in the greenhouse with five replicates.  

3.3.2.9.2  Soil and fertilizer preparation 

          The soil sample was pre-incubated at imposing place for 7 days 

to eliminate moisture. Pots diameter were 15 x 13 cm and soil was taken in 40 pots 

which contained 3 kg of soil per pot. The experiment was conducted in a naturally lit 

greenhouse, located at the Suranaree University of Technology, Thailand, during 

October–November 2012, and temperature was between 20-30°C. Chinese kale 

(Brassica species) was grown in free draining pots containing soil. Seeds were first 

sown in germination pots, and 2 weeks after germination uniform seedlings were 

transplanted at a rate of one plant per pot. In the experiment, eight different fertilizers 

were applied at 30kg N/rai. Fertilizer was added into the pot after transplanting for 7 

and 14 days. All plants were well watered daily until harvesting stage.   

3.3.2.9.3  Observation of plant growth 

Forty-five days after seeding, plant growth parameters were 

investigated as followed; shoot and root length, fresh and dry weight, and element 

analysis including nitrogen, phosphorus and potassium. The methods for plant 

element analysis were followed as; 

- Nitrogen was analyzed by Kjeldahl method (Abraham and 

Rajasekharan, 1996). Total Kjeldahl nitrogen is the sum of free-ammonia and organic 
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nitrogen compounds which are converted to ammonium sulfate (NH4)2SO4, under the 

conditions of digestion. Calculations: 

 

                       % nitrogen = ((A-B) x N x 1.4) / w                               (7) 

 

   A = volume of titration with sample (mL) 

   B = volume of titration with blank (mL) 

   N = normality of HCL 

   w = weight (g) 

 

3.3.2.9.4  Statistical analysis 

All data were subjected by analysis of variance (ANOVA) and 

means were separated by Duncan’s multiple range tests (SPSS® software for 

WINDOW™, Version 13.0; SPSS, Chicago, IL). Significance of differences was 

established at P≤0.05. 

 

3.4 Results and Discussion 

3.4.1  Controlled-release behavior of EUF 

The EUFs were coated by spraying aqueous solution of PVA/PVP (2:0), 

(EUF1); PVA/PVP (1:0), (EUF2); PVA/PVP (1:0.25), (EUF3); PVA/PVP (1:0.5), 

(EUF4); PVA/PVP (1:1), (EUF5) and PVA/PVP (1:2), (EUF6) by mass ratios. All 

EUFs were separated into two groups, urea coated PVA (EUF1 and 2) and urea coated 

PVA/PVP (EUF3, 4, 5 and 6).  
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The releasing process of coated urea in water could be described as the 

following process. Water penetrated through the coating shell and dissolved the urea 

and then the dissolved urea diffuses into the water medium through the coating shell. 

Fig. 6 showed the cumulative released quantity versus time from PVA in different 

coating quantities. The coated urea was released at a constant rate in the first stage 

(initial state) and then released slowly till the end. 

The PVA coated urea particle (EUF1) release was 54% and 93% at 5 min and 

10 min, while the EUF2 release was 50% and 90% at 5 min and 10 min, respectively. 

The un-coated urea release was faster for 85% at 5 min and 100% at 10 min until 

endpoint (Fig. 6). Both EUF1 and EUF2 have shown strong non-Fickian diffusion 

behaviors, while un-coated urea was non-Fickian diffusion. 

Furthermore, the reduction in urea release of granules with a smaller quantity 

of PVA was obvious. Probably, PVA increased the hydrophobic and thereby reduced 

the water-sensitivity of the PVA coating. Therefore, the uptake of water and as a 

result the release of urea was decreased. Besides the hydrophobicity, also the coating 

quality had a major influence on the release of urea.    

The n value is an empirical parameter characterizing the release mechanism. 

On the basis of the diffusion exponent, an n value of 0.5 indicates the nutrient release 

mechanism approaches to a Fickian diffusion controlled release, whereas n equal to 

1.0 indicates the nutrient release mechanism approaches to zero-order release. The n 

value from 0.5 to 1.0 is a nutrient release mechanism for non-Fickian diffusion or 

chain relaxation control release.  

From the plot of log (Mt/M) versus log (t) (Fig. 7), the release exponent (n) and 

release factor (K) had been calculated. Table 3 summarized the values for urea  release  
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from EUF. The n values of EUF1 and EUF2 were in the range from 0.95-0.98, which 

were higher than un-coated urea. Therefore, the nutrient release mechanism was 

strong non-Fickian diffusion by PVA coating bipolymer. 

Fig. 8 showed the cumulative released quantity versus time from PVA and 

PVP in different ratios. The EUF3 was released 45% at 5 min and 84% at 10 min 

while the EUF4 was released 48% at 5 min and 90% at 10 min. The EUF5 was 

released 51% at 5 min and 87% at 10 min. The EUF6 was released 56% at 5 min and 

94% at 10 min. Similar trends were observed for the concentration dependence, where 

the PVA/PVP mass ratio ranged from 1:0.25 to 1:2. It depended on the PVP content. 

It could clearly be seen that the trends of releasing of urea was increased when 

increasing PVP content. Due to the hydrophilic nature of PVP, the biopolymer would 

be released well in water. 
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Fig. 6 Release behaviors of urea, EUF1, and EUF2. 
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Fig. 7 Plot of release data log (Mt/M) versus log (t). 
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Fig. 8 Release behaviors of urea, EUF3, EUF4, EUF5, and EUF6 
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Fig. 9 Plot of release data log (Mt/M) versus log (t) 

 

 

Table 2 The release factors (K), release exponents (n), and determination                             

coefficients (r
2
) following linear regression of release data of urea from 

EUF. 

