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CHAPTER I

INTRODUCTION

A recurrent theme in analysis is the decomposition of a vector or function

into basic building blocks, also known as spectral analysis. For example, the Fourier

series is the decomposition of a periodic function into an infinite sum of trigono-

metric functions of fixed frequency. Thus, if one knows the frequency response of

a linear system, one can deduce the response of the system to any periodic signal.

Similarly, the Fourier transform can be considered as the decomposition of a non-

periodic function f into a continuous spectrum of basic frequencies. Under some

mild assumptions, the function f can be reconstructed from its Fourier transform

by means of the inverse Fourier transform.

In general, it is difficult to recognize local properties of f from its Fourier

transform. In applications such as image processing for example, one encounters

functions which possess steep but well localized gradients. The Fourier transform

is poorly suited to the analysis of such functions. First of all, the steep gradients

lead to Fourier transforms which decay only slowly at infinity. In addition, the

locations of the gradients cannot be detected easily from the Fourier transform.

1.1 The Wavelet Transform

The wavelet transform was introduced in Grossmann, Morlet and Paul

(1985, 1986) as one tool to overcome these difficulties. Here the given function
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f ∈ L2(R) is sampled in a window of variable location and scale,

Wf(a, x) = a−1/2

∫
R
f(y)ψ( a−1(y − x) ) dy (a > 0, x ∈ R)

for some fixed window function ψ ∈ L2(R). Thus, the wavelet transform of f is a

function depending on the two parameters location and scale, yielding information

on both location and size of steep gradients. The question of reconstructing a

given function from its wavelet transform was solved by Grossmann et al. (1985)

using the theory of square integrable representations by Duflo and Moore (1976).

ψ is called admissible, or a wavelet, if such a reconstruction is possible for every f ,

and it turns out that the set of admissible functions is dense in L2(R).

The wavelet transform can be naturally extended to n-dimensional Eu-

clidean space,

Wf(a, ~x) = | det a|−1/2

∫
Rn
f(~y)ψ( a−1(~y − ~x) ) d~y (~x ∈ Rn, f, ψ ∈ L2(Rn) )

(1.1)

where a is now an element of a closed subgroup H of GLn(R). Bernier and Taylor

(1996) obtained results on existence and characterization of admissible functions

in case that H possess open, free orbits in Rn, extending those of Grossmann et

al. (1985, 1986), still exploiting the results from the theory of square integrable

representations.

Laugesen, Weaver, Weiss and Wilson (2002) finally succeeded to give general

sufficient and necessary conditions on the matrix group H for the existence of

admissible functions, as well as a characterization of these functions.

1.2 Transforms from Group Representations

The wavelet transform is only one example of decompositions arising from

group representations. Let G be a locally compact group with Haar measure ν
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and π a unitary representation of G on some Hilbert space H, and fix φ ∈ H. The

voice transform of an element f of H is the function V f defined on G by

(V f) (g) = 〈f, π(g)φ〉 . (1.2)

The vector φ is called admissible, if the linear map f 7→ Vφf is a multiple of an

isometry, that is if

‖Vφf‖2
L2(G) = cφ ‖f‖2

H ∀f ∈ H (1.3)

for some constant cφ > 0. In this case, an application of the polarization identity

leads to the reproducing formula

f =
1

cφ

∫
G

〈f, π(g)φ〉π(g)φ dν(g) (1.4)

as a weak integral in H. If such a φ exists, then the group G is called admissible, φ

is called an admissible vector and {π(g)φ}g∈G is called a resolution of the identity.

Having the form of a weak integral, the reproducing formula (1.4) is in

general difficult to compute. It is preferable to find a discrete subset I of G which

gives a basis-like reconstruction of the form

f =
∑
i∈I

〈f, π(gi)φ〉 π(gi)φ; (1.5)

which is the concept of a frame.

The groups considered in the wavelet transform (1.1) are affine groups, that

is semi-direct products G = H o Rn that may be represented as matrix groups (h, ~x) =

h ~x

0 1

 : h ∈ H, ~x ∈ Rn


for some closed subgroup H of GLn(R), acting by translations and dilations on

L2(Rn),

π(h, ~x)φ = T~xDhφ (h, ~x) ∈ G, φ ∈ L2(Rn). (1.6)
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Constructions which yield frames from this representation were initially

obtained by Heil and Walnut (1989), Bernier and Taylor (1996) and Heinlein (2003)

and others, and frame construction continues to be an active field of research in

wavelet theory.

1.3 The Objectives of This Thesis

In a recent series of papers Cordero, De Mari, Nowak and Tabacco (2006a,

2006b, 2010) studied admissibility for the voice transform associated with the meta-

plectic representation of subgroups of the metaplectic group Sp(n,R) on L2(Rn).

By employing the Wigner distribution, the authors obtained conditions for a func-

tion ψ ∈ L2(Rn) to be admissible, mirroring those given by Laugesen et al. (2002)

for the wavelet transform. The Wigner distribution is, however, difficult to work

with; as a consequence, almost all examples in these papers constructed admissible

functions for a special class of groups only; these groups are isomorphic to affine

groups and through an ad-hoc process, admissibility conditions could be derived

from those for the wavelet transform. A recent thesis of King (2009) continued

this ad-hoc construction.

In this thesis, we build on these examples, and investigate the underlying

mechanism in detail. Thus, we study subgroups of the symplectic group Sp(n,R)

which take the form of semidirect products K = D o M , where M is an n-

dimensional vector group and D a closed subgroup of GLn(R) which acts linearly

on M . These groups are isomorphic to subgroups, or finite extensions of subgroups

of the affine group, and thus possess a wavelet representation as well. It turns out

that in many cases, the metaplectic representation of K decomposes into a finite

sum of subrepresentations, each of which is equivalent to a sum of modulated

wavelet representations.
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We therefore begin by introducing modulated wavelet representations, and

by studying their sums in a systematic way. In particular, we derive conditions

for a vector to be admissible, present a concrete method for the construction of

admissible and bandlimited admissible vectors, and discuss the construction of

frames.

We then make use of these results to show how to obtain admissibility

conditions for the metaplectic representation of the groups K from those for the

corresponding sum of wavelet representations. In particular, this process will allow

us to introduce frames for the metaplectic representation. We present a series of

examples which illuminate this process, one of which will show that the concept

of admissibility of Cordero et al. (2006a) through the Wigner distribution is more

narrow than the usual one.

It turns out that the groups involved in the examples given in Cordero et

al. (2006a, 2010), King (2009) and Czaja and King (preprint) all belong to the

same class of groups, namely are extensions of the Heisenberg group by a one-

parameter family of matrix groups. We introduce these extensions, classify them

up to isomorphism and show that they can indeed be presented as subgroups of

Sp(n,R) of the form D oM as discussed in this thesis. Our admissibility results

coincide with those for the groups given in Cordero et al. (2006a, 2010), King

(2009) and Czaja and King (preprint).

This thesis is organized as follows. Chapter II gives a short introduction

into the concepts and a review of the mathematical tools required. Chapter III

begins with a quick summary of the usual wavelet transform, and presents our

results on sums of modulated wavelet transforms, including the characterization

and construction of admissible vectors and of frames. The relationship between

the metaplectic representation and sums of wavelet representations for subgroups
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of the symplectic group arising as semi-direct products is explored in Chapter IV,

and illustrated by numerous examples. Chapter V is devoted to a discussion and

classification of extensions of the Heisenberg group by one-parameter groups of

matrices. Finally, these results are all briefly summarized in Chapter VI.



 

 

 

 

 

 

 

 

CHAPTER II

BASIC BACKGROUND

In this chapter, we review the mathematical concepts and theorems from the

literature that are used in this thesis. We begin with the basics of locally compact

groups, followed by matrix groups and their Lie algebras. We also review the

fundamental concepts in time-frequency analysis, such as the Fourier transform and

its properties, frames in Hilbert space, the Wigner distribution and the metaplectic

representation. Throughout, it is assumed that the reader is familiar with the

foundations of real analysis, such as measure theory and function spaces. Details

and proofs of the material presented here can be found in Folland (1989, 1999),

Baker (2001), Knapp (1996) and Gröchenig (2000).

2.1 Locally Compact Groups

Definition 2.1. A topological group is a group G endowed with a topology such

that the group operations (h, k) 7→ hk and h 7→ h−1 are continuous from G × G

and G to G.

Simple examples include topological vector spaces (the group operation be-

ing addition), groups of invertible n× n real matrices (with the relative topology

induced from Rn×n) and all groups equipped with the discrete topology. If G is a

topological group, we denote the identity element of G by e, and for A,B ⊂ G and

h ∈ G we define hA = {hk : k ∈ A}, Ah = {kh : k ∈ A}, A−1 = {k−1 : k ∈ A}

and AB = {kh : k ∈ A, h ∈ B}. We say that A is symmetric if A = A−1.

Here are some of the basic properties of topological groups:
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Proposition 2.2. Let G be a topological group.

(a) The maps g ∈ G 7→ hg (h ∈ G fixed) and g ∈ G 7→ g−1 are homeomorphisms.

In particular, the topology of G is translation and inversion invariant: If U

is an open subset of G and h ∈ G, then Uh, hU and U−1 are open.

(b) For every neighborhood U of e there exists a symmetric open neighborhood V

of e with V ⊂ U .

(c) For every open neighborhood U of e there exists an open neighborhood V of e

with V V ⊂ U .

(d) If H is a subgroup of G then so is H.

(e) Every open subgroup of G is also closed.

(f) If K1, K2 are compact subsets of G then so is K1K2.

If f is a function on the topological group G and k ∈ G, the left and the

right translates of f through k are defined by

Lkf(h) = f(k−1h), Rkf(h) = f(hk).

(The point of using k−1 on the left and k on the right is to obtain homomorphism

properties: Lkl = LkLl and Rkl = RkRl.) f is called left (resp. right) uniformly

continuous if for every ε > 0 there is a neighborhood V of e such that ‖Lkf−f‖∞ <

ε (resp. ‖Rkf − f‖∞ < ε) for k ∈ V .

We write f ∈ Cc(G), if f is continuous and there exists a compact subset K

of G outside of which f vanishes. The smallest such subset K is called the support

of f , denoted supp(f).

Proposition 2.3. If f ∈ Cc(G), then f is left and right uniformly continuous.
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A locally compact group is a topological group whose topology is locally

compact and Hausdorff. The next proposition shows that closed and open sub-

groups of a locally compact group are again locally compact.

Proposition 2.4. Let G be a locally compact Hausdorff space.

(a) If H ⊂ G is closed, then H is also locally compact Hausdorff.

(b) If K ⊂ G is open, then K is also locally compact Hausdorff.

2.1.1 Haar Measure

Locally compact groups are of interest because they carry a translation

invariant measure: If G is a locally compact group, being a topological space,

G has a measurable structure, namely the σ-algebra generated by the open sets,

called the Borel σ-algebra. A measure µ on the Borel sets is called a Borel measure,

and it is called a Radon measure if

(a) µ(K) is finite for every compact set K;

(b) every Borel set E is outer regular: µ(E) = inf {µ(U) : E ⊂ U,U open}; and

(c) every open set E is inner regular: µ(E) = sup {µ(K) : K ⊂ E,K compact}.

These conditions assure that every f ∈ Cc(G) is integrable, and Cc(G) is dense in

Lp(G) for every 1 6 p <∞.

A Borel measure µ on G is called left-invariant (resp. right-invariant) if

µ(hE) = µ(E) (resp. µ(Eh) = µ(E)) for all h ∈ G and all Borel subsets E of G. If

in addition, µ is a nonzero Radon measure, then it is called a left (resp. right) Haar

measure. For example, the Lebesgue measure is a (left and right) Haar measure

on Rn. The following proposition summarizes some elementary properties of Haar
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measures; in it, we employ the notation

C+
c = {f ∈ Cc(G) : f > 0 and ‖f‖∞ > 0} .

Proposition 2.5. Let G be a locally compact group, and µ a nonzero Radon mea-

sure on G

(a) µ is a left Haar measure if and only if the measure µ̃ defined by µ̃(E) = µ(E−1)

is a right Haar measure.

(b) µ is a left Haar measure if and only if
∫
G
f(k−1h)dµ(h) =

∫
G
f(h)dµ(h) for

all f ∈ C+
c , k ∈ G if and only if

∫
G
f(k−1h)dµ(h) =

∫
G
f(h)dµ(h) for all

f ∈ L1(G), k ∈ G.

(c) If µ is a left Haar measure on G, then µ(U) > 0 for every nonempty open

U ⊂ G and
∫
G
f(h)dµ(h) > 0 for all f ∈ C+

c .

(d) If µ is a left Haar measure on G, then µ(G) <∞ if and only if G compact.

Theorem 2.6. Every locally compact group G possesses a left Haar measure. The

left Haar measure is essentially unique, that is, if µ and ν are left Haar measures

on G, there exists c > 0 such that µ = cν. By symmetry, similar statements hold

for a right Haar measure.

If µ is a left Haar measure on G and h ∈ G, the measure µh(E) = µ(Eh)

is again a left Haar measure, because of the commutativity of left and right trans-

lations which results from the associative law. Hence, by Theorem 2.6, there is a

positive number ∆(h) such that µh = ∆(h)µ. The function ∆ : G → (0,∞) thus

defined is independent of the choice of µ by Theorem 2.6, and is called the modular

function of G.
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Proposition 2.7. ∆ is a continuous homomorphism from G into the multiplicative

group of positive real numbers. Moreover, if µ is a left Haar measure on G, then

for any f ∈ L1(G) and k in G we have∫
G

f(hk)dµ(h) = ∆(k−1)

∫
G

f(h)dµ(h). (2.1)

Proof. For every h, k ∈ G and Borel subset E of G of positive measure,

∆(hk)µ(E) = µ(Ehk) = ∆(k)µ(Eh) = ∆(k)∆(h)µ(E),

and as µ is nonzero, ∆ is a homomorphism. Also, since 1
E

(hk) = 1
Ek−1 (h),∫

G

1
E

(hk)dµ(h) = µ(Ek−1) = ∆(k−1)µ(E) = ∆(k−1)

∫
G

1
E

(h)dµ(h).