Sample n K r² 

urea 0.70 23.97 0.9468 

EUF1 0.95 10.44 0.9827 

EUF2 0.98 9.37 0.9867 

EUF3 0.96 9.14 0.9910 

EUF4 0.93 10.22 0.9832 

EUF5 0.88 11.24 0.9858 

EUF6 0.86 13.05 0.9922 
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From the plot of log (Mt/M) versus log (t) (Fig. 9), the n and K values have 

been calculated. Table 2 summarized the values for urea release from EUF. The n 

value was in the ranged from 0.86-0.98. Therefore, the nutrient release mechanisms of 

all samples were non-Fickian diffusion. Providing the problem of using fertilizer as 

sufficient N fertilization to crops is critical to achieve high quality and yields. 

Encapsulated urea fertilizer is needed to control release, maximized N uptake 

efficiency, and minimized environmental hazards. It can be utilized as a management 

tool to supply nutrients during an extended period of time while reducing potential 

nutrient losses to the environment. Urea granules, being used as fertilizer, were coated 

in rotary drum with PVA/PVP polymer based formulations.  

The development of this conventional encapsulation technique on the basis of 

PVA/PVP blending with spraying polymer solution on the granules, in which PVP 

served as both a plasticizer and stabilizer on granule. High control releasing rate was 

obtained at room temperature for PVA/PVP in a mass ratio of 1:0 and 1:0.25 which 

EUF2 and EUF3. The release of urea through these coating was measured and 

compared to un-coated urea granules. When PVA was used, the urea release 

decreased. PVA was found more efficient than PVP in reducing the rate of release. It 

was also found that mixtures with PVA/PVP induced a non-Fickian release pattern as 

PVA.  

3.4.2  Measurement of the water retention of EUFs in sand 

The most of important application of EUFs is for agriculture and horticulture, 

especially for saving water in dry and desert regions and for expediting plant growth. 

Therefore, it is necessary to investigate the water-retention ability of EUFs in sand. 

Fig. 10 showed the water retention ratio versus time from PVA in different coating 
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quantities. The water-retention behaviors of the sand with and without EUFs were 

showed in Fig. 10-11. The addition of EUFs to sand could obviously increase the 

water-retention another way the water evaporation was decreased. The water retention 

ratio of sand without EUFs was remained 32.8 and 14.6 wt% on the 6
th

 and 15
th

 days, 

respectively, while that of sand with EUF1 was remained 46.7 and 17.5 wt% on the 6
th

 

and 15
th

 days, respectively. The water retention ratio of sand with EUF2 was remained 

49.0 and 21.0 wt% on the 6
th

 and 15
th

 days, respectively. After 21 days, the water-

retention was escaped from the sand both the sand with and without EUFs. 
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Fig. 10  Water-retention behavior of sand with two formula EUFs (EUF1 and EUF2) 

                and sand without EUF as control. 
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Fig. 11  Water-retention behavior of sand with four formula EUFs (EUF3, EUF4, 

EUF5, and EUF6) and sand without EUF. 

 

From this study, it was indicated that EUF had good water-retention capacity 

in sand. The both formula of EUFs could be saved and managed water. In addition, 

that they could be effectively used for the growth of plant. Similar trends were 

observed for the concentration dependence, where the PVA/PVP mass ratio ranged 

from 1:0.25 to 1:2. Fig. 11 showed the water retention ratio of sand with EUF3 was 

remained 43.4 and 16.9 wt% on the 6
th

 and 15
th

 days, respectively. The water retention 

ratio of sand with EUF4 was remained 49.4 and 19.6 wt% on the 6
th

 and 15
th

 days, 

respectively. EUF5 was remained 45.5 and 19.5 wt%, while EUF6 was remained 43.7 

and 16.4 wt% on the 6
th

 and 15
th

 days, respectively. After 21 days, the water-retention 

was also escaped from the sand both the sand with and without EUF.  
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Addition of EUF to sand, the coated urea had increased water-retention and 

decreased the water evaporation. In addition, that they could be effectively used for 

the growth of plant. These were significant advantages over the normal slow release 

fertilizers which always only had a controlled-release property. The reason was that 

the outer coating of EUF could absorb and store a large quantity of the water in the 

sand, and allowed the water absorption in it to be slowly released with the decrease 

the moisture in the sand. Concurrently, urea could also be released slowly with the 

water. Therefore, the swollen EUF was adjusted like additional nutrient reservoir for 

the plant-soil or sand system, and thus could increase the utilization efficiency of 

water and fertilizer at the same time. Moreover, the coating materials were not 

harmful to the soil (Wu and Liu, 2008). 

3.4.3  Scanning electron micrographs of EUF  

Scanning electron micrograph (SEM) of EUF granules and their surface 

morphologies are depicted in Fig. 12. Urea granules and EUF granules were 

photographed in shape and characteristic of surface by SEM. The SEM images of all 

EUF were shown in Fig. 12 which displayed the overall surface of urea coating with 

PVA and PVP. There were many apertures found on surface, it seems water could be 

absorbed by the fertilizer granules because of the high specific surface area. Urea 

showed the surface without coating materials. It cloud be observed that the small hole. 

At the same time, EUF could be inferred a small plate-like crystals (5-10 µm) with 

rough surface. PVP component was seen as typical amorphous spherical particles 

(Fig. 12). PVP particles were appeared as flakes (Kumar et al., 1999). 

However, the characteristic of coating materials were showed more than one 

form of PVA/PVP coated on urea granules such as plates, needles and bundles. These 
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results reveal that the biopolymers (PVA, PVP) are compatible. The surfaces of all 

images are composed of relatively regular crystal and the crystals have strong 

tendency to aggregate. Therefore, this experiment was used PVA/PVP for material 

coating because of its higher strongly than un-coated urea. 
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Coating 
Magnifications 

        30X     500X 1000X 
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Fig. 12 Scaning electron micrographs of urea, PVA/PVP (2:0), (EUF1); PVA/PVP 

(1:0), (EUF2); PVA/PVP (1:0.25), (EUF3); PVA/PVP (1:0.5), (EUF4); 

PVA/PVP (1:1), (EUF5) and PVA/PVP (1:2), (EUF6) surface morphology of 

magnification x30, x500, and x1000. 
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3.4.4  Polarized microscopy  

The polarization colors seen in the microscope could be correlated with the 

actual retardation, thickness, and birefringence of the sample (i.e., the optical path 

difference of the sample) and were reiterated in multiples of 550 nm. This is visible as 

a color change every 20-30 nm up to 550 nm, and the colors repeat for an additional 

550 nm, and so on. The first set of colors is referred to as first order, followed by 

second order etc. up to seven order. The birefringent colors could be correlated to 

specimen thickness by a reference scale (Michel-Lévy scale).  

The ray is transverse the crystal by different paths, in which one wave will 

become retarded with respect to the other. The difference between these refractive 

indices depends on the orientation of the crystal lattice relative to the ray. At one or 

two positions relative to the light ray was occurred in urea and coating materials (Fig. 

13). Image analysis of polarized microscopy methods were obtained spherical 

particles and differently shaped particles. Normally, 100-300 nm of coating thickness 

of membrane coating granules was appeared on its, which played a major filtration 

barrier role (Kanwar et al., 1980) by delaying or preventing the movement of large 

molecules and also negatively charged molecules (abundant in sulfate and carboxyl 

groups).  

The definitions of coating thickness are many analyses which based on the 

distances between borders required to be an extension of the radius originating from 

the centre of gravity of the pellet. However, in this work, these are determined from 

images obtained using polarized microscopy. A method of making a light polarizing 

material having excellent polarization characteristic over wavelengths from the visible 

to the infrared (IR) region is disclosed. IR transmitting materials of EUF was 

performed on the surface while un-coated urea was not occurred coating material. The 

resulting polarizer material could be produced in white sheet form on border a granule 

of EUF. Fig. 13 illustrated a magnified view of the resulting polarizing material 

showing in cross section. Image analysis was concluded to be the optimal method for 

narrow size distributions. As a result, the coating granules are spherical of about in 

range of 350-400 μm in diameter from average calculation.  

 

 

 

 

 

 

 

 

 



                            
 

 

 

Fig. 13 Cross section of coated urea pellets under polarized microscopy (a) urea uncoated, (b) urea coated or encapsulated PVA/PVP. 
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3.4.5 FT-IR spectroscopy 

 

FT-IR spectra of urea are appearance on the characteristic NH2 stretching (ν) 

band (3500-3100 cm
-1

) and the CO stretching band (1800-1500 cm
−1

). The symmetric 

and asymmetric NH2 stretching bands due to the intramolecular coupling of equivalent 

NH bonds of monomeric urea occur at 3548 and 3440 cm
−1

, respectively (King, 1972; 

Li et al., 1987). Fig. 14 presented of two bands at 3435 and 3338 cm
−1

, which assign 

to the ν(NH) vibrations. The frequency region 1800-1500 cm
−1

 is constituted of the 

band which assigned to the CO stretching of urea at 1678 cm
-1

.  The comparison 

among the CO band positions of monomeric urea was occurred (1734 cm
−1

) (King, 

1972). The frequency region 1640-1550 cm
−1

 is constituted of NH bending of urea at 

1621 cm
-1

. Yamaguchi et al. (1957) observed frequencies in the spectra of urea. The 

two vibrations of the frequencies 1686 cm
-1

 and 1603 cm
-1

, there are considerable 

contributions of both CO stretching and NH2 bending motions, whereas Stewart 

(1957) found that the 1686 cm
-1

 band of CO stretching vibration and the 1603 cm
-1 

band of NH2 bending motion. The calculations studied by Yamaguchi et al. (1957) 

showed that for the band at 1686 cm
-1

 of the NH2 bending motion is greater than that 

CO stretching motion. The 1464 cm
-1

 frequency of urea is assigned to the CN 

stretching vibration.  

 

In case of urea dissolved in a series of halogen derivatives of aliphatic 

hydrocarbons (1700 cm
−1

) (Dobrowolski et al., 1994), urea dissolved in acetonitrile 

(1695 cm
−1

) (Hadzie et al., 1976), and pure solid urea (1682 cm
−1

) suggests that the 

environment is strongly affected by changes of the urea CO group surroundings. In 

the bulk, urea develops an extended network constituted by infinite chains of 
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molecules linked together by two hydrogen bonds in a head-to-tail manner. Each 

chain is orthogonal to the neighboring chain (Dong et al., 2000). 
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Fig. 14  FT-IR spectra of pure urea in the range of 3500-500 cm
-1

 

 

From the FT-IR spectra of pure PVA, the wide absorption band at about 3305 

cm
-1

 is attributed to OH stretching vibration of hydroxyl group. The band 

corresponding to CH2 asymmetric stretching vibration occurs at about 2920 cm
-1

. The 

band of 1143 and 1420 cm
-1

 corresponds to C-O stretching of acetyl groups present on 

the PVA backbone (Fig. 15). The other work presented, the spectra of PVA are 

showed absorption peaks of PVA at about 3247 cm
-1

 (OH stretching) and about 1082 

and 1414 cm
-1

 for the -C-C group (Rodrigues et al., 2007). Where appearing of C=O 

stretching is due to semicrystalline nature of the blends. The vibrational band at about 
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1646 cm
-1

 corresponds to C-O symmetric bending of PVA and PVP (Laot et al., 1999; 

Wu et al., 2001).  

All major peaks related to hydroxyl and acetate groups were observed. The 

large bands observed between 3550 and 3200 cm
-1

 are linked to the stretching O-H 

from the intermolecular and intramolecular hydrogen bonds. The vibrational band 

observed between 3000 and 2840 cm
-1

 refers to the stretching C-H from alkyl groups 

and the peaks between 1750-1735 cm
-1

 are due to the stretching C=O and C-O from 

acetate group remaining from PVA (Silverstein, 1994; John, 2000; Andrade et al., 

2006). 
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Fig. 15  FT-IR spectra of pure PVA in the range of 3500-500 cm
-1

 

 

PVP is a highly hygroscopic polymer, an absorption band in the hydroxyl 

region corresponding to adsorbed water which was observed on the infrared spectra 
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(Fig. 16). The study vibration of OH groups of PVP was shown at 3405 cm
-1

 which 

observed an intense band between 3750 and 3100 cm
-1

 vibration of OH groups from 

bound of water (Qiao et al., 2010).The vibrational band was observed at 2955 cm
-1 

refers to the stretching C-H from alkyl groups. The bands at 2954 and 2894 cm
-1

 arise 

from the stretching of -CH3-, -CH2-, and CH- groups (Qiao et al., 2010).  