This proves (2.1) when f = 1
E

is the characteristic function of a Borel set E, and

the general case follows by the definition of the integral. Finally, using Proposition

2.3 and Radon condition (a) one easily shows that the map k 7→
∫
G
f(hk)dµ(h) is

continuous for any f ∈ Cc(G), so the continuity of ∆ follows from (2.1).

Evidently, a left Haar measure on G is also a right Haar measures precisely

when ∆ is identically 1, in which case G is called unimodular. Of course, every

Abelian group is unimodular.

Proposition 2.8. If G is compact, then G is unimodular.

Proof. For any h ∈ G, obviously G = Gh. Hence if µ is a right Haar measure, we

have µ(G) = µ(Gh) = ∆(h)µ(G), and since 0 < µ(G) < ∞, by compactness we

conclude that ∆(h) = 1.

We observed above that if µ is a left Haar measure, then µ̃(E) = µ(E−1) is

a right Haar measure. We now show how to compute it in terms of µ and ∆.

Proposition 2.9. dµ̃(h) = ∆(h)−1dµ(h).
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Proof. By (2.1), for f ∈ Cc(G),∫
G

f(h)∆(h)−1dµ(h) = ∆(k)

∫
G

f(hk)∆(hk)−1dµ(h) =

∫
G

f(hk)∆(h)−1dµ(h).

Thus the Radon measure determined by ∆−1dµ is right-invariant, so by theorem

2.6, ∆−1dµ = cdµ̃ for some c > 0. If c 6= 1, we can pick a symmetric neighborhood

U of e in G such that |∆(h)−1−1| < 1
2
|c−1| for h ∈ U . But µ̃(U) = µ(U−1) = µ(U),

so

|c− 1|µ(U) = |cµ̃(U)− µ(U)| =
∣∣∣∣ ∫

U

(∆(h)−1 − 1)dµ(h)

∣∣∣∣ < 1

2
|c− 1|µ(U),

a contradiction. Hence c = 1 and dµ̃ = ∆−1dµ.

This proposition shows that left and right Haar measures are mutually

absolutely continuous.

2.1.2 Continuous Group Actions

Definition 2.10. Let X be a set, G a group. By a (left)action of G on X, we

mean a map

α : G×X → X

satisfying

(a) α(e, x) = x ∀x ∈ X where e denotes the identity of G,

(b) α(h, α(h′, x)) = α(hh′, x) ∀h, h′ ∈ G, x ∈ X.

The triple (X,G, α) is also called a transformation group, and X is called a G-set.

It is often convenient to denote α(h, x) by h · x (or αh(x)). Then (a) and

(b) become

(a′) e · x = x (or αe(x) = x) ∀x ∈ X,
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(b′) h · (h′ · x) = (hh′) · x (or αh(αh′(x)) = αhh′(x)) ∀h, h′ ∈ G, x ∈ X.

If X is a topological space and G a topological group, then one also requires that

the map α be continuous, and calls X a G-space. In this case,

(a) α is an open map,

(b) for fixed h ∈ G, the map x 7→ h · x is a homeomorphism of X onto X, since

it has a continuous inverse, namely x 7→ h−1 · x.

Given x ∈ X, the set O(x) = G · x = {h · x : h ∈ G} is called the orbit of x. The

stabilizer of x ∈ X is the set Gx = {h ∈ G : h · x = x}. It is a closed subgroup of

G provided that X is a T1-space. The orbit O(x) is called free if Gx = {e}. The

global stabilizer is G0 =
⋂
x∈X

Gx, and the action is called effective if G0 = {e}.

For example, let X = Rn and G = GLn(R). There is a natural action of

GLn(R) on Rn given by multiplication of a matrix with vector,

a · ~x = αa(~x) = a~x

for a ∈ GLn(R) and ~x ∈ Rn. The stabilizer of ~x = 0 is GLn(R) itself, and each

~x 6= 0 has a nontrivial stabilizer: if ~x = (x1, x2, ..., xn)T , (n > 2), then αa(~x) = ~x

where αa denotes reflection along the line through ~x.

Now if a is a diagonal matrix, a = diag(a1, a2, ..., an) with ak > 0 for all k, let

D = {at : t ∈ R}. D is called the one-parameter subgroup of GLn(R) generated

by a. The orbit of ~x ∈ Rn, ~x 6= 0, is free, as whenever xk 6= 0, and t 6= 0 then

atkxk 6= xk. This also shows that the action of D on Rn is effective.

Similarly, if R̂n denotes Euclidean space whose elements are written as row

vectors, then

a · ~γ = ~γa−1

for a ∈ GLn(R) and ~γ ∈ R̂n, defines an action of GLn(R) on R̂n.
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2.1.3 Semi-Direct Products

Let D and N be locally compact groups and let α be an action of D on N

by group automorphisms. We can form a new group by setting

G = {(a, n) : a ∈ D, n ∈ N}

endowed with the product topology and the group law

(a, n)(a′, n′) = (aa′, nαa(n
′)) = (aa′, αa(αa−1(n)n′))

for (a, n), (a′, n′) ∈ G. It is not difficult to verify that G is a locally compact group

with identity (eD, eN) where eD is the identity of D, and eN is the identity of N ,

and that the inverse of element (a, n) is (a−1, αa−1(n)−1).

Furthermore, identifying N with the closed subset {(eD, n) : n ∈ N} of G,

then N is a normal subgroup of G, and G/N is naturally isomorphic to D. We

call G the semi-direct product of D and N with respect to α and write G = DoN .

Now let µD and µN denote the left Haar measures on D and N respectively.

As αa is a homeomorphism for each a ∈ D, it is also a Borel isomorphism and

hence µa(E) := µN(αa(E)) is a left Haar measure on N . By uniqueness of the

Haar measure, there is a number J(a) > 0 , such that µN(αa(E)) = J(a)µN(E) for

all Borel subset E of N . Since α is a group automorphism, then J : D → (0,∞)

is a homomorphism. Equivalently by the definition of the integral,

J(a)

∫
N

f(αa(n))dµN(n) =

∫
N

f(n)dµN(n) (2.2)

first for all characteristic functions f = 1E (E Borel) and hence for all f ∈ L1(N).

The Haar measure ν on G is determined by

dν(a, n) = J(a−1)dµD(a) dµN(n). (2.3)
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To verify this, note that for all (a′, n′) ∈ G and f ∈ Cc(G), we have by left invariant

of µN and µD,∫
G

f ((a′, n′)(a, n)) dν(a, n) =

∫
D

∫
N

f (a′a, αa′(αa′−1(n′)n))
dµN(n)dµD(a)

J(a)

=

∫
D

∫
N

f (a′a, αa′(n))
dµN(n)dµD(a)

J(a)
=

∫
D

∫
N

f (a′a, n)
dµN(n)dµD(a)

J(a′)J(a)

=

∫
D

∫
N

f (a, n)
dµN(n)dµD(a)

J(a′)J(a′−1a)
=

∫
D

∫
N

f (a, n)
dµN(n)dµD(a)

J(a)

=

∫
G

f (a, n) dν(a, n).

2.1.4 Group Representations

Definition 2.11. Let G be a locally compact group and H be a Hilbert space. A

(unitary) representation π of G on H is a mapping satisfying:

(a) π : G→ U(H). (U(H) is the group of unitary operators on H.)

(b) π is a homomorphism: π(hk) = π(h)π(k) for all h, k ∈ G.

(c) π is continuous with respect to the strong operator topology of U(H), that is

h 7→ π(h)ψ is continuous for each ψ ∈ H.

If H = C, then π is called a character of G.

A closed subspace K of H is called π-invariant, if π(h)ψ ∈ K for all ψ ∈ K,

h ∈ G. The orthogonal complement K⊥ is also π-invariant.

Now let {πj}j∈J be a collection of representations of G on Hilbert spaces

Hj, and let H = ⊕
j∈J
Hj. Since each πj(h) is a unitary operator, then the operator

π(h) on H defined by

π(h)ψ =
∑
j∈J

πj(h)ψj

for ψ =
∑
j∈J

ψj ∈ H, ψj ∈ Hj is a well defined unitary operator on H. One can

verify that π is a representation of G on H, called the sum of the representations
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{πj}j∈J , and we write

π = ⊕
j∈J

πj.

If π is a representation of H and K a π-invariant subspace, then π restricts to a

representation π
∣∣
K of G on K. Since K⊥ is also π-invariant, then

π = π
∣∣
K ⊕ π

∣∣
K⊥ .

Definition 2.12. A representation π is called irreducible if {0} and H are the only

π-invariant closed subspaces of H.

For example, every character is irreducible.

Theorem 2.13. (Schur’s Lemma) Let π be a unitary representation of a locally

compact group G on a Hilbert space H. Then the following are equivalent:

(a) π is irreducible.

(b) For every ψ ∈ H\{0} the subspace spanned by the finite linear combinations

of π(g)ψ, g ∈ G, is dense in H.

(c) If a bounded operator S : H → H satisfies π(g)S = Sπ(g) for all g ∈ G, then

S = λIH for some λ ∈ C.

2.2 Matrix Groups

In this section, k will denote the fields k = R or k = C.

Let Mn,m(k) be the set of m×n matrices whose entries are in k. We denote

the (i, j)-th entry of an m× n matrix a by aij and also write a = [aij]. If m = n,

then we write Mn(k) for this set.

Mn,m(k) is a k-vector space under the operations of matrix addition and

scalar multiplication. The zero vector is the m × n zero matrix 0m,n which we
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will often denote by 0 when the size is clear from the context. As a vector space

Mn,m(k) is isomorphic to knm and thus inherits the topology of knm. Mn(k) is also

a ring with the usual addition and multiplication of square matrices, with zero 0n

and the n × n identity matrix In as its unity; Mn(k) is not commutative except

when n = 1. We usually give Mn(k) the operator norm, but as all norms on a

finite dimensional vector space are equivalent, then an → a in Mn(k) if and only

if the sequences of corresponding entries all converge: (an)ij → aij for all i, j. The

conjugate transpose of a matrix will be denoted by a∗, and the transpose by aT .

Proposition 2.14. The determinant det : Mn(k)→ k is a continuous function.

Proof. The determinant is obtained by composing the continuous function

Mn(k)→ kn2
identifying Mn(k) with kn2

with a polynomial function kn2 → k.

Next, we consider two particular subsets of Mn(k):

GLn(k) = {a ∈Mn(k) : det a 6= 0} and SLn(k) = {a ∈Mn(k) : det a = 1}

which are both groups under matrix multiplication. Furthermore, SLn(k) is a

subgroup of GLn(k). By Proposition 2.14, then GLn(k) = Mn(k)\ det−1 {0} is an

open subset of Mn(k), similarly, SLn(k) = det−1 {1} ⊆ GLn(k) is closed in Mn(k)

and GLn(k). By Proposition 2.4, then GLn(k) and SLn(k) are a locally compact

groups.

Definition 2.15. A subgroup G of GLn(k) which is closed in GLn(k) is called a

matrix group.

Proposition 2.16. Let G be a matrix group. Then every closed subgroup H of G

is also a matrix group (called a matrix subgroup of G).

Proof. Since H is closed in G and G is closed in GLn(k), then H is closed in

GLn(k).
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Since a matrix group H is a closed subgroup of GLn(k), then by Proposition

2.4, its topology is locally compact. Hence H has a left Haar measure.

Proposition 2.17. Let G be a matrix group. If H is a matrix subgroup of G and

K is a matrix subgroup of H, then K is a matrix subgroup of G.

Proof. This is a straightforward generalization of Proposition 2.16.

Definition 2.18. Let G and H be two matrix groups. A group homomorphism

ϕ : G → H is called a matrix group homomorphism if it is continuous and its

image ϕ(G) is closed in H, that is, is a matrix subgroup of H. In addition, if ϕ−1

exists and is continuous, then ϕ is called a matrix group isomorphism.

Remark 2.1. It is important to require that ϕ(G) be closed in H. For

example, let r be an irrational number. NowG = {en : n ∈ Z} is a closed subgroup

of GL1(R) ≡ R+. Define ϕ : G→ GL2(R) by ϕ(en) = Rnr ∈ GL2(R) where Rθ = cos θ sin θ

− sin θ cos θ

 is a rotation matrix. Then ϕ is a continuous homomorphism,

but ϕ(G) = {Rθ : 0 6 θ < 2π} 6= ϕ(G). Hence ϕ(G) is not a matrix group.

Remark 2.2. Let ϕ : G → H be a matrix group homomorphism. Since

ϕ is continuous, then kerϕ = ϕ−1 ({e}) is a closed subset of G hence is a matrix

group. The quotient group G/ kerϕ can be identified with the matrix group ϕ(G)

by the usual quotient isomorphism ϕ : G/ kerϕ → ϕ(G) (which need not be a

homomorphism of matrix groups since G/ kerϕ need not be a matrix group).

2.3 Lie Algebras

The theory of Lie algebra is a rich and well developed field. As we will use

this theory for the classification of matrix groups, we focus here on the connection

between matrix groups and Lie algebras.
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Definition 2.19. Let g be a vector space over k. g is called a Lie algebra over k,

if there exists a k-bilinear map [·, ·] : g× g→ g called the Lie bracket, satisfying:

(a) skew-symmetry:

[x, y] = −[y, x]

(b) Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.

For example, Mn(k) is a Lie algebra over k with the Lie bracket

[A,B] = AB −BA

for A,B ∈Mn(k).

If a and b are subsets of a Lie algebra g, we write

[a, b] = span {[x, y] : x ∈ a, y ∈ b} .

Definition 2.20. Let g be a Lie algebra over k.

(a) The center of g is

z(g) = {z ∈ g : [z, x] = 0 for all x ∈ g} .

(b) [g, g] is called the derived algebra of g.

Definition 2.21. Let g be a Lie algebra over k and h a vector subspace of g. Then

(a) h is called a Lie subalgebra of g, if [h, h] ⊂ h.

(b) h is called a Lie ideal of g, if [g, h] ⊂ h.

Proposition 2.22. Let g be a Lie algebra over k. If a and b are ideals of g, then

so are a + b, a ∩ b, and [a, b].
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Proof. The conclusions for a + b and a∩ b are obvious. In the case of [a, b], by the

Jacobi identity and skew-symmetry, we have

[g, [a, b]] = [[g, a], b] + [a, [g, b]] ⊂ [a, b] + [a, b] ⊂ [a, b].