Although the stretching absorption band at 1557 cm
-1 

, which is attributed to 

the ν(C-N) of PVP could not be unambiguously assigned, a sharp peak at 1672 cm
-1

, 

which is ascribed to ν(C=O) absorption from PVP, was clearly observed (Qiao et al., 

2010). The frequency of 1672 cm
-1

 (keto carbonyl stretching band) these data suggest 

that complex with hydrogen bonded, but this hydrogen bonding would not be a strong 

one. The behavior of carbonyl stretching bands of PVP has been observed frequency 

at 1652 cm
-1 

band is definitely lower in frequency than the corresponding bands.
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Fig. 16  FT-IR spectra of pure PVP in the range of 3500-500 cm
-1
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Fig. 17  FT-IR spectra of urea coated with biopolymers (a) PVA/PVP (2:0), (EUF1);             

(b) PVA/PVP (1:0), (EUF2); (c) PVA/PVP (1:0.25), (EUF3); (d) PVA/PVP             

(1:0.5), (EUF4); (e) PVA/PVP (1:1),(EUF5) and (f) PVA/PVP (1:2), (EUF6)             

by mass ratios. 
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To clarify the conducting mechanisms of PVA/PVP blend composite on urea 

granule at different ratios, 2:0, 1:0, 1:0.25, 1:0.5, 1:1, and 1:2 by mass (Fig. 17). FT-

IR spectra were recorded in the wavenumber region between 3500 and 500 cm
-1

, 

which covers the whole range of all of the characteristic IR vibrations. All of the 

spectra show an intense between 3435 and 3338 cm
-1

, which were ascribed to the 

stretching vibration of NH2 stretching band (3500-3100 cm
-1

) from urea. Similar 

behavior was observed by analyzing the urea CO band (Calvaruso et al., 2001). The 

position bands at CO group of urea (1800-1500 cm
−1

) is not involved in 

urea/surfactant interactions but rather in urea/urea interactions, i.e., hydrogen bounded 

with urea NH2 groups (Hadzi et al., 1976; Mido, 1973; Huber et al., 1994).  

It could be seen clearly from FT-IR spectra for each EUF. The spectrum of the 

blend was similar to that of spectrum of urea (Fig. 14). It must be pointed out that the 

amount of materials coating (PVA/PVP) were markedly smaller than that pure solid 

(urea), whereas the spectra occurring at about 3435 and 3338 cm
-1

, assigned to the 

NH2 symmetric stretching, is markedly larger. Also indicates that urea encapsulation 

is does not established of specific interactions between PVA/PVP on urea coated. 

3.4.6  Thermal degradation process 

Thermogravimetric analysis (TGA) is a process in which a material is 

decomposed by heat, which causes bonds within the molecule to be broken. TGA 

plays an important role in determining thermal stability of the materials. TGA curves 

and their derivatives TGA are presented. The thermogravimetric (TG) and derivative 

thermogravimetric curves (DTG) were shown in Fig. 18. Chen and Isa (1998) applied 

simultaneous thermogravimetry and mass spectrometry to the investigation of the 

decomposition of urea and concluded that this compound had a complicated behavior 

of thermal decomposition. In Fig. 18 (b) the stages of decomposition were observed, 
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which starts before the melting point (132.5°C) until the complete oxidation of the 

sample. The first stage was a wide scale weight loss that started between 130 to 

230°C. The second stage was fast thermal decomposition for urea residue between 

300 to 360°C. The initial loss (between 25 and 150°C) was related to dehydration of 

adsorbed water (nonconstitutional water), interlayer water, and exchangeable cations 

water. The mass was lost above 350°C corresponds to elimination of structural 

hydroxyl and organic matter similar as Santos, (1975) and Bayram et al., (2010). 

There are two main peaks of the DTG curve (weight loss rate) in this stage: the 

maximum weight loss rate occurred at 226°C, while the temperature at secondary 

peak is 348°C (Fig. 18b).  
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Fig. 18 TG (a) and DTG (b) curves of urea under nitrogen with heating rate 10°C/min. 

 

There are two distinct and well-separated turns (300-400°C and 400-500°C) in 

the TG curves (Fig. 19a) and two corresponding weight-loss peaks in derivative 

thermogravimetric (DTG) curves for pure PVA (Fig. 19b). The weight loss of PVA 

gradually starts at 160°C and thereafter it begins to abruptly decompose at 280°C. 

Therefore, the peak degradation temperature with maximum weight loss rate was 
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presented. The thermal degradation of PVA can be roughly regarded as a two-step-

degradation. Correspondingly, at a given lower temperature the degradation rate is 

significant (Zheng et al., 2006).  

The linear increase of thermal degradation temperatures with heating rate is 

caused by the heat hysteresis, i.e. the inner part of the samples cannot follow the 

program temperature when the temperature increases too fast. Theoretically, the 

slower the heating rate, the more accurate the degradation presents. According to 

others work (Alexy et al., 2001; Gilman et al., 1994; Zhao et al., 1998) they found that 

PVA thermally degrades in two steps. At the first degradation step mainly involves 

the elimination reactions, while the second one is dominated by chain-scission and 

cyclization reactions.  

The weight losses in the first and second stages could be respectively 

attributed to the expulsion of water molecules from the polymer matrix or the 

moisture absorbed from the air, the decomposition of hydroxide groups, and the 

splitting of the main chain of PVA followed by decomposition of the polymer 

backbone above 450°C (Jinli et al., 2010). 
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Fig. 19 TGA (a) and DTG (b) curves of PVA under nitrogen at a heating rate 

                     10°C/min. 

 

TG and DTG curves of PVP were shown in Fig. 20. The thermal 

decomposition of pure PVP was observed initial weight loss at 35-100°C, is due to 

loss of OH content (Sivaiah et al., 2010). In the DTG curve of PVP in thermal 

stability that starts to decomposed at 320-480°C. However, the weight loss was also 

observed at 480-600°C regions under nitrogen which is mainly attributed to thermo-
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oxidative degradation of PVP polymer chain (Li, 1999). Other work, pure PVP 

showed high thermal stability that starts to decompose at 400°C which due to lose of 

associated water (Cerrai et al., 1994; Cerrai et al., 1996).   
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Fig. 20 TG (a) and DTG (b) curves of PVP under nitrogen with heating rate 

                      10°C/min.  
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After coating, the EUF species dried to evaporate the solvent. The compact 

film was formed after drying at 70°C for 24 h. In the case of PVA, the polymer chains 

are very flexible due to either intra or inter molecular associations. This flexibility of 

the chain in PVA varies monotonically with temperature. Fig 21a showed the 

influence of PVA/PVP contents ratio on the thermal stability of formulated coating 

urea. The representative TGA curves were shown the initial decomposition 

temperature of PVA/PVP blended membranes which coated on urea granule was at 

about 210-220°C, whereas the initial decomposition was at about 300-400°C for pure 

PVA membrane as well as the decomposition of pure PVP occurred in a single step 

starting about at 420°C. The maximum decomposition temperature of PVA/PVP 

shifted significantly from about 350°C to about 400°C. On analysis of the mixtures, 

the maximum decomposition temperatures of PVA/PVP blended are lower than that 

pure PVA or PVP. The weight% loss decreased with increasing the PVP content. 

However, the biopolymer mixtures were coated on the surface of urea fertilizer 

and dried in the oven held at 70°C. The coating of PVA and PVP was carried out by a 

solvent-evaporation process. Moreover, the quantity of mixtures solution sprayed on it 

should be not too much due to preventing the water reacting with water and urea 

fertilizer. All of the samples displayed three major weight loss stages at around 140-

200, 220-340, and 350-480°C, followed by the final decomposition of the biopolymer 

coated on urea granule. For the samples exposed to TG analysis, the weight losses in 

the first second and third stages were occurred. Further analysis by D-TGA revealed 

that with increasing PVP content in the urea, the degradation temperature was 

increased which illustrates the high thermal stability of the PVA network structure 

(Jinli et al., 2010). 
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Fig. 21 TG (a) and DTG (b) curves of urea coated with biopolymers (EUF1)                       

PVA/PVP (2:0); (EUF2) PVA/PVP (1:0); (EUF3) PVA/PVP (1:0.25);              

(EUF4) PVA/PVP (1:0.5); (EUF5) PVA/PVP (1:1); (1:2), and (EUF6)                    

PVA/PVP (1:2) by mass ratios, under nitrogen with heating rate 10°C/min.  

 

3.4.7 Viscosity 

The viscosity of PVA and PVP solutions was measured by a Brookfield digital 

viscometer at 25°C. The viscosity of 10% PVA solution was showed 122.5cP (pH 

6.7), while 10% PVP solution was showed 22.0cP (pH 5.9). The temperature of 
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sample was ranged between 32.4-32.9°C. Among all the water-soluble neutral 

polymers, PVP is an unusually soluble one. Its water solution also has a much lower 

viscosity compared to other polymer solutions with the same concentration and 

molecular weight (Mohamadi et al., 2008). The viscosity is very low, e.g., 27 cP for 

the 4.5% solution and only 3 cP for the 1% solution of PVP (Mr = 1,000,000) as a 

function of concentration in 1xTBE buffer (Gao and Yeung, 1998).  

PVA solutions are generally shear thinning and may exhibit significant 

thixotropy (Hebeish et al., 1996). Normally, the viscosity of aqueous PVA solutions 

increases with the molecular weight and concentration which increased because the 

existence of longer chains or higher molecular weight, and/or more chains or higher 

concentration enhances the formation of inter and intra molecular hydrogen bonding.  

The water becomes a poorer solvent and hence the viscosity of the solution increases. 

The temperature and % hydrolysis have a weaker effect on the solution viscosity 

because the amount of residual acetic groups or more active molecular mobility does 

not help as much as molecular weight or concentration on reducing the hydrogen 

bonding within and between chains (Wiley and Sons, 1971). 

 

Table 3 Viscosity data of PVA and PVP aqueous solution. 

Sample Viscosity (cP) Temperature (
๐
C) 

10% PVA  122.5 32.4 

10% PVP  22 32.9 
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3.4.8  Plant cultivation with urea coated PVA/PVP in greenhouse 

Nitrogen (N) is an essential nutrient for plant growth and in the desire to 

produce more food, farmers apply it intensively, and often in excessive quantities, in 

the form of nitrogen-based fertilizers. Chinese kale is the main leafy vegetable crops 

grown in south-east Asia countries, especially in Thailand. This Brassica species 

originated in China, however, different cultivars of them can be grown successfully in 

a wide range of climatic conditions including cool winters, warm summers and even 

the hot and humid conditions experienced in the Thailand. Leafy vegetable is 

expected to grow where there is an adequate water supply and the soil is well drained. 

Effects of different material coating of urea fertilizer on vegetables growth have 

attracted considerable attention. These experiments have shown that most leafy 

vegetables preferred N, and that the application of urea coated with biopolymer 

usually promoted their growth.  

 3.4.8.1  Soil characterization 

The results were shown in Table 4. The result revealed that at low 

levels of nitrogen (0.37 mg/kg) was not a serious concern because observing urea 

could be truly affected on plant. It has long been known that N is one of the elements 

of which supply is most often limiting growth. Traditionally agricultural research has 

focused on how to provide the crop with sufficient nitrogen to guarantee optimum 

yields. If efficiency was taken into account, the reason was usually to maximize 

financial returns rather than to minimize the danger of leaching.  