Definition 2.23. Let g, h be Lie algebras over k. A k-linear transformation Φ :

g→ h is called a Lie algebra homomorphism, if for all x, y ∈ g,

Φ([x, y]) = [Φ(x),Φ(y)].

Such a homomorphism is called a Lie algebra isomorphism, if it is also a k-linear

isomorphism.

Let a be an ideal of the Lie algebra g. The quotient vector space g/a inherits

a bracket operation defined by

[x+ a, y + a] = [x, y] + a

for x, y ∈ g. This is easily seen to make g/a into a Lie algebra so that the

quotient linear transformation g 7→ g/a is a homomorphism of Lie algebras. g/a is

referred to as the quotient Lie algebra of g with respect to the ideal a. The usual

isomorphism results apply:

Proposition 2.24. Let Φ : g→ h be a homomorphism of k-Lie algebras. Then

(a) ker Φ is an ideal of g.

(b) If g0 and h0 are ideals in g and h, respectively, and Φ(g0) ⊂ h0, then Φ induces

a Lie algebra homomorphism Φ : g/g0 → h/h0 given by

Φ(x+ g0) = Φ(x) + h0 (x ∈ g).

Furthermore, if Φ is an isomorphism mapping g0 onto h0, then Φ will also

be an isomorphism.



 

 

 

 

 

 

 

 

21

Remark 2.3. Let Φ : g → h be a homomorphism of k-Lie algebras. By

Proposition 2.24, the quotient Lie algebra g/ ker Φ can be identified with Φ(g) by

the quotient isomorphism Φ : g/ ker Φ→ Φ(g).

Every element u ∈ g defines a k-linear automorphism adu of g, called the

adjoint action of u on g by

adu(x) = [u, x]

for x ∈ g. Once a basis of g is chosen, ad : g→Mn(k) where n = dim(g).

Definition 2.25. Let g be a finite dimensional k-Lie algebra. The derived algebras

gj of g are defined recursively

g0 = g, g1 = [g, g], ..., gj+1 = [gj, gj].

Then the decreasing sequence

g = g0 ⊃ g1 ⊃ g2 ⊃ · · ·

is called the derived series of g. If gj = 0 for some j, we say that g is solvable.

The maximal solvable ideal of g is called its radical.

Definition 2.26. Let g be a finite dimensional k-Lie algebra. The ideals gj of g

are defined recursively

g0 = g, g1 = [g, g], ..., gj+1 = [g, gj].

Then the decreasing sequence

g = g0 ⊃ g1 ⊃ g2 ⊃ · · ·

is called the lower central series of g. If gj = 0 for some j, we say that g is

nilpotent. The smallest j with gj = 0 is called the degree of nilpotency. The

maximal nilpotent ideal of g is called its nilradical.
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Examples.

(1) Every nilpotent Lie algebra is solvable. The Lie algebra g consisting of ma-

trices of the form

 a1 ∗ ∗

0
.
.
. ∗

0 0 an

 is solvable, but not nilpotent if ak 6= 0 for

some k.

(2) The Lie algebra g consisting of matrices of the form

 0 ∗ ∗

0
.
.
. ∗

0 0 0

 is nilpotent.

Remark 2.4. If Φ : g → h is a Lie algebra isomorphism of g onto the Lie

algebra h, then Φ sends center to center, nilradical to nilradical, the derived series

to the derived series, etc.

2.3.1 Tangent Space of Matrix Groups as Lie Algebras

Definition 2.27. Let G be a subset of Mn(k). A differentiable curve in G is a

function

γ : (a, b)→ G

for which the derivative γ′(t) exists for each t ∈ (a, b). Here γ′(t) is defined as an

element of Mn(k) by

γ′(t) = lim
s→t

1

s− t
(γ(t)− γ(s)) ,

provided this limit exists.

The usual product rule applies. Suppose α, β : (a, b)→Mn(k) are differen-

tiable curves. Then

γ := αβ : (a, b)→Mn(k)

is a differentiable curve, and

γ′(t) =
d

dt
(αβ)(t) = α′(t)β(t) + α(t)β′(t) (t ∈ (a, b)).
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Similarly, if α : (a, b) → GLn(R) is a differentiable curve, then α−1 : (a, b) →

GLn(k) is differentiable and

d

dt
α(t)−1 = −α(t)−1α′(t)α(t)−1 (t ∈ (a, b)). (2.4)

Definition 2.28. Let G be a matrix group. The tangent space to G at P ∈ G is

TPG = {γ′(0) ∈Mn(k) : γ is a differentiable curve in G with γ(0) = P} .

Proposition 2.29. TPG is a real vector subspace of Mn(k).

Proof. Suppose that α, β are differentiable curves in G for which α(0) = β(0) = P .

Then by the product rule

γ : dom(α) ∩ dom(β)→ G; γ(t) = α(t)P−1β(t),

is also a differentiable curve, and

γ′(t) = α′(t)P−1β(t) + α(t)P−1β′(t),

hence

γ′(0) = α′(0)P−1β(0) + α(0)P−1β′(0) = α′(0) + β′(0),

which shows that TP is closed under addition.

Similarly, if r ∈ R and α is a differentiable curve in G with α(0) = P , then

η(t) = α(rt) defines another such curve. Since η′(0) = rα′(0), we see that TPG is

closed under real scalar multiplication.

We will use the notation g = TIG for this real vector subspace of Mn(k)

when P = I. g is called the Lie algebra of G, due to the following theorem:

Theorem 2.30. Let G be a matrix group. Then g is an R-Lie subalgebra of Mn(k).
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Proof. By Proposition 2.29, it suffices to show that for two differentiable curves α

and β in G which satisfy α(0) = β(0) = I, we have [α′(0), β′(0)] ∈ g.

Consider the function

F : dom(α)× dom(β)→ G; F (s, t) = α(s)β(t)α(s)−1.

This is clearly continuous and differentiable with respect to each of the variables

s, t. For each s ∈ dom(α), the function F (s, ·) : dom(β) → G is a differentiable

curve in G with F (s, 0) = I, and

d

dt
F (s, t)

∣∣∣∣
t=0

= α(s)β′(0)α(s)−1,

so that

α(s)β′(0)α(s)−1 ∈ g.

Since g is a linear subspace of Mn(k), it is closed in Mn(k), hence we also have

lim
s→0

1

s

(
α(s)β′(0)α(s)−1 − β′(0)

)
∈ g.

This limit exists, as by the product rule and (2.4)

lim
s→0

1

s

(
α(s)β′(0)α(s)−1 − β′(0)

)
=

d

ds
α(s)β′(0)α(s)−1

∣∣∣∣
s=0

= α′(0)β′(0)α(0)−1 − α(0)β′(0)α(0)−1α′(0)α(0)−1

= α′(0)β′(0)− β′(0)α′(0) = [α′(0), β′(0)]

which shows that [α′(0), β′(0)] ∈ g.

Definition 2.31. Let G and H be matrix groups and ϕ : G→ H be a continuous

map. Then ϕ is said to be a differentiable map if it satisfies:

(a) for every differentiable curve γ : (a, b) → G, the curve ϕ ◦ γ : (a, b) → H is

differentiable
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(b) if two differentiable curves α, β : (a, b)→ G satisfy

α(0) = β(0), α′(0) = β′(0),

then

(ϕ ◦ α)′(0) = (ϕ ◦ β)′(0).

A continuous homomorphism of matrix groups that is also a differentiable

map is called a Lie homomorphism.

Theorem 2.32. Let ϕ : G → H be a matrix group homomorphism. Then ϕ is

differentiable, that is, is a Lie homomorphism.

Let ϕ : G → H be a matrix group homomorphism. If γ : (a, b) → G is

a differentiable curve through the identity I of G, then by Theorem 2.32, ϕ ◦ γ :

(a, b) → H is a differentiable curve through the identity of H. Define a map

dϕ : g→ h by

dϕ(γ′(0)) = (ϕ ◦ γ)′(0).

Theorem 2.33. Let G and H be matrix groups and ϕ : G→ H be a differentiable

homomorphism. Then the derivative dϕ : g→ h is a Lie algebra homomorphism.

2.3.2 Exponentials and One-Parameter Subgroups

The matrix exponential of A ∈Mn(k) is defined by the matrix-valued series

eA =
∞∑
n=0

1

n!
An

which converges for all A ∈Mn(k) ∈Mn(k). The logarithm of A is defined by the

the matrix-valued series

log(A) =
∞∑
n=1

(−1)n−1

n
(A− I)n

which converges for ‖A− I‖ < 1.
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Proposition 2.34. Let A,B ∈Mn(k).

(a) The maps A 7→ eA and A 7→ log(A) are continuous.

(b) If A,B commute, then e(A+B) = eAeB.

(c) eA ∈ GLn(k) and (eA)−1 = e−A.

(d) det eA = etr(A).

(e) If ‖A− I‖ < 1, then elog(A) = A.

(f) If ‖eB − I‖ < 1, then log eB = B.

Definition 2.35. Let G be a matrix group. A one-parameter group in G is a

continuous function γ : R→ G which is differentiable and also satisfies

γ(s+ t) = γ(s)γ(t)

for all s, t ∈ R.

Proposition 2.36. Let G be a matrix group with Lie algebra g. Then

(a) eA ∈ G for all A ∈ g.

(b) The exponential map exp : A 7→ eA maps an open neighborhood of 0 in g

homeomorphically onto an open neighborhood of I in G.

Remark 2.5. Let A ∈ Mn(k) be such that etA ∈ G for all t ∈ R. Then

γ(t) = etA is a one-parameter subgroup in G and A = γ′(0) ∈ g. In fact,

d

dt
etA =

d

dt

∞∑
n=0

1

n!
(tA)n =

∞∑
n=0

d

dt

1

n!
(tA)n =

∞∑
n=1

tn−1

(n− 1)!
An = A

∞∑
n=0

1

n!
(tA)n = AetA.

Here we have used the fact that limits and derivatives can be taken entrywise.

Conversely, if A ∈ g, then tA ∈ g for all t ∈ R, and by Proposition 2.36, etA ∈ G

for all t ∈ R. We thus have a characterization of g:

g =
{
A ∈Mn(k) : etA ∈ G for all t ∈ R

}
.
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Remark 2.6. Let γ : (a, b) → G be a differentiable curve in G through

the identity. Since γ is continuous, then γ(a, b) is a connected set lying in the

connectedness component of the identity of G. Thus the Lie algebra g of G is

determined by the connectedness component of the identity of G.

As a consequence of Theorem 2.33, isomorphic matrix groups have isomor-

phic Lie algebra. For the converse one has:

Proposition 2.37. Let G and H be simply connected matrix groups with Lie

algebra g and h, respectively. Then G and H are isomorphic if and only if g and

h are isomorphic.

2.4 The Fourier Transform

Throughout, Rn will denote Euclidean space with elements written as col-

umn vectors. We usually use symbols ~x, ~y, etc. to denote these column vectors.

R̂n will denote Euclidean space with elements written as row vectors, which we

denote by Greek symbols ~γ, ~ω etc.

The inner product in a Hilbert space will be denoted by 〈·, ·〉. In case of

Euclidean space if one of the vectors is written as row vector, we can also write

the inner product as, ~γ~x. We will often deal with column vectors as arguments of

functions. In this case and whenever convenient we will write ~x = (x1, x2, ..., xn)

even though ~x is a column vector.

The idea of the Fourier transform on L2 ([0, 1]n) is simply a restatement of

the concept of Hilbert space basis. Since L2 ([0, 1]n) is naturally identified with

L2(Πn), where Π = {z ∈ C : |z| = 1} denotes the complex unit circle, one may

work in the latter space as well.
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Theorem 2.38. The collection of functions {e~m(~x) = e2πi〈~m,~x〉}~m∈Zn is an or-

thonormal basis of L2([0, 1]n).

Proof. Orthogonality follows from the fact that
∫ 1

0
e2πimtdt equals 1 if m = 0 and

equals 0 otherwise. Next, since e~me~l = e~m+~l, the set of finite linear combinations

of the e~m’s is an algebra. It clearly separates points on Πn; also, e0 = 1 and

e~m = e−~m. Since Πn is compact, the Stone-Weierstrass theorem implies that this

algebra is dense in C(Πn) in the uniform norm and hence in the L2(Πn) norm. But

C(Πn) is itself dense in L2(Πn), hence this algebra is dense in L2(Πn). It follows

that {e~m}~m∈Zn is a Hilbert space basis of L2(Πn).

If f ∈ L2([0, 1]n), we define its Fourier transform f̂ , a function on Zn, by

f̂(~m) = 〈f, e~m〉 =

∫
[0,1]n

f(~x)e−2πi〈~m,~x〉d~x (2.5)

for ~m ∈ Zn, and we call the series

∑
~m∈Zn

f̂(~m)e~m,

the Fourier series of f .

The term Fourier transform is also used to denote the map f 7→ f̂ . Theorem

2.38 then implies that the Fourier transform maps L2([0, 1]n) onto l2(Zn), that

‖f̂‖2 = ‖f‖2 (Parseval’s identity) and that the Fourier series of f converges to f

in the L2([0, 1]n) norm.

The integral (2.7) makes sense if f is merely in L1([0, 1]n), and as |f̂(~m)| 6

‖f‖1, the Fourier transform extends to a norm-decreasing map from L1([0, 1]n) to

l∞(Zn).

The situation on Rn is more complicated. The formal analogue of Theorem

2.38 should be

f(~x) =

∫
R̂n
f̂(~γ)e2πi~γ~xd~γ, where f̂(~γ) =

∫
Rn
f(~x)e−2πi~γ~xd~x.
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These relations turn out to be valid when suitably interpreted, but some care is

needed. In the first place, the integral defining f̂(~γ) is only assured to exist if

f ∈ L1(Rn). We therefore begin by defining the Fourier transform of f ∈ L1(Rn)

by

Ff(~γ) = f̂(~γ) =

∫
Rn
f(~x)e−2πi~γ~xd~x

for ~γ ∈ R̂n. (We use the notation F for the Fourier transform only where it is

needed for clarity. Also, the argument of f̂ is usually written as a row vector.)