The propose was to observe the effect of un-coated urea and coated 

urea with PVA/PVP in the soil-crop system. A soil test was taken from each plot 

before sowing. In this work was presented of the relevant processes underlying plant 
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response to nitrogen nutrition. Soil was planted with pH 7.75, organic matter content 

7.4 % and adequate level of available P and K.  

 

Table 4 Chemical characteristics of the soil before fertilizer applications. 

Parameter     Value   

pH (water, 1:1)  7.75  

OM (%)  7.4  

EC (mS/cm)   0.33  

Available N (mg/kg)  0.37  

Available P (mg/kg)  29.6  

Available K (mg/kg)  877.15  

 

3.4.8.2  Application of EUF as N fertilizer for vegetable 

The experiment was conducted during October 2012 to November 

2012, and temperature was between 20-30°C. The experiment was obtained for 45 

days. Nitrogen, as urea (46%), was broadcast into the soil at 30 kg/rai in each pot. In 

the previous experiment, EUF2 and EUF3 were showed the best Fick’s law value of 

controlled-release behavior while EUF6 was showed the lowest value. Thus, 

investigation of the best EUF and the lowest EUF was interested for this study. Eight 

treatments were applied, as follows: (1) unfertilized control (N = 0); (2) urea (N = 46); 

(3) EUF2 (N = 46); (4) EUF3 (N = 46); (5) EUF6 (N = 46); (6) osmocote (13-13-13) 

(N = 13); (7) PVP solution (N = 12.6) and (8) PVA solution (N =0).  
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All treatments were contained fertilizer or coating solution in the same 

weight (N calculated from 30kg/rai). Pots were arranged in a completely randomized 

design in the greenhouse. Fig. 23 showed statistical analyses demonstrated the 

difference between treatments. Analysis of variance at (P ≤ 0.05) and showed the F-

test was significant, mean separation was done using the Duncan's Multiple Range 

Test. Each treatment was five replicated. All results of fresh weight and dry weight 

were summarized in Table 5. Stem length, root length, and leaf area were summarized 

in Table 6. 

From the data of plant growth found that urea coated with biopolymer 

can be stimulated plant growth higher than control. Kale planted with EUF2 and 

EUF3 had significantly (P ≤ 0.05) increased the fresh weight and dry weight 

compared to plants with urea and control (Table 5). There was significant difference 

in plant yield between urea fertilizers. Plants with control, osmocote, PVP and PVA 

resulted in plants with lowest in stem and root dry weight.  

Stem length showed a significant different at P value ≤ 0.05 highest in 

urea, EUF2, EUF3 and EUF6 (Table 6). Root length showed significantly highest in 

EUF2 treatment. The amounts of leaf per unit area of kale exposed to significantly the 

high value of leaf area in urea, EUF2, EUF3 and EUF6. Leaf area is important in 

determining yield through radiation interception (Monteith, 1977) and biomass 

production (Watson, 1958; Nanda et al., 1995). Application of coated urea was 

slightly increased leaf area, while control, osmocote, PVA, and PVP was slightly 

smaller leaf area. Leaf area is depends on biophysical factors such as soil water, 

nutrient supply, temperature and diseases as they affect leaf size, appearance and 

persistence (Terry et al., 1983).  
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The results can be concluded that EUF2 and EUF3 resulted to the 

highest stem fresh weight, root fresh weight, stem dry weight and root dry weight. 

The study showed that kale plants have the ability to take up N source and partition 

into different plant parts. The results were also showed that PVA and PVP coated urea 

applied (EUF2 and EUF3); kale plants absorbed a maximum of N as seem in dry 

weight of plant as biomass of plant (Table 5). Kale plants with EUF2 and EUF3 

significantly increased kale fresh stem and dry matter accumulation. These suggested 

that PVA or PVP did not available to kale plants for growth and development.   

 

Table 5 Fresh weight and dry matter weight in stem and root of kale which treated 

with un-coated and coated urea.                

Treatment Fresh weight (g/plants) Dry weight (g/plants) 

  Stem Root Stem Root 

Control (N = 0) 3.95
c
 0.36

d
 0.41

c
 0.07

c
 

Urea (N = 46) 36.05
b
 1.82

bc
 3.64

b
 0.37

b
 

EUF2 (N = 46) 44.18
a
 2.86

a
 4.56

a
 0.56

a
 

EUF3 (N = 46) 43.84
a
 2.33

b
 4.64

a
 0.52

a
 

EUF6 (N = 46) 39.95
ab

 1.77
c
 4.32

a
 0.42

b
 

Osmocote (N = 13) 6.26
c
 0.26

d
 0.55

c
 0.05

c
 

PVP (N = 12.6) 3.42
c
 0.18

d
 0.35

c
 0.03

c
 

PVA (N = 0) 2.15
c
 0.16

d
 0.26

c
 0.04

c
 

% CV  11.54 24.17 12.75 21.06 

Values followed by the same letter are not significantly different at P ≤ 0.05 by DMRT 
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Table 6 Stem length, root length, and leaf area of kale which treated with un-coated 

and coated urea.               

Treatment Stem length (cm) Root length (cm) Leaf area (cm
2
) 

Control (N = 0) 20.50
cd

 9.83
bc

 74.53
cd 

Urea (N = 46) 39.67
a
 15.67

ab
 455.47

b
 

EUF2 (N = 46) 37.33
a
 22.33

a
 569.15

a
 

EUF3 (N = 46) 33.16
b
 16.00

ab
 542.77

a
 

EUF6 (N = 46) 37.33
a
 15.67

ab
 468.45

b
 

Osmocote (N = 13) 21.83
c
 12.5

bc
 109.96

c
 

PVP (N = 12.6) 18.00
d
 7.33

c
 61.19

cd
 

PVA (N = 0) 14.66
e
 12.00

bc
 39.83

d
 

% CV 6.69 30.36 12.44 

 

Values followed by the same letter are not significantly different at P ≤ 0.05 by DMRT 
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Fig. 22  Kale plant harvesting stage treat with (a) control; (b) urea; (c) EUF2; 

  (d) EUF3; (e) EUF6; (f) Osmocote; (g) PVP and (h) PVA. 
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According to Wilson et al. (2006), fertilizer management is an important 

aspect of growing high yielding in brassica crops. The key drivers of soil fertility for 

crop production in general are nitrogen (N) and phosphorus (P) (Moot et al., 2007) 

with leafy brassica crops responding strongly. Phosphorus plays regulatory role in 

plant growth, photosynthesis, energy conservation, carbon metabolism and enzyme 

function (Akhter et al. 2007; Moot et al. 2007). Nitrogen is necessary for N-biological 

products production in the plant, for the proper growth of leaves, and for many other 

critical functions (such as photosynthesis) performed.  

Plant element analysis of Chinese kale (Brassica alboglabra Bailey) belonging 

to the Brassicaceae family applied with un-coated and coated urea. Osmocote was 

incorporated into the soil for plants culture which was compared with EUFs as 

controlled-release fertilizer. Plant growth was used as an indicator of the effectiveness 

of the treatments. Of all the slowly-release products available, Osmocote has been 

around the longest. It is available in many different formulations and works from 2 to 

6 months, depending on temperature. Normally, use of the controlled-release fertilizer 

Osmocote for the culture of ornamental plants is desirable practice.   

In this study, the content of %N (Kjeldahl method) and total N (biomass) were 

showed in Table 7. A comparison of the level total N in kale in this treatment showed 

that coating materials (PVA and PVP) were distinctly lower values (1.05 and 1.36), 

respectively. Osmocote was found higher total N than control but not significantly due 

to osmocote (13-13-13) has a slightly longer release period which used to extend the 

length of time nutrients are available to the plant (2.16 and 1.69), respectively. For 

inorganic fertilizers (urea) are usually high soluble and are more rapidly available for 

plant growth. Some inorganic fertilizers  (EUF2, EUF3, and EUF6) were  coated  with  
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biopolymers to slow down the release of nutrients. The highest content of total N was 

found in EUF2 (24.14), and EUF3 (24.56), which significant higher than uncoated 

urea (13.29) and control (1.69), respectively.  

The percentage of N in leaves of kale was determined by Kjedahl method. 

Also showed N accumulation ranged from 3.49-5.24%. Chuphutsa, 2010 showed 

content of %N in kale (Brassica oleracea) ranged from 3.00-5.18%. The content of 

%N in kale varied from 0.54 to 0.74 % in fresh matter (Korus, 2010 and Lisiewska et 

al., 2008). Lower levels of total N were recorded in such leafy vegetables as New 

Zealand spinach (Jaworska and Slupski, 2001), lettuce and summer endive (Wills et 

al., 1986), and among brassicas, in broccoli (Wills, 1987); while in Brussels sprouts 

the content was higher (Gebczynski, 2002).  
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Table 7  Element analysis of Kale in the values of nitrogen (%N) by Kjedahl method 

and total N/plant (from dry matter) which treated with un-coated and coated               

urea. 

Treatment  % N  Total N/plants 

Control (N = 0) 4.05
b
 1.68

d
 

Urea (N = 46) 4.04
b
 13.29

c
 

EUF2 (N = 46) 5.24
a
 24.14

a
 

EUF3 (N = 46) 5.12
a
 24.56

a
 

EUF6 (N = 46) 3.62
c
 16.63

b
 

Osmocote (N = 13) 3.56
c
 2.16

d
 

PVP (N = 12.6) 3.49
c
 1.36

d
 

PVA (N = 0) 3.63
c
 1.05

d
 

%CV 3.53 7.08 

Values followed by the same letter are not significantly different at P ≤ 0.05 by DMRT 
 

The relation of stem dry weight and stem length were compared with 

accumulation of N in plant analysis that showed in total N (%). Fig. 23 showed that 

the level of N was associated with stem dry weight. The research of this work was 

showed the effects of excess N on various treatment fertilizers. The high value of stem 

dry weight and stem length were observed on EUF2, EUF3, EUF6, and urea while 

PVA, PVP, and control were lower value that following with N accumulation. The 

observation of plant growth is major importance than the level of N accumulation that 

means efficiency of fertilizer coated urea (EUF2, EUF3, and EUF6) was improvement 

agronomic by corresponding N accumulation.  

 

 

 

 

 

 

 

 

 



 94 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

control urea EUF2 EUF3 EUF6 Osmocote PVP PVAP
ro

p
o

ti
o

n
 o

f 
N

 p
la

n
t 

c
o

n
te

n
t 

(%
),

 s
te

m
 d

ry
 w

e
ig

h
t 

(g
),

 a
n

d
 s

te
m

 

le
n

g
th

 (
c
m

)

 

Fig. 23  Proportion of N plant content (%) (■), stem dry weight (g) (□) and              

stem length (cm) (    ) in kale plant which  treated with un-coated and coated              

urea.  

 

In the soil, urea is converted from carbamide nitrogen to ammonium ions 

(NH4
+
) by a series of enzyme reactions. Under normal soil conditions, NH4

+ 
are 

absorbed by the soil become attached to the negatively charged soil particle. Nitrogen 

becomes available to plant, either in its ammonium form or as nitrate following 

microbial oxidation. In the experiment, a soil test was taken from each of 40 plots 

after kale plant culture had showed in Table 8. The data was showed a decreasing 

nutrient which compared with original soil. The levels of N started at 0.37 mg/kg and 

decreased between 0.20-0.33 mg/kg. The levels of % OM started at 7.4% and 

decreased between 4.03-6.56%. The levels of available P were started 29.6 mg/kg 

while the sowing showed between 11.46-28.12 mg/kg. The levels of available K were 

started 877.15 mg/kg while sowing showed between 715.41-818.69 mg/kg. Moisture 

content played an important role in determining soil resistance to penetration and as
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the soil moisture increased, the resistance decreased for this treatment. This decrease 

in soil resistance did not differ between treatments except EUF2. 

 

Table 8 Chemical characteristics of the soil after kale plant cultivation.  