Clearly the operator F is linear and ‖f̂‖∞ 6 ‖f‖1, and from the theorem below,

F : L1(Rn)→ C0(R̂n).

We summarize the elementary properties of F in a theorem.

Theorem 2.39. Suppose f, g ∈ L1(Rn).

(a) If ~xαf ∈ L1(Rn) for a multi-index |α| 6 k, then f̂ ∈ Ck(R̂n) and ∂αf̂ =

̂(−2πi~x)αf .

(b) If f ∈ Ck(Rn), ∂αf ∈ L1(Rn) for |α| 6 k, and ∂αf ∈ C0(Rn) for |α| 6 k − 1,

then (∂̂αf)(~γ) = (2πi~γ)αf̂(~γ).

(c) (Riemann-Lebesgue Lemma): f̂ ∈ C0(R̂n).

Parts (a) and (b) of Theorem 2.39 point to a fundamental property of the

Fourier transform: Smoothness properties of f are reflected in the rate of decay of

f̂ at infinity, and vice versa.

We are now ready to invert the Fourier transform. If f ∈ L1(Rn), we define

the inverse Fourier transform by

f̌(~x) = f̂(−~x) =

∫
R̂n
f(~γ)e2πi~γ~xd~γ
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for ~x ∈ Rn. Note that f̂ need not be integrable in general, but if it is, then by the

next theorem we can reconstruct f from f̂ by

f(~x) = (f̂)∨(~x) =

∫
R̂n
f̂(~γ)e2πi~γ~xd~γ (2.6)

for a.e. ~x ∈ Rn.

Theorem 2.40. (The Fourier Inversion Theorem) If f ∈ L1(Rn) and f̂ ∈ L1(R̂n),

then f agrees almost everywhere with a continuous function f0, and (f̂)∨ = (f̌)∧ =

f0.

Corollary 2.41. If f ∈ L1(Rn) and f̂ = 0, then f = 0 a.e. That is, the Fourier

transform F is a one-to-one mapping.

The following is the analogue of theorem 2.38.

Theorem 2.42. (The Plancherel Theorem) If f ∈ L1(Rn) ∩ L2(Rn), then f̂ ∈

L2(R̂n), ‖f̂‖2 = ‖f‖2, and the restriction of F to L1(Rn)∩L2(Rn) extends uniquely

to a unitary isomorphism of L2(Rn) onto L2(R̂n), which we also denote by F .

Since F : L2(Rn) → L2(R̂n) is unitary, then its inverse certainly exists.

However, only when f̂ ∈ L1(Rn)∩L2(Rn) can it be computed by formula (2.6). We

use the symbol f̌ to denote the inverse Fourier transform of a function f ∈ L2(R̂n)

as well.

Next we define three types of unitary operators on L2(Rn). These operators

are fundamental in the wavelet transform, and will be used throughout. Given

h ∈ GLn(R), c ∈ Mn(R) with c = cT , and ~x ∈ Rn, the dilation operator Dh, the

translation operator T~x, the modulation operator E~x and the chirp operator Nc are

defined by

(Dhf)(~y) = | deth|−1/2f(h−1~y), (T~xf)(~y) = f(~y − ~x),

(E~xf)(~y) = e2πi〈~y,~x〉f(~y), (Ncf)(~y) = e−iπ〈c~y,~y〉f(~y)
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for f ∈ L2(Rn) and ~y ∈ Rn. The corresponding dilation and modulation operators

on  L2(R̂n) are

(Dhf)(~γ) = | deth|1/2f(~γh) and (E~xf)(~γ) = e2πi~γ~xf(~γ)

for f ∈ L2(R̂n) and ~γ ∈ R̂n, respectively. These are easily seen to be unitary

operator on L2(Rn). For example,

‖Dhf‖2
2 =

∫
Rn

∣∣deth−1
∣∣ ∣∣f(h−1~y)

∣∣2 d~y =

∫
Rn
|f(~y)|2 d~y = ‖f‖2

2

for all f ∈ L2(Rn), so that Dh is an isometry. Here we have used the fact that

| det a|
∫

Rn
f(a~x)d~x =

∫
Rn
f(~x)d~x

for all a ∈ GLn(R) and f ∈ L1(Rn). In addition, DhDk = Dhk for all h, k ∈

GLn(R). Using techniques from group representations (see Folland (1999), for

example), one shows that the mappings h 7→ Dh, ~x 7→ T~x, ~x 7→ E~x and c 7→ Nc

are strongly continuous homomorphisms of the respective groups into the group

of unitary operators on L2(Rn) (respectively L2(R̂n) ), that is, they are group

representations.

Proposition 2.43. For h ∈ GLn(R) and ~x ∈ Rn,

(a) FDh = DhF

(b) FT~x = E−~xF .

Proof. For f ∈ L1(Rn) ∩ L2(Rn),

(FDhf)(~γ) =

∫
Rn

(Dhf)(~y)e−2πi~γ~yd~y =

∫
Rn
| deth|−1/2f(h−1~y)e−2πi~γ~yd~y

=

∫
Rn
| deth|1/2f(~y)e−2πi~γh~yd~y = | deth|1/2(Ff)(~γh) = (DhFf)(~γ)
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and also

(FT~xf)(~γ) =

∫
Rn

(T~xf)(~y)e−2πi~γ~yd~y =

∫
Rn
f(~y − ~x)e−2πi~γ~yd~y =

∫
Rn
f(~y)e−2πi~γ(~y+~x)d~y

= e−2πi~γ~x

∫
Rn
f(~y)e−2πi~γ~yd~y = e−2πi~γ~x(Ff)(~γ) = (E−~xFf)(~γ).

The assertion follows from density of L1(Rn)∩L2(Rn) in L2(Rn) and continuity of

all operators involved.

2.5 The Affine Group

As already shown in the section on group actions, the group D = GLn(R)

acts naturally on N = Rn by matrix multiplication,

h · ~x = αh(~x) = h~x

for h ∈ GLn(R) and ~x ∈ Rn. The corresponding semi-direct product is called the

n-dimensional affine group,

Affn(R) := GLn(R) o Rn,

with the group law

(h, ~x)(k, ~y) = (hk, ~x+ h~y)

for (h, ~x), (k, ~y) ∈ Affn(R).

Elements of Affn(R) are best represented in matrix form. It is easy to verify

that (h, ~x) 7→

 h ~x

0 1

 is an isomorphism and homeomorphism of Affn(R) onto a

closed subgroup of GLn+1(R); one therefore often identifies Affn(R) with the group

considering these matrices,

Affn(R) =

(h, ~x) :=

 h ~x

0 1

 : h ∈ GLn(R), ~x ∈ Rn

 .
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Now given ~z ∈ Rn, we have h ~x

0 1


 ~z

1

 =

 h~z + ~x

1


or in short (h, ~x) · ~z = h~z + ~x. Recall that a map ~z 7→ h~z + ~x is called an affine

map, therefore the name affine group. If (h, ~x), (k, ~y) ∈ Affn(R), then

((h, ~x)(k, ~y)) · ~z = (hk, ~x+ h~y) · ~z = hk~z + (h~y + ~x) = h(k~z + ~y) + ~x

= (h, ~x) · (k~z + ~y) = (h, ~x) · ((k, ~y) · ~z) .

That is (h, ~x) ·~z is a (clearly continuous) action of Affn(R) on Rn, called the affine

action.

Since the affine action involves dilations and translations of vectors, it in-

duces a representation π of Affn(R) on H = L2(Rn). In fact, given ψ ∈ L2(Rn)

and (h, ~x) ∈ Affn(R), we have

|deth|−1/2ψ((h, ~x)−1 · ~z) = |deth|−1/2 ψ
(
(h−1,−h−1~x) · ~z

)
= |deth|−1/2 ψ(h−1~z − h−1~x) = |deth|−1/2 ψ(h−1(~z − ~x)) = (T~xDhψ)(~z).

(2.7)

Now for each (h, ~x) ∈ Affn(R), π(h, ~x) defined by

π(h, ~x) = T~xDh

is a unitary operator on L2(Rn). Furthermore, π is a homomorphism as

(π((h, ~x)(k, ~y))ψ)(~z) = |dethk|−1/2 ψ(((h, ~x)(k, ~y))−1 · ~z)

= |deth|−1/2 |det k|−1/2 ψ(((k, ~y)−1(h, ~x)−1) · ~z)

= |deth|−1/2 |det k|−1/2 ψ((k, ~y)−1 · ((h, ~x)−1 · ~z))

= |deth|−1/2 (π(k, ~y)ψ)((h, ~x)−1 · ~z) = (π(h, ~x)π(k, ~y)ψ)(~z).
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Since the mappings h 7→ Dh and ~x 7→ T~x are strongly continuous maps into the set

of unitary operators on L2(Rn), so is the composition π : (h, ~x) 7→ T~xDh. Hence

π is a representation of Affn(R) on L2(Rn). As shown in (2.7), given ψ ∈ L2(Rn)

and (h, ~x) ∈ Affn(R), then

(π(h, ~x)ψ)(~y) = (T~xDhψ)(~y) = | deth|−1/2ψ(h−1(~y − ~x))

for all ~y ∈ Rn.

Recall that the Fourier transform F : L2(Rn)→ L2(R̂n) is an isomorphism

of Hilbert spaces. Thus it induces a representation δ of Affn(R) on the phase space

L2(R̂n) defined by

δ = F ◦ π ◦ F−1.

Computing, we obtain by Proposition 2.43 for (h, ~x) ∈ G,

δ(h, ~x) = F ◦ π(h, ~x) ◦ F−1 = FT~xDhF−1 = E−~xFDhF−1

= E−~xDhFF−1 = E−~xDh

that is

(δ(h, ~x)ψ̂)(~γ) = | deth|1/2e−2πi~γ~xψ̂(~γh)

for ψ ∈ L2(Rn) and ~γ ∈ R̂n.

We will also consider subgroups of Affn(R) arising from subgroups of

GLn(R). Given a closed subgroup H of GLn(R), we consider the corresponding

subgroup G of Affn(R),

G = {(h, ~x) ∈ Affn(R) : h ∈ H,~x ∈ Rn}.

We identify H with the subgroup {(h, ~x) ∈ G : h ∈ H,~x = 0} and refer to it as the

dilation subgroup of G, and Rn with the subgroup {(h, ~x) ∈ G : h = e, ~x ∈ Rn},
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and call it the translation subgroup of G. Thus G = H o Rn is a closed subgroup

of Affn(R). By (2.2),

| deth|
∫

Rn
f(αh(~x))d~x = | deth|

∫
Rn
f(h~x)d~x =

∫
Rn
f(~x)d~x

for all f ∈ Cc(Rn), it follows from (2.2) that

dν(h, ~x) =
dµ(h) dλ(~x)

| deth|
(2.8)

is a left Haar measure for G, where µ is a left Haar measure on H and λ the

Lebesgue measure on Rn.

In addition, the restriction of the representation π of Affn(R) to G is called

the affine representation of G, or the wavelet representation.

2.6 Frame Theory

Definition 2.44. A sequence {ej : j ∈ J} in a Hilbert space H is called a frame

if there exist positive constants A,B > 0 such that for all f ∈ H

A ‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B ‖f‖2 . (2.9)

The constants A,B are called frame bounds. If A = B, then {ej : j ∈ J} is called

a tight frame. If A = B = 1, then it is called a Parseval frame, as (2.9) reduces

to Parseval’s identity.

Thus a frame is a natural generalization of the concept of Hilbert space

basis. One now wants to reconstruct f from its frame coefficients 〈f, ej〉. Note

that the vectors ej need not be linearly independent. However, by (2.9) the set

{ej : j ∈ J} is bounded.

Definition 2.45. For any subset {ej : j ∈ J} ⊂ H, the coefficient operator or

analysis operator C is given by

Cf = {〈f, ej〉 : j ∈ J} .
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The synthesis operator or reconstruction operator D is defined for a finite sequence

c = (cj)j∈J by

Dc =
∑
j∈J

cjej ∈ H,

and the frame operator S is defined by

Sf =
∑
j∈J

〈f, ej〉 ej.

The following proposition guarantees that the operators D and S are well

defined for a sequence c = (cj)j∈J with infinitely many nonzero terms.

Proposition 2.46. Suppose that {ej : j ∈ J} is a frame for H.

(a) C is a bounded operator from H into `2(J) of norm less than or equal to B1/2

with closed range.

(b) The operators C and D are adjoint to each other; that is, D = C∗. Con-

sequently, D extends to a bounded linear operator from `2(J) into H and

satisfies ‖D‖ 6 B1/2.

(c) The frame operator S = C∗C = DD∗ maps H onto H and is a positive

invertible operator satisfying AIH ≤ S ≤ BIH and B−1IH ≤ S−1 ≤ A−1IH.

In particular, {ej : j ∈ J} is a tight frame if and only if S = AIH.

(d) The optimal frame bounds are Bopt = ‖S‖ and Aopt = ‖S−1‖−1
, where ‖ · ‖ is

the usual operator norm of S.

Proof. (a) The statement follows directly from the frame inequalities (2.9). (b)

Let c = (cj)j∈J be a finite sequence. Since C is a bounded linear operator of norm

‖C‖ 6 B1/2, then its adjoint C∗ is also linear and bounded, and for every finite

sequence {cj}j∈J ,

〈C∗c, f〉 = 〈c, Cf〉 =
∑
j∈J

cj〈f, ej〉 =

〈∑
j∈J

cjej, f

〉
= 〈Dc, f〉 .
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It follows that C∗ is the extension of D to a bounded linear operator C∗ : `2(J)→

H with the same operator norm, ‖D‖ = ‖C∗‖ = ‖C‖. Thus (b) follows. We now

formally write

Dc =
∑
j∈J

cjej

for c ∈ `2(J). (c) Obviously the frame operator can be expressed as S = C∗C =

DD∗ and consequently S is defined, self-adjoint and positive. Since

〈Sf, f〉 = 〈Cf,Cf〉 = ‖Cf‖2 =
∑
j∈J

|〈f, ej〉|2 (2.10)

the operator inequality AIH ≤ S ≤ BIH is just (2.9) rewritten. S is invertible on

H because A > 0. Inequalities are preserved under multiplication with positive

commuting operator, therefore AS−1 ≤ SS−1 ≤ BS−1, as desired. (d) follows

from the frame inequalities (2.9) and the fact that the operator norm of a positive

operator is determined by ‖S‖ = sup {〈Sf, f〉 : ‖f‖ ≤ 1}. The argument for Aopt

is similar.

Statement (b) shows that
∑

j∈J cjej and
∑

j∈J〈f, ej〉ej are well defined for

an arbitrary `2-sequence by means of the adjoint operator, even though the frame

vectors ej are not orthogonal in general. Convergence of this series is to be under-

stood as follows.

Corollary 2.47. Let {ej : j ∈ J} be a frame for H. If f =
∑

j∈J cjej for some

c ∈ `2(J), then for every ε > 0 there exists a finite subset F0 = F0(ε) ⊂ J such

that ∥∥∥∥∥f −∑
j∈F

cjej

∥∥∥∥∥ < ε

for all finite subsets F ⊃ F0. We say that the series
∑

j∈J cjej converges uncondi-

tionally to f ∈ H.
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Proof. Choose F0 ⊂ J such that
∑

n/∈F0
|cj|2 < ε/B1/2. Given a finite subset

F ⊃ F0 of J , let cF = c · 1F ∈ `2(J) be the finite sequence with terms cF,j = cj if

j ∈ F and cF,j = 0 if j /∈ F . Then
∑

j∈F cjej = DcF and by Proposition 2.46 (b)

we obtain∥∥∥∥∥f −∑
j∈F

cjej

∥∥∥∥∥ = ‖Dc−DcF‖ = ‖D(c− cF )‖ ≤ B1/2 ‖c− cF‖2 < ε.

As another consequence of Proposition 2.46 we obtain a first reconstruction

formula for f from the frame coefficients 〈f, ej〉.

Corollary 2.48. If {ej : j ∈ J} is a frame with frame bounds A,B > 0, then

{S−1ej : j ∈ J} is a frame with frame bounds B−1, A−1 > 0, called the dual frame.

Every f ∈ H has non-orthogonal expansions

f =
∑
j∈J

〈
f, S−1ej

〉
ej

and

f =
∑
j∈J

〈f, ej〉S−1ej

where both sums converge unconditionally in H.

Proof. First observe that by (2.10),

∑
j∈J

∣∣〈f, S−1ej
〉∣∣2 =

∑
j∈J

∣∣〈S−1f, ej
〉∣∣2 =

〈
S(S−1f), S−1f

〉
=
〈
S−1f, f

〉
.

Therefore Proposition 2.46 (c) implies that

B−1 ‖f‖2 ≤
〈
S−1f, f

〉
=
∑
j∈J

∣∣〈f, S−1ej
〉∣∣2 ≤ A−1 ‖f‖2

which shows that the collection {S−1ej : j ∈ J} is a frame with frame bounds B−1

and A−1.
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Using the factorizations IH = S−1S = SS−1, we obtain the series expansions

f = S(S−1f) =
∑
j∈J

〈
S−1f, ej

〉
ej =

∑
j∈J

〈
f, S−1ej

〉
ej

and

f = S−1Sf =
∑
j∈J

〈f, ej〉S−1ej.

Because both {〈f, ej〉}j∈J and {〈f, S−1ej〉}j∈J are in `2(J), both of the above series

converge unconditionally by Corollary 2.47.

The above corollary shows that f can be reconstructed from its sequence

of frame coefficients by means of the dual frame. In some particular cases, recon-

struction is easier:

Proposition 2.49.

(a) If {ej : j ∈ J} is a Parseval frame of H, then

f =
∑
j∈J

〈f, ej〉 ej.

(b) If {ej : j ∈ J} is a Parseval frame of H and if ‖ej‖ = 1 for all j ∈ J , then

{ej} is an orthonormal basis.

Proof. (a) Since A = B = 1, then S = IH. (b) By (2.9) we have

1 = ‖em‖2 =
∑
j∈J

|〈em, ej〉|2 = 1 +
∑
j 6=m

|〈em, ej〉|2,

and consequently 〈em, ej〉 = δj,m.

2.7 The Wigner Distribution

In time-frequency analysis, one studies a function and its Fourier transform

simultaneously, as one wishes to understand its behavior with respect to time and

frequency. The Wigner distribution was introduced for this purpose.
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Definition 2.50. The Wigner distributionWf of a function f ∈ L2(Rn) is defined

on R2n to be

Wf (~x, ~w) =

∫
Rn
f

(
~x+

~y

2

)
f

(
~x− ~y

2

)
e−2iπ〈~w,~y〉d~y.

By polarizing this quadratic expression, one obtains the cross-Wigner distribution

of two functions f, g ∈ L2(Rn):

Wf,g(~x, ~w) =

∫
Rn
f

(
~x+

~y

2

)
g

(
~x− ~y

2

)
e−2iπ〈~w,~y〉d~y.

Proposition 2.51. For f, g ∈ L2(Rn) the cross-Wigner distribution has the fol-

lowing properties.

(a) Wf,g is uniformly continuous on R2n, and

‖Wf,g‖∞ 6 2n ‖f‖2 ‖g‖2 .

(b) Wf,g =Wf,g. In particular, Wf is real-valued.

(c) For ~u,~v, ~η, ~ω ∈ Rn, we have

WT~uE~ηf,T~vE~ωg(~x, ~w)

= eiπ(~u+~v)·(~ω−~η)e2iπ~x·(~η−~ω)e−2iπ ~w·(~u−~v)Wf,g

(
~x− ~u+ ~v

2
, ~w − ~η + ~ω

2

)
.

In particular, Wf is covariant, that is WT~uE~ηf (~x, ~w) = T~u,ηWf (~x, ~w).

(d) Wf̂ ,ĝ(~x, ~w) =Wf,g(−~w, ~x).

(e) Moyal’s formula: For f, f ′, g, g′ ∈ L2(Rn),

〈Wf,g,Wf ′,g′〉L2(R2n) = 〈f, f ′〉 〈g, g′〉.

(f) If f, g ∈ S(Rn), then Wf,g ∈ S(R2n). Here the Schwartz class is

S(Rn) =
{
f ∈ C∞(Rn) : ‖f‖(N,α) <∞, ∀N ∈ N ∪ {0} , α ∈ Λ

}



 

 

 

 

 

 

 

 

41

where

‖f‖(N,α) = sup
~x∈Rn

(1 + ‖~x‖)N |(Dαf) (~x)|

and Λ is the set of multi-indices.

One can reconstruct the modulus of f and of its Fourier transform from the

Wigner distribution:

Proposition 2.52. If f, f̂ ∈ L1(Rn) ∩ L2(Rn), then∫
Rn
Wf (~x, ~w)d~w = |f(~x)|2 ,

∫
Rn
Wf (~x, ~w)d~x = |f(~w)|2 .

In particular, ∫
Rn

∫
Rn
Wf (~x, ~w)d~xd~w = ‖f‖2

2 .

2.8 The Symplectic Group

Throughout this section we shall be working with 2n× 2n matrices, which

we shall generally denote by capital calligraphic letters, and write in block form as

A =

 a b

c d

 ,
where a, b, c and d are n× n matrices.

2.8.1 Symplectic Linear Algebra

Recall that in Euclidean space, there is a natural symmetric, nondegenerate

bilinear form: the usual inner product. The orthogonal group O(n) is the group

of all matrices leaving this inner product invariant,

〈a~x, a~y〉 = 〈~x, ~y〉

for a ∈ O(n) and ~x, ~y ∈ Rn.



 

 

 

 

 

 

 

 

42

In symplectic linear algebra, one starts with a skew-symmetric bilinear form,

the matrices leaving this form invariant are called symplectic matrices. We begin

with the matrix

J =

 0 In

−In 0

 ,
which defines a skew-symmetric bilinear form, called the symplectic form, on R2n

by

[~x, ~y] = ~xTJ ~y

for ~x, ~y ∈ R2n. We observe that J ∗ = −J = J −1.

The symplectic group Sp(n,R) is the group of all 2n×2n invertible matrices

which, as operators on R2n, preserve the symplectic form:

Sp(n,R) =
{
A ∈ GL2n(R) : [A~x,A~y] = [~x, ~y] ∀ ~x, ~y ∈ R2n

}
.

The following characterizes symplectic matrices:

Proposition 2.53. For A =

 a b

c d

 ∈ GL2n(R), the following are equivalent:

(a) A ∈ Sp(n,R).

(b) A∗JA = J .

(c) A−1 = JA∗J −1 =

 d∗ −b∗

−c∗ a∗

.

(d) A∗ ∈ Sp(n,R).

(e) a∗c = c∗a, b∗d = d∗b, and a∗d− c∗b = In.

(f) ab∗ = ba∗, cd∗ = dc∗, and ad∗ − bc∗ = In.

Proof. We have

[A~x,A~y] = (A~x)T J (A~y) = ~xTA∗JA~y
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for all ~x, ~y ∈ R2n, so (a) and (b) are equivalent. (b) and (c) are clearly equivalent.

Taking the inverse transpose of (b) we get A−1JA∗−1 = J , and replacing A by

A−1 we see that (b) is equivalent to (d). (e) is merely (b) written out in block

form, and (f) is (b) written out in block form with A replaced by A∗.

Proposition 2.54. The subsets

N =


 In a

0 In

 : a = a∗

 , N =


 In 0

a In

 : a = a∗

 ,

L =


 a 0

0 a∗−1

 : a ∈ GLn(R)


of GL2n(R) are subgroups of Sp(n,R). Moreover,

NLN =


 a b

c d

 ∈ Sp(n,R) : det a 6= 0


Proof. The verification of the first assertion is straightforward, and therefore omit-

ted. If  In 0

g In

 ∈ N,
 e 0

0 e∗−1

 ∈ L,
 In f

0 In

 ∈ N
then  In 0

g In

 e 0

0 e∗−1

 In f

0 In

 =

 e ef

ge gef + e∗−1

,
so if

 a b

c d

 ∈ Sp(n,R) and det a 6= 0, we take e = a, f = a−1b, and g = ca−1,

and must verify that

f = f ∗, g = g∗, d = gef + e∗−1 = ca−1b+ a∗−1.

But this follows easily from Proposition 2.53 (e,f).

Proposition 2.55. Sp(n,R) is connected and generated by L∪N ∪{J } and also

by L ∪N ∪ {J }.
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2.8.2 The Metaplectic Representation

Next we introduce the Heisenberg group, defined by

Hn =
{

(~v, z) : ~v = (~x, ~y) ∈ R2n, z ∈ R
}

with group operation

(~v, z)(~v′, z′) = (~v + ~v′, z + z′ − 1

2
[~v,~v′]). (2.11)

Topologically Hn is thus identified with R2n+1. It is often convenient to represent

Hn as a matrix group. In fact, one easily checks that the map

(~x, ~y, z) ∈ Hn 7→


1 ~yT z + 1

2
~yT~x

~0 In ~x

0 ~0 1

 ∈ GLn+2(R)

is an isomorphism of topological groups, thus the Heisenberg group Hn is isomor-

phic to the closed subgroup of GLn+2(R) of the form

Hn
pol =




1 ~yT z

0 In ~x

0 0 1

 : ~x, ~y ∈ Rn, z ∈ R

 ,

called the polarized Heisenberg group. One quickly verifies that

ρ(~v, z) = ρ(~x, ~y, z) = e2iπzeiπ<~x,~y>T~xE~y

defines a representation of Hn on L2(Rn), called the Schrödinger representation.

One can compose this representation with dilations by a scalar λ, to obtain a

representation ρλ defined by

ρλ(~x, ~y, z) = ρ(λ~x, ~y, λz).

Observe that the center of Hn is Z =
{

(~0, z) : z ∈ R
}

and ρ(~0, z) = e2iπzId for any

z ∈ R.
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In representation theory, one wants to decompose representations into sums

or direct integrals of basic building blocks, the irreducible representations. Repre-

sentations of the Heisenberg group are well understood, and show the importance

of the Schrödinger representation:

Theorem 2.56. (Stone-von Neumann) Let π be a unitary representation of Hn

on a Hilbert space H, such that π(0, 0, z) = e2iπλzIH for some λ ∈ R\{0}. Then

H = ⊕
α
Hα where the Hα’s are mutually orthogonal π-invariant subspaces of H,

and π|Hα is unitarily equivalent to ρλ. In particular, if π is irreducible then π is

equivalent to ρλ.

By definition of the group operation in the Heisenberg group, the symplectic

group acts naturally on Hn: eachA ∈ Sp(n,R), defines a continuous automorphism

TA of Hn by TA(~v, z) = (A~v, z). In fact

TA ((~v, z)(~v′, z′)) = TA

(
~v + ~v′, z + z′ − 1

2
[~v,~v′]

)
=

(
A(~v + ~v′), z + z′ − 1

2
[~v,~v′]

)
=

(
A~v +A~v′, z + z′ − 1

2
[A~v,A~v′]

)
= (A~v, z) (A~v′, z′)

= TA (~v, z)TA (~v′, z′)

Composition of the Schrödinger representation with this automorphism defines a

new irreducible representation ρA of Hn on L2(Rn),

ρA(~v, z) = ρ(A~v, z) ((~v, z) ∈ Hn) .

Observe that ρA(~0, z) = ρ(~0, z) = e2iπzId for any z ∈ R. Since ρA and ρ are

irreducible unitary representation of Hn on L2(Rn) which coincide on its center

Z, by Theorem 2.56, ρA and ρ must be equivalent. That is, there exists a (not

necessarily unique) unitary operator µ(A) on L2(Rn) such that

ρ(A~v, z) = ρA(~v, z) = µ(A)ρ(~v, z)µ(A)−1 (2.12)
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for all (~v, z) ∈ Hn. For A,B ∈ Sp(n,R), one obtains

µ(AB)ρ(~v, z)µ(AB)−1 = ρAB(~v, z) = ρ(AB~v, z) = ρA(B~v, z)

= µ(A)ρ(B~v, z)µ(A)−1 = µ(A)ρB(~v, z)µ(A)−1

= µ(A)µ(B)ρ(~v, z)µ(B)−1µ(A)−1

for all (~v, z) ∈ Hn. Since ρ is irreducible and all operators are unitary, by Theorem

2.13, we obtain µ(AB) = λµ(A)µ(B) for some complex scalar |λ| = 1. One can

show that by proper choice of µ, λ ∈ {±1}, so that µ(AB) = ±µ(A)µ(B). Because

of the factor ±1, µ is not a proper representation. However, for the subgroups we

are interested in, it will turn out to be a proper representation. µ is called the

metaplectic representation of Sp(n,R).

By Proposition 2.55, Sp(n,R) is generated by matrices of three types. Ap-

plying Theorem 2.13, we can give an explicit formula of µ(A) for each type of

generator, up to the phase factor λ. For f ∈ L2(Rn), we have:

(i) given A =

 a 0

0 a∗−1

, where a ∈ GLn(R), we obtain

(
µ(A)ρ(~x, ~y, z)µ(A)−1f

)
(~s) = (ρ(A(~x, ~y), z)f) (~s) =

(
ρ(a~x, a∗−1~y, z)f

)
(~s)

= e2iπzeiπ〈a~x,a∗−1~y〉(Ta~xEa∗−1~yf)(~s)

= e2iπzeiπ〈~x,~y〉e2iπ〈~s−a~x,a∗−1~y〉f(~s− a~x)

= e2iπzeiπ〈~x,~y〉e2iπ〈a−1~s−~x,~y〉f(a(a−1~s− ~x))

= e2iπzeiπ〈~x,~y〉 |det a|−1/2 e2iπ〈a−1~s−~x,~y〉(Da−1f)(a−1~s− ~x)

= e2iπzeiπ〈~x,~y〉 |det a|−1/2 (E~yDa−1f)(a−1~s− ~x)

= e2iπzeiπ〈~x,~y〉 |det a|−1/2 (T~xE~yDa−1f)(a−1~s)

= e2iπzeiπ〈~x,~y〉(DaT~xE~yDa−1f)(~s)

= (Daρ(~x, ~y, z)Da−1f)(~s)
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for all (~x, ~y, z) ∈ Hn. By Theorem 2.13, it follows that

µ(A) = λDa (2.13)

for some λ ∈ C, |λ| = 1.

(ii) Given A =

 In 0

c In

, where c ∈Mn(R) with c = c∗, we obtain

(
µ(A)ρ(~x, ~y, z)µ(A)−1f

)
(~s) = (ρ(A(~x, ~y), z)f) (~s) = ρ(~x, c~x+ ~y, z)f(~s)

= e2iπzeiπ〈~x,c~x+~y〉(T~xEc~x+~yf)(~s)

= e2iπzeiπ〈~x,c~x+~y〉e2iπ〈~s−~x,c~x+~y〉f(~s− ~x)

= e2iπzeiπ〈~x,~y〉eiπ〈c~s,~s〉e2iπ〈~s−~x,~y〉e−iπ〈c(~s−~x),~s−~x〉f(~s− ~x)

= e2iπzeiπ〈~x,~y〉eiπ〈c~s,~s〉e2iπ〈~s−~x,~y〉(Ncf)(~s− ~x)

= e2iπzeiπ〈~x,~y〉eiπ〈c~s,~s〉(E~yNcf)(~s− ~x)

= e2iπzeiπ〈~x,~y〉eiπ〈c~s,~s〉(T~xE~yNcf)(~s)

= e2iπzeiπ〈~x,~y〉(N−cT~xE~yNcf)(~s)

= (N−cρ(~x, ~y, z)Ncf)(~s)

for all (~x, ~y, z) ∈ Hn. By Theorem 2.13, it follows that

µ(A) = λN−c (2.14)

for some λ ∈ C, |λ| = 1.

(iii) Since T~yE−~x = e−2iπ〈~y,−~x〉E−~xT~y for all ~x, ~y ∈ Rn, then we obtain

µ(J )ρ(~x, ~y, z)µ(J )−1 = ρ(J (~x, ~y), z) = ρ(~y,−~x, z) = e2iπzeiπ〈~y,−~x〉T~yE−~x

= e2iπzeiπ〈~y,−~x〉e−2iπ〈~y,−~x〉E−~xT~y = e2iπzeiπ〈~y,~x〉FT~xE~yF−1 = Fρ(~x, ~y, z)F−1

for all (~x, ~y, z) ∈ Hn. By Theorem 2.13, it follows that

µ(J ) = λF (2.15)

for some λ ∈ C, |λ| = 1. One can show that λ can be chosen to be ±1.
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2.8.3 The Extended Metaplectic Representation

Since Sp(n,R) acts on Hn by automorphisms, one can form the semi-direct

product of these two groups, Sp(n,R) o Hn with the group law

(A, (~v, z)) (A′, (~v′, z′)) = (AA′, (~v, z)TA(~v′, z′))

The Schrödinger representation ρ of Hn and the metaplectic representation µ of

Sp(n,R) fit together to form a (double-valued since µ is) unitary representation of

Sp(n,R) o Hn which is denoted by µe and called the extended metaplectic repre-

sentation:

µe(A, (~v, z)) = ρ(~v, z)µ(A).

Let us check that this really is a homomorphism (up to phase factor λ ∈ C, |λ| = 1):

µe (A, (~v, z))µe (A′, (~v′, z′)) = ρ(~v, z)µ(A)ρ(~v′, z′)
(
µ(A)−1µ(A)

)
µ(A′)

= ρ(~v, z)ρA(~v′, z′)µ(AA′) = ρ(~v, z)ρ(A~v′, z′)µ(AA′)

= ρ(~v, z)ρ(TA(~v′, z′))µ(AA′) = ρ((~v, z)TA(~v′, z′))µ(AA′)

= µe (AA′, (~v, z)TA(~v′, z′)) = µe (A, ((~v, z)) (A′, (~v′, z′))) .

µe is irreducible since ρ is.



 

 

 

 

 

 

 

 

CHAPTER III

SUMS OF WAVELET REPRESENTATIONS

The important concept in the voice transform is admissibility: under what

condition can a vector be reconstructed from its voice transform. Admissibility

for the voice transform associated with the wavelet representation are now well

understood from the paper of Laugesen et al. (2002) and the monograph by

Führ (2005). Since we will need to work with transforms associated with sums

of modulated wavelet representations, this chapter introduces such representation,

discusses admissibility and presents methods for constructing admissible vectors

as well as frames.

3.1 The Continuous Wavelet Transform

We begin by reviewing the usual continuous wavelet transform from the

group theoretic point of view. Details of this part can be found in the monograph

by Führ (2005).

3.1.1 The Voice Transform

Let (Ω,M, ν) be a measure space, H a Hilbert space and φ : Ω → H a

weakly measurable map. By this we mean that

ω ∈ Ω 7→ 〈f, φ(ω)〉H

is measurable for all f ∈ H. Define the voice transform of f ∈ H by

(Vφf)(ω) = 〈f, φ(ω)〉H



 

 

 

 

 

 

 

 

50

for ω ∈ Ω. Thus Vφ is a measurable function on Ω. If the map Vφ : f 7→ Vφf is a

multiple of a partial isometry of H into L2(Ω), that is, if there exists cφ > 0 such

that

‖Vφf‖L2(Ω) =
√
cφ‖f‖H (3.1)

for all f ∈ H, then by the polarization identity

〈Vφf, Vφg〉L2(Ω) = cφ 〈f, g〉H

for all f, g ∈ H. It follows that

〈f, g〉H =
1

cφ
〈Vφf, Vφg〉L2(Ω) =

1

cφ

∫
Ω

(Vφf)(ω)(Vφg)(ω)dν(ω)

=
1

cφ

∫
Ω

(Vφf)(ω)〈g, φ(ω)〉dν(ω) =
1

cφ

∫
Ω

(Vφf)(ω) 〈φ(ω), g〉H dν(ω)

=

∫
Ω

〈
1

cφ
(Vφf)(ω)φ(ω), g

〉
H
dν(ω)

for all f, g ∈ H and one obtains the Calderón reproducing formula

f =
1

cφ

∫
Ω

(Vφf)(ω)φ(ω)dν(ω) (3.2)

as a weak integral in H. The mapping φ is called a resolution of the identity if

(3.2) holds.

Resolutions of the identity arise naturally from group representations. Let

G be a locally compact group with Haar measure ν, for example a matrix group,

and π a representation of G on a Hilbert space H. Fix ψ ∈ H and consider the

continuous map

φ : g 7→ π(g)ψ

of G into H. The voice transform associated with this representation is

(Vψf)(g) = 〈f, π(g)ψ〉H

for f ∈ H and condition (3.1) becomes

‖Vψf‖L2(G) =
√
cψ‖f‖H
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for all f ∈ H, i.e., ∫
G

|〈f, π(g)ψ〉H|
2 dν(g) = cψ ‖f‖2

H

for all f ∈ H. If this identity holds, then ψ is called an admissible vector. The

group G is called admissible, if at least one admissible vector exists.

3.1.2 The Classical Wavelet Transform

The wavelet transform is an example of this voice transform associated

with a group representation. Here G = H o Rn is a subgroup of the affine group

Affn(R) with H a closed subgroup of GLn(R), and π the affine representation of

G on L2(Rn).

Definition 3.1. Given ψ ∈ L2(Rn), the continuous wavelet transform Wψ induced

by ψ and the group H is defined by

Wψf(h, ~x) = 〈f, π(h, ~x)ψ〉L2(Rn) = | deth|−1/2

∫
Rn
f(~y)ψ(h−1(~y − ~x))d~y

for f ∈ L2(Rn) and (h, ~x) ∈ G.

The adjective continuous refers to the continuity of the translation group,

consisting of all ~x ∈ Rn. The dilation group H, in contrast, is permitted to carry

the discrete topology.

Thus G is admissible if and only if there exist a function ψ ∈ L2(Rn)

(admissible vector) and cψ > 0 such that

‖Wψf‖L2(G) =
√
cψ‖f‖L2(Rn) (3.3)

for all f ∈ L2(Rn), or equivalently∫
G

|〈f, π(h, ~x)ψ〉L2(Rn)|2dν(h, ~x) =

∫
G

|(Wψf)(h, ~x)|2dν(h, ~x) = cψ

∫
Rn
|f(~y)|2d~y

(3.4)
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for all f ∈ L2(Rn). The Calderón reproducing formula is thus by (2.8),

f =
1

cψ

∫
G

(Wψf)(h, ~x) π(h, ~x)ψ dν(h, ~x)

=
1

cψ

∫
Rn

∫
H

(Wψf)(h, ~x) π(h, ~x)ψ | deth|−1dµ(h)d~x (3.5)

as a weak integral in L2(Rn). Because G = H o Rn, we also call the group H

admissible if G is.

The following two theorems are by now well known. They characterize

admissible functions and give criteria for an affine group G = H o Rn to be

admissible.

Theorem 3.2. (Laugesen et al., 2002) ψ ∈ L2(Rn) is admissible if and only if

there is cψ > 0 such that ∫
H

|ψ̂(~γh)|2dµ(h) = cψ (3.6)

for a.e. ~γ ∈ R̂n.

The fundamental result on admissibility of a group given by Laugesen et al.

(2002) involves the notation of the ε-stabilizer. Given ~γ ∈ R̂n and ε > 0, the set

Hε
~γ = {h ∈ H : ‖~γh− ~γ‖ ≤ ε}

is called the ε-stabilizer of ~γ. Thus, the set H~γ ≡ H0
~γ = {h ∈ H : ~γh = ~γ} is

the stabilizer of ~γ. It is clear that Hε
~γ is a closed subset of H, that Hγ is a closed

subgroup of H, that H~γ = ∩
ε>0
Hε
~γ, and that Hε1

~γ ⊂ Hε2
~γ when ε1 ≤ ε2.

Theorem 3.3. (Laugesen et al., 2002)

(a) If H is admissible, then ∆ 6≡ | det | and the stabilizer of ~γ is compact for a.e.

~γ ∈ R̂n.

(b) If ∆ 6≡ | det | and for a.e. ~γ ∈ R̂n there exists an ε > 0 such that the

ε-stabilizer of ~γ is compact, then H is admissible.
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This theorem is quite useful for determining the admissibility of particular

groups H. For example it is clear that no compact group H can be admissible

since in this case ∆ ≡ | det | ≡ 1.

3.2 Sums of Wavelet Representations

3.2.1 The Modulated Wavelet Transform

For the purpose of this thesis, we need to generalize the definition of wavelet

transform to include modulations. Fix a Borel function χ : H → Π, where Π =

{z ∈ C : |z| = 1} denotes the complex unit circle. Given h ∈ GLn(R), we define

a modulated dilation Dχ
h by

Dχ
h = χ(h)Dh.

Since |χ(h)| = 1, then Dχ
h is still a unitary operator on L2(Rn); in fact

‖Dχ
hf‖L2(Rn) = ‖χ(h)Dhf‖L2(Rn) = |χ(h)| ‖Dhf‖L2(Rn) = ‖f‖L2(Rn)

for all f ∈ L2(Rn) and h ∈ H.

We define the modulated wavelet representation of G on L2(Rn) by

πχ(h, ~x) = T~xD
χ
h

for (h, ~x) ∈ G. Clearly, πχ(h, ~x) is a unitary operator, and

πχ(h, ~x) = T~xD
χ
h = χ(h)T~xDh = χ(h)π(h, ~x)

for (h, ~x) ∈ G. Observe that πχ is not a representation in the proper sense: it need

neither be continuous, nor a homomorphism. However, if χ is a character of H,

then πχ will be a representation also.
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The Fourier transform again induces a modulated wavelet representation δχ

of G on L2(R̂n) by

δχ(h, ~x) = F ◦ πχ(h, ~x) ◦ F−1 = F ◦ χ(h)π(h, ~x) ◦ F−1

= χ(h)F ◦ π(h, ~x) ◦ F−1 = χ(h)δ(h, ~x)

for all (h, ~x) ∈ G.

Given ψ ∈ L2(Rn), the modulated wavelet transform induced by ψ and the

group H is defined just as the usual wavelet transform by

W χ
ψ f(h, ~x) = 〈f, πχ(h, ~x)ψ〉L2(Rn)

for f ∈ L2(Rn) and (h, ~x) ∈ G. That is

W χ
ψ f(h, ~x) = χ(h) 〈f, π(h, ~x)ψ〉L2(Rn) = χ(h)Wψf(h, ~x)

and hence

∥∥W χ
ψ f
∥∥2

L2(G)
=

∫
G

∣∣W χ
ψ f(h, ~x)

∣∣2 dν(h, ~x) =

∫
G

∣∣∣χ(h)Wψf(h, ~x)
∣∣∣2 dν(h, ~x)

=

∫
G

|Wψf(h, ~x)|2 dν(h, ~x) = ‖Wψf‖2
L2(G)

for all f ∈ L2(Rn) and (h, ~x) ∈ G. This shows that ψ is admissible for the

modulated wavelet transform if and only if it is admissible for the classical wavelet

transform; hence Theorem 3.2 and Theorem 3.3 still apply.

Remark 3.1. The dilation group H need not be a subgroup of GLn(k). It

suffices that H be a locally compact group, with a continuous homomorphism ϕ :

H → H0 onto a matrix subgroup of GLn(k). Naturally, the wavelet representation

is of the form

π(ϕ(h), ~x)

and the wavelet transform

(Wφf)(h, ~x) = 〈f, π(ϕ(h), ~x)φ〉.
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for all f ∈ L2(Rn) and h ∈ H. Because stabilizers are required to be compact for

admissibility, ker(ϕ) must be a compact subgroup of H. That is, H is a compact

extension of a matrix group.

All the results in this chapter remain valid in this generalized setting, and

we will make use of it in the third example of chapter IV.

3.2.2 Sums of Modulated Wavelet Representations

Consider as usual an affine group G = H o Rn with wavelet representation

π0 of G on L2(Rn). Let J be a finite or countably infinite index set, {Hj}j∈J a

family of π0-invariant closed subspaces of L2(Rn), πj the restrictions of π0 to Hj

and χj : H → Π Borel functions. For each j ∈ J , consider the modulated wavelet

representation of G on Hj,

π
χj
j (h, ~x) = χj(h)πj(h, ~x)

for (h, ~x) ∈ G. As shown in the previous section, π
χj
j (h, ~x) is a unitary operator

on L2(Rn) for all (h, ~x) ∈ G, and as χj(h) is scalar, then each space Hj is also

π
χj
j -invariant.

Now set H = ⊕
j∈J
Hj, and let

πχ = ⊕
j∈J

π
χj
j (3.7)

denote the corresponding sum of modulated wavelet representation. For f ∈ H,

let us denote by fj the component of f in Hj, that is fj = Pjf where Pj is the

orthogonal projection of H onto Hj; thus f =
∑
j∈J

fj with the norm

‖f‖2
H =

∑
j∈J

‖fj‖2
Hj .

By (3.7), we have

πχ(h, ~x)ψ =
∑
j∈J

π
χj
j (h, ~x)ψj
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for ψ ∈ H and (h, ~x) ∈ G. The voice transform of G determined by πχ and ψ ∈ H

is given by

W χ
ψ f(h, ~x) := 〈f, πχ(h, ~x)ψ〉H =

〈∑
i∈J

fi,
∑
j∈J

π
χj
j (h, ~x)ψj

〉
⊕
j∈J
Hj

=
∑
j∈J

〈
fj, π

χj
j (h, ~x)ψj

〉
Hj

=
∑
j∈J

W
χj
ψj
fj(h, ~x) (3.8)

for f ∈ H and (h, ~x) ∈ G, which, is a sum of modulated wavelet transforms : each

W
χj
ψj

is the modulated wavelet transform of G on Hj determined by ψj. We note

that at most countably many terms in the series (3.8) are nonzero, and that after

ordering the nonzero terms, the series converges pointwise.

3.2.3 Admissibility Conditions

Theorem 3.2 characterizes all admissible functions for the wavelet represen-

tation. In this section, we will extend this theorem to characterize all admissible

vectors ψ for the sum of modulated wavelet representations. Suppose for the mo-

ment that ψi ∈ Hi and ψj ∈ Hj are admissible. That is W χi
ψi
fi,W

χj
ψj
fj ∈ L2(G) for

all fi ∈ Hi, fj ∈ Hj. One easily verifies that

〈fi, fj〉∗ :=
〈
W χi
ψi
fi,W

χj
ψj
fj

〉
L2(G)

=

∫
G

W χi
ψi
fi(h, ~x)W

χj
ψj
fj(h, ~x)dν(h, ~x)

defines a continuous sesquilinear form Hi×Hj → C, by linearity of the modulated

wavelet transform.

Lemma 3.4. Suppose, ψi ∈ Hi and ψj ∈ Hj are admissible. Then Re 〈fi, fj〉∗ = 0

for all fi ∈ Hi, fj ∈ Hj if and only if 〈fi, fj〉∗ = 0 for all fi ∈ Hi, fj ∈ Hj.

Proof. Since −ifj ∈ Hj for all fj ∈ Hj and 〈·, ·〉∗ is sesquilinear, then

Re 〈−ifi, fj〉∗ = Re
(
−〈ifi, fj〉∗

)
= Im 〈ifi, fj〉∗
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We thus obtain

〈fi, fj〉∗ = Re 〈fi, fj〉∗ + i Im 〈fi, fj〉∗ = Re 〈fi, fj〉∗ + iRe 〈−ifi, fj〉∗

for all fi ∈ Hi, fj ∈ Hj, from which the assertion follows easily.

The next proposition was proved in Führ (2005) for voice transform asso-

ciated with general sums of representations. We present its proof for the sake of

completeness.

Proposition 3.5. Let ψ ∈ H. Then ψ is admissible for πχ if and only if

(a) each ψj is admissible for π
χj
j with common constant cψ = cψj

(b) 〈fi, fj〉∗ = 0 for all fi ∈ Hi, fj ∈ Hj and i 6= j.

Proof. Recall that ψ is admissible for the sum of representations πχ if and only if

there exists a constant cψ > 0 such that

∥∥W χ
ψ f
∥∥2

L2(G)
= cψ ‖f‖2

H = cψ
∑
j∈J

‖fj ‖2
Hj

for all f ∈ H.

Now suppose, ψ is admissible. Choose any j. Each f ∈ Hj is also an

element of H and W χ
ψ f = W

χj
ψj
f by (3.8). Then (a) gives

cψ ‖f‖2
Hj = cψ ‖f‖2

H =
∥∥W χ

ψ f
∥∥2

L2(G)
=
∥∥∥W χj

ψj
f
∥∥∥2

L2(G)

which shows that ψj is admissible for Hj with constant cψ. In particular, W
χj
ψj
fj ∈

L2(G) for all fj ∈ Hj, j ∈ J . Now for any fi ∈ Hi and fj ∈ Hj with i 6= j, we
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have by (3.8),

∥∥W χ
ψ (fi + fj)

∥∥2

L2(G)
=
∥∥∥W χi

ψi
fi +W

χj
ψj
fj

∥∥∥2

L2(G)

=

∫
G

∣∣∣W χi
ψi
fi(h, ~x) +W

χj
ψj
fj(h, ~x)

∣∣∣2 dν(h, ~x)

=

∫
G

∣∣W χi
ψi
fi(h, ~x)

∣∣2 dν(h, ~x) +

∫
G

∣∣∣W χj
ψj
fj(h, ~x)

∣∣∣2 dν(h, ~x)

+

∫
G

2 Re
(
W χi
ψi
fi(h, ~x)W

χj
ψj
fj(h, ~x)

)
dν(h, ~x)

=
∥∥W χi

ψi
fi
∥∥2

L2(G)
+
∥∥∥W χj

ψj
fj

∥∥∥2

L2(G)
+ 2 Re 〈fi, fj〉∗

= cψ ‖fi‖2
Hi + cψ ‖fj‖2

Hj + 2 Re 〈fi, fj〉∗

while also by admissibility,

∥∥W χ
ψ (fi + fj)

∥∥2

L2(G)
= cψ ‖fi + fj‖2

H = cψ

[
‖fi‖2

Hi + ‖fj‖2
Hj

]
which implies that Re 〈fi, fj〉∗ = 0.

Conversely, suppose that (a) and (b) hold. Since fi, fj were arbitrary by

the Lemma 3.4, 〈fi, fj〉∗ = 0 for all fi ∈ Hi, fj ∈ Hj. That is,
{
W

χj
ψj
fj

}
j∈J

is a

collection of orthogonal vectors in L2(G) for each f ∈ H, and also

∑
j∈J

∥∥∥W χj
ψj
fj

∥∥∥2

L2(G)
=
∑
j∈J

cψ ‖fj ‖2
Hi = cψ ‖f‖2

H <∞.

It follows that
∑
j∈J

W
χj
ψj
fj converges in L2(G). By (3.8) this series converges point-

wise to W χ
ψ f , so by uniqueness of limits, its L2(G)-limit is Wψf as well. Then,

∥∥W χ
ψ f
∥∥2

L2(G)
=
∑
j∈J

∥∥∥W χj
ψj
fj

∥∥∥2

L2(G)
=
∑
j∈J

cψ ‖fj ‖2
Hi = cψ ‖f‖2

H

which shows that ψ is admissible.

This admissibility condition can be made more explicit by considering the

action of G on the dual orbit space, as in Theorem 3.2. By the support of a Borel

of a Borel function f we mean any Borel set E such that {~x ∈ Rn : f(~x) 6= 0}
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differs from E by a null set. Since each Hj is a π
χj
j -invariant subspace of L2(Rn),

it is in particular invariant under translations. Since the Fourier transform takes

translation to modulation, we now assume that each Hj is of the form Hj ={
f ∈ L2(Rn) : supp(f̂) ⊂ Oj

}
∼= L2(Oj), for H-invariant Borel subsets Oj of R̂n.

In fact, if f ∈ Hj, we have

π
χj
j (h, ~x)f =

(
F−1 ◦ δχjj (h, ~x) ◦ F

)
f = F−1

(
χj(h)E−~xDhf̂

)
∈ Hj

as Dhf̂ ∈ L2(Oj) by H-invariance, so that Hj is π
χj
j -invariant. Then the sum of

modulated wavelet transforms (3.8) becomes

W χ
ψ f(h, ~x) =

∑
j∈J

〈
fj, π

χj
j (h, ~x)ψj

〉
Hj

=
∑
j∈J

〈
Ffj,Fπ

χj
j (h, ~x)F−1Fψj

〉
L2(Oj)

=
∑
j∈J

〈
f̂j, δ

χj
j (h, ~x)ψ̂j

〉
L2(Oj)

(3.9)

where δ
χj
j = F ◦ πχjj ◦ F−1. Thus, if we set Ĥ = ⊕

j∈J
L2(Oj) , f̂ =

∑
j∈J

f̂j ∈ Ĥ and

δχ = ⊕
j∈J

δ
χj
j , then

W χ
ψ f(h, ~x) =

〈
f̂ , δχ(h, ~x)ψ̂

〉
Ĥ
.

We also let O =
⋃
j∈J
Oj.

The next theorem generalizes Theorem 3.2 to sums of wavelet transforms.

Throughout, we may consider a function f̂ ∈ L2(Oj) as a function defined on R̂n,

by setting it to zero outside of Oj.

Theorem 3.6. A vector ψ ∈ H is admissible if and only if there is a constant

cψ > 0 such that ∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h) = δi,jcψ (3.10)

for a.e. ~γ ∈ Oi ∩ Oj, for all i, j ∈ J .

Proof. Applying Proposition 3.5 and Theorem 3.2, we obtain that ψ is admissible

if and only if
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(a)
∫
H
|ψ̂j(~γh)|2dµ(h) = cψ for a.e. ~γ ∈ Oj and all j ∈ J

(b) 〈fi, fj〉∗ = 0 for all fi ∈ Hi, fj ∈ Hj and i 6= j.

Since (a) is (3.10) with i = j one only needs to verify that (b) is equivalent to

(3.10) for i 6= j provided that (a) holds.

Assume that (a) holds, that is W
χj
ψj
fj ∈ L2(G) for all fj ∈ Hj. Then 〈fi, fj〉∗

exists and is continuous. By continuity, it suffices to show that (b) is equivalent

to (3.10) on the dense subspaces Kj =
{
fj ∈ Hj : f̂j is bounded

}
of Hj. For all

fi ∈ Ki, fj ∈ Kj, we obtain

〈fi, fj〉∗ =
〈
W χi
ψi
fi,W

χj
ψj
fj

〉
L2(G)

=

∫
G

W χi
ψi
fi(h, ~x)W

χj
ψj
fj(h, ~x)dν(h, ~x)

=

∫
G

〈
f̂i, δ

χi
i (h, ~x)ψ̂i

〉〈
f̂j, δ

χj
j (h, ~x)ψ̂j

〉
dν(h, ~x)

=

∫
G

[∫
Oi
f̂i(~γ)δχii (h, ~x)ψ̂i(~γ)d~γ

][∫
Oj
f̂j(~γ)δ

χj
j (h, ~x)ψ̂j(~γ)d~γ

]
dν(h, ~x)

=

∫
G

[∫
Oi
f̂i(~γ)E−~xD

χi
h ψ̂i(~γ)d~γ

][∫
Oj
f̂j(~γ)E−~xD

χj
h ψ̂j(~γ)d~γ

]
dν(h, ~x)

shift ~γ to ~γh

〈fi, fj〉∗ =

∫
G

[∫
R̂n
f̂i(~γ)|deth|1/2 e−2iπ~γ~xχi(h)ψ̂i(~γh)d~γ

]
×
[∫

R̂n
f̂j(~γ)|deth|1/2 e−2iπ~γ~xχj(h)ψ̂j(~γh)d~γ

]
dν(h, ~x)

=

∫
G

∫
R̂n
f̂i(~γ)χi(h)ψ̂i(~γh)︸ ︷︷ ︸

:=φih(~γ)

e2iπ~γ~xd~γ



×

∫
R̂n
f̂j(~γ)χj(h)ψ̂j(~γh)︸ ︷︷ ︸

:=φjh(~γ)

e2iπ~γ~xd~γ

 |deth| dν(h, ~x).

Since fi, fj ∈ L2(Rn) ∩ L∞(Rn), then φih, φ
j
h ∈ L1(R̂n) ∩ L2(R̂n) and each of the

inner integrals is an inverse Fourier transform, hence by Plancherel’s theorem and
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Fubini’s theorem, we obtain

〈fi, fj〉∗ =

∫
G

∨

φih(~x)
∨

φjh(~x) |deth| dν(h, ~x) =

∫
H

∫
Rn

∨

φih(~x)
∨

φjh(~x)d~xdµ(h)

=

∫
H

〈
∨

φih,
∨

φjh〉L2(Rn)dµ(h) =

∫
H

〈
φih, φ

j
h

〉
L2(R̂n)

dµ(h)

=

∫
H

∫
R̂n
φih(~γ)φjh(~γ)d~γdµ(h)

=

∫
H

∫
Oi∩Oj

f̂i(~γ)χi(h)ψ̂i(~γh)f̂j(~γ)χj(h)ψ̂j(~γh)d~γdµ(h)

=

∫
Oi∩Oj

f̂i(~γ)f̂j(~γ)

∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h)d~γ.

Thus

〈fi, fj〉∗ = 0 ∀fi ∈ Ki, fj ∈ Kj

⇔
∫
Oi∩Oj

f̂i(~γ)f̂j(~γ)

∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h)d~γ = 0 ∀f̂i, f̂j ∈ L2(Oi ∩ Oj).

By choosing f̂i and f̂j characteristic functions of measurable sets, we obtain

〈fi, fj〉∗ = 0 ∀fi ∈ Ki, fj ∈ Kj

⇔
∫
A

∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h)d~γ = 0 ∀A ⊂ Oi ∩ Oj measurable

⇔
∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h) = 0 a.e. ~γ ∈ Oi ∩ Oj

which proves the theorem.

The above Theorem yields the following well-known fact. Suppose, we are

given a finite or countable partition {Oj}j∈J of R̂n consisting of H-invariant mea-

surable sets. Let Hj = F−1(L2(Oj)) be the corresponding π-invariant subspaces

of L2(Rn). For each j ∈ J , let ψj ∈ Hj be admissible for H, that is∫
H

∣∣∣ψ̂i(~γh)
∣∣∣2dµ(h) = cψ

for a.e. ~γ ∈ Oi. Then ψ :=
∑
j∈J

ψj is admissible for L2(Rn).
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3.2.4 Construction of Admissible Vectors

We now generalize Theorem 3.3 to sums of modulated wavelet represen-

tations. It will turn out that the conditions of Theorem 3.3 remain valid. By

Proposition 3.5, any H which is admissible for such a sum of modulated wavelet

representations must satisfy (a) of Theorem 3.3 (Theorem 3.3 is formulated for

L2(Rn), but remains valid for spaces F−1 (L2(O)) where O is H-invariant). We

thus need only generalize part (b) of that Theorem. In addition, we provide a

construction of admissible vectors whose projection onto each component space

Hj is bandlimited, under mild assumptions on the dilation group H.

The following proofs are formulated for a countably infinite set J , but are

also valid for finite J . When convenient, we will identify J with N.

Definition 3.7. A Borel subset S of R̂n is called a transversal for the action of H

on R̂n if

(a) SH is co-null in R̂n,

(b) ~γ′h = ~γ for ~γ,~γ′ ∈ S and h ∈ H implies that ~γ = ~γ′.

The first property says that almost every orbit intersects the set S, while

the second property states that an orbit intersects the set S at most once. Such

transversals usually exists:

Proposition 3.8. (Führ 2005 and Romero 2006) Let H be a closed subgroup of

GLn(R) with the property that almost all ~γ ∈ R̂n possess compact ε-stabilizers.

Then there exists a transversal S. Furthermore, the map S×H → R̂n maps Borel

set to Borel set, and λ(SN) = 0 for all null sets N in H.

Remark 3.2. The construction in the proof of Romero (2006) gives a

transversal all of whose points have compact ε-stabilizers; hence all ~γ ∈ SH have

compact ε-stabilizers.
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Theorem 3.9. Let H be a closed subgroup of GLn(R), and suppose

(a) ∆ 6≡ |det|,

(b) ε-stabilizers are compact for a.e. ~γ ∈ O.

Then H is admissible for the sum of modulated wavelet representations.

Proof. We proceed by constructing an admissible vector ψ ∈ H. The idea is to

construct a family of functions {ψ̂j}j∈J of disjoint supports. This will ensure that

(3.10) holds for i 6= j.

Since ε-stabilizers are compact for a.e. ~γ ∈ R̂n, then by Proposition 3.8

there exists a transversal S for the action of H on R̂n all of whose points have

compact ε-stabilizers. Then S ∩O is a transversal for the action of H on O, hence

we replace S by S∩O. Pick a compact neighborhood V of the identity e in H and

set T = SV . Then T is a Borel subset of O by Proposition 3.8, and T has positive

measure, as H is 2nd-countable.

Define a Borel function

σ(~γ) =

∫
H

1T (~γh)dµ(h)

for ~γ ∈ O. Loosely speaking, this function measures how much of an orbit passes

through T , the measure being the Haar measure from H. We need to show that

this function is finite valued and has a positive lower bound.

Let ~γ ∈ SH be arbitrary. Since S is a transversal, ~γ lies in the orbit

of a unique ~γ0 ∈ S. That is, there exists h̃ ∈ H such that ~γ = ~γ0h̃ and also

T ∩ OH(~γ) = ~γ0V . Thus,

σ(~γ) =

∫
H

1SV (~γh)dµ(h) =

∫
H

1~γ0V (~γ0h̃h)dµ(h) =

∫
H

1~γ0V (~γ0h)dµ(h).
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Note that by left-invariance of the Haar measure, σ(~γh) = σ(~γ) for all h ∈ H, and

also

~γ0h ∈ ~γ0V ⇔ ~γ0h = ~γ0v for some v ∈ V

⇔ ~γ0hv
−1 = ~γ0 for some v ∈ V

⇔ hv−1 ∈ H~γ0 for some v ∈ V

⇔ h ∈ H~γ0V. (3.11)

By assumption (b), the stabilizer H~γ0 is compact, hence

σ(~γ) =

∫
H

1~γ0V (~γ0h)dµ(h) =

∫
H

1H~γ0V (h)dµ(h) = µ(H~γ0V ) <∞.

Moreover, since V ⊂ H~γ0V , we also obtain

0 < µ(V ) 6 µ(H~γ0V ) = σ(~γ) <∞.

We have shown that 0 < µ(V ) 6 σ(~γ) for all ~γ ∈ SH, and σ is finite valued.

Next we move T along orbits to obtain a countable, disjoint collection of

sets. First, set

g(h) =
|deth|
∆(h)

.

Since g : H → (0,∞) is continuous, then g(V ) is a compact subset of (0,∞).

Furthermore, since 1 ∈ g(V ), then g(V ) ⊂ [a, b] for some 0 < a < 1 < b. In

addition, as g is not constant by assumption, there exists h0 ∈ H such that

g(h0) <
a

b
. (3.12)



 

 

 

 

 

 

 

 

65

We now show that Thm0 ∩ Thn0 = ∅ for m 6= n. In fact,

Thm0 ∩ Thn0 6= ∅ ⇔ ~γ0V h
m
0 ∩ ~γ0V h

n
0 6= ∅ for some ~γ0 ∈ S

⇔ ~γ0vh
m
0 = ~γ0ṽh

n
0 for some v, ṽ ∈ V, ~γ0 ∈ S

⇔ ~γ0vh
m−n
0 ṽ−1 = ~γ0 for some v, ṽ ∈ V, ~γ0 ∈ S

⇔ vhm−n0 ṽ−1 ∈ H~γ0 for some v, ṽ ∈ V, ~γ0 ∈ S

⇔ vhm0 ∈ H~γ0V h
n
0 for some v ∈ V, ~γ0 ∈ S

⇔ V hm0 ∩H~γ0V h
n
0 6= ∅ for some ~γ0 ∈ S.

Now by assumption (b), H~γ0 is a compact subgroup, hence g(H~γ0) = {1}. Using

the homomorphism property of g, we have

g(V hm0 ∩H~γ0V h
n
0 ) = g

(
(V hm−n0 ∩H~γ0V )hn0

)
= g(V hm−n0 ∩H~γ0V )g(hn0 )

⊂
(
g(V )g(hm−n0 ) ∩ g(V )

)
g(hn0 ) ⊂

(
[a, b]g(h0)m−n ∩ [a, b]

)
g(h0)n = ∅

for m 6= n by (3.12). We conclude that V hm0 ∩H~γ0V h
n
0 = ∅ for all ~γ0 ∈ S, m 6= n,

and hence

Thm0 ∩ Thn0 = ∅ (m 6= n). (3.13)

It follows that the function
{
1Thn0

}∞
n=1

have a disjoint supports. We now modify

these functions to make (3.10) hold for i = j.

We partition N into a union of sequences
{
n

(j)
k

}∞
k=1

, j ∈ J . Since

lim
m→∞

g(h0)m = lim
m→∞

|dethm0 |
∆(hm0 )

= 0, then for each j we may replace the sequence{
n

(j)
k

}∞
k=1

by an appropriate subsequence to obtain

∞∑
k=1

[
| deth0|
∆(h0)

]n(j)
k

<
1

2j
.

Here we have identified J with N.

Let {Ik}∞k=1 be the collection of cubes [0, 1)n + ~ωk, ~ωk ∈ Zn, and let Tk =
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T ∩ Ik. Then set T
(j)
k = Tkh

n
(j)
k

0 ∩ Oj for each j and k. By (3.13) we still have

T ik ∩ T
j
l = ∅ (3.14)

for i 6= j or k 6= l. Now consider the functions ψj whose Fourier transforms are

defined on Oj by

ψ̂j =

[
1

σ

∞∑
k=1

∆(h0)−n
(j)
k 1

T
(j)
k

]1/2

Then by (3.14) ψ̂iψ̂j = 0 for i 6= j. Furthermore,∫
Oj

∣∣∣ψ̂j(~γ)
∣∣∣2d~γ =

∫
Oj

1

σ(~γ)

[
∞∑
k=1

∆(h0)−n
(j)
k 1

T
(j)
k

(~γ)

]
d~γ

6
1

µ(V )

∞∑
k=1

∆(h0)−n
(j)
k λ(T

(j)
k ) 6

1

µ(V )

∞∑
k=1

| det(h0)|n
(j)
k

∆(h0)n
(j)
k

λ(Tk) <
1

2jµ(V )

which shows that each ψj is well defined as an element of Hj, as is ψ =
∑
j∈J

ψj ∈ H.

Furthermore, for all ~γ ∈ SH ∩ Oj, by Proposition 2.7,∫
H

∣∣∣ψ̂j(~γh)
∣∣∣2dµ(h) =

∫
H

1

σ(~γh)

[
∞∑
k=1

∆(h0)−n
(j)
k 1

T
(j)
k

(~γh)

]
dµ(h)

=
1

σ(~γ)

∞∑
k=1

∫
H

∆(h0)−n
(j)
k 1

T
(j)
k

(~γh)dµ(h)

=
1

σ(~γ)

∞∑
k=1

∫
H

∆(h0)−n
(j)
k 1Tk(~γhh

−n(j)
k

0 )dµ(h)

=
1

σ(~γ)

∞∑
k=1

∫
H

1Tk(~γh)dµ(h) =
1

σ(~γ)

∫
H

∞∑
k=1

1Tk(~γh)dµ(h)

=
1

σ(~γ)

∫
H

1 ∞⋃
k=1

Tk
(~γh)dµ(h) =

1

σ(~γ)

∫
H

1T (~γh)dµ(h) = 1

while for all i 6= j and ~γ ∈ Oi ∩ Oj as ψ̂iψ̂j = 0,∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h) = 0.

Hence ψ is admissible by Theorem 3.6.

We will call a vector f =
∑
j∈J

fj ∈ H bandlimited, if there exists M > 0

such that ‖~γ‖ 6 M for all ~γ ∈ supp(f̂j), and all j ∈ J . To obtain bandlimited

admissible functions, bounded transversals of the following form are required:
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Property A.

(a) ε-stabilizers are compact for a.e. ~γ ∈ O.

(b) Given M > 0, there exist m > 0 and a transversal S for the action of H on

H such that

m < ‖~γ‖ < M

for all ~γ ∈ S.

It is not difficult to show that if ε-stabilizers are compact and H possesses

an expanding matrix, then property A holds. However, there exist groups H which

do not contain expanding matrices, but still have property A (see Romero, 2006).

Theorem 3.10. Let H be a closed subgroup of GLn(R), possessing property A.

Then for each M > 0 and r > 0, there exists a bandlimited admissible ψ with

cψ = 1, and
∥∥∥ψ̂j∥∥∥

∞
6 M , and the support of each ψ̂j contained in the ball Br(0),

for all j ∈ J .

Proof. We proceed by constructing a sequence
{
ψ̂j

}
j∈J

of admissible functions

with disjoint supports. By assumption (b), H is not compact, hence we can pick a

precompact Borel subset V of H with µ(V ) > 1/M2. By continuity of the action

of H on R̂n, there exist 0 < α < β such that

α 6 ‖~γh‖ 6 β (3.15)

for all ~γ in the unit sphere Sn−1 and h ∈ V .

By assumption (b), there exist a transversal S1 for the action of H on O

and m1 > 0, such that

m1 < ‖~γ‖ < r/β

for all ~γ ∈ S1.
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Now set T1 = S1V , then by (3.15),

M1 := αm1 6 ‖~γ‖ 6 r

for all ~γ ∈ T1. Similarly, there exist a bounded transversal S2 and m2 > 0 so that

m2 < ‖~γ‖ < M1/β

for all ~γ ∈ S2. Setting T2 = S2V , then by (3.15),

M2 := αm2 6 ‖~γ‖ 6 M1

for all ~γ ∈ T2. Continuing inductively, we arrive at a family of bounded transversal

{Sj}j∈J and disjoint Borel subsets Tj = SjV of O, each contained in a ball of radius

no more than r(α/β)j−1, so that

λ(Tj) 6 C

(
α

β

)(j−1)n

for all j ∈ J , where C denotes the volume of a ball of radius r.

For each j, let us define a Borel function

σj(~γ) =

∫
H

1Tj(~γh)dµ(h)

for ~γ ∈ Oj