Treatment  pH 

EC 

(mS/cm) moisture % OM 

N 

(mg/kg) 

P 

(mg/kg) 

K 

(mg/kg) 

Control (N = 0) 7.78 0.33 27.1 4.03
f
 0.20

f
 11.46

g
 818.69

a
 

Urea (N = 46) 7.87 0.31 22.2 5.83
bc

 0.29
bc

 28.12
a
 715.41

d
 

EUF2 (N = 46) 7.84 0.33 10.4 6.56
a
 0.33

a
 22.55

b
 733.73

cd
 

EUF3 (N = 46) 7.84 0.31 22.7 6.42
ab

 0.32
ab

 19.09
de

 730.31
cd

 

EUF6 (N = 46) 7.82 0.33 32.3 6.38
ab

 0.32
ab

 14.09
fg

 761.01
bc

 

Osmocote (N = 13) 7.85 0.33 27.8 4.31
ef
 0.22

ef
 20.12

cd
 812.93

a
 

PVP (N = 12.6) 7.83 0.35 24.3 4.73
de

 0.24
de

 24.70
b
 793.22

b
 

PVA (N = 0) 7.77 0.36 26.1 5.31
cd

 0.27
cd

 16.31
ef
 769.54

b
 

%CV - - - 5.38 5.38 6.67 1.89 

 

Values followed by the same letter are not significantly different at P ≤ 0.05 by DMRT 

 

 

It was suggested that the high levels of percentage OM in this study showed in 

coated urea (EUF2, EUF3, and EUF6). The lower value of percentage OM showed in 

control, osmocote, PVP, and PVA. This may caused by undisturbed natural 

environments, the first is biological N fixation, the conversion of atmospheric N2 to 

inorganic N by various soil microorganisms, some symbiotic with plants. The second 

is N mineralization, which is the conversion of organic N contained in soil organic 

matter into inorganic, plant-available N as it is decomposed by soil bacteria and 

fungi. Enzymatic processes are occurred during organic matter decomposition release 

ammonium into the soil solution. 
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The coated urea have reduced NH3 volatilization and encouraged more 

efficiency utilization than un-coated urea. Because of high release N is effected on 

rapid urea hydrolysis which increased greater potential for NH3 lost under alkaline 

soil condition (soil pH). In fact, when preferred N sources are available for plant, the 

utilization of the alternative N sources and most organic molecules is repressed. This 

mechanism is known as N regulation (Magasanik, 1993). Following the interaction of 

N mineralization and immobilization processes is closely tied to the carbon (C) cycle, 

because decomposing microorganisms derive their energy from carbon compounds 

they find in soil organic matter. Activity of soil microbes is mainly stimulated by 

NH4
+
. Immobilized nitrogen it is not immediately available for plant uptake, but need 

to be mineralized first. It is also one cause that organic matter was decreased due to 

decompose by microorganism.  

The level of mineral N in soil before and after fertilizer application is index 

which determines lost of N from the level of N absorbed by plants. The content of N 

loss was ranged from 10.61-17.19 mg/kg (Fig. 24). This investigation showed that 

coated urea was lower N loss than un-coated urea (10.61 mg/kg and 17.19 mg/kg). N 

influenced on growth that marketable on weight of kale, which indicated the 

efficiency of fertilizer on product of plant. From this work would summarized the 

quality of coated urea was enhanced the growing of kale under greenhouse 

cultivation. It is obvious that in dry weight, length of stem, and leaf area index of 

kale, including physiological are well characteristics (Fig. 22). CRFs have to be 

considered in fertilization recommendations in order to minimize use of mineral 

fertilizers. Application of coated urea was improved effect on plant with the optimum 

N applied via CRFs was due mainly to their positive action on growth. Under the 
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experiment, the calculation of the N budget inputs 30 kg N/rai
 
for testing N loss found 

that urea coated with PVA and PVP showed lower N loss when compared with un-

coated urea, thus resulting in this work.  
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Fig. 24  N loss (mg/kg) in soil treatments of coated urea in various formula (EUF2, 

              EUF3 and EUF6) and un-coated urea. 
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  CHAPTER IV 

CONCLUSIONS 

 

The optimal formula for biopolymer coating (PVA/PVP) by encapsulated urea 

fertilizer (EUF) was preliminary studied. The encapsulation is able to control the 

release rate of urea fertilizer by using Fick’s second law mention. The optimal 

formula of EUF was high controlled releasing rate which obtained at room 

temperature for PVA/PVP in a mass ratio of 1:0 (EUF2) and 1:0.25 (EUF3). The EUF 

is able to prolong time more than un-coated urea, it seemed in the n value is in the 

range of 0.98 and 0.69, respectively. 

The structure of coated urea was depicted by using SEM and polarized 

microscope analysis. The morphology of coated urea showed various crystals shape 

which effected on strong surface and protected humidity than un-coated urea. Looking 

on granules, there are showed porous which can be absorbed water for releasing. Plant 

can be used immediately for growth. The functional groups of materials coating was 

observed from FT-IR spectrometer. The spectrum of the blend was similar to that of 

spectrum of urea. It must be pointed out that, the amount of materials coating 

(PVA/PVP) is markedly smaller than that pure solid urea.  

Urea fertilizers between coated with biopolymer and un-coated were tested in 

greenhouse system to estimated plant growth. Chinese kale (Brassica alboglabra 

Bailey) was applied EUF2, EUF3, and EUF6 as a fertilizer to study the effect of EUF 

on plant growth. The parameter of plant growth included stem wet weight, root wet
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weight, stem dry weight, root dry weight and element analysis (N) were investigated. 

Results showed that EUF2, EUF3, and EUF6 can be promoted plant growth better 

than un-coated urea significantly different (P ≤ 0.05). A comparison of the level total 

nitrogen in kale showed that applied urea was lower but higher in kale applied EUF. 

Moreover, consider the best formula for controlled-release fertilizer was showed 

empirical parameter characterizing the release mechanism from Fick’s second law and 

plant growth regulator was corresponded (EUF2 and EUF3). 
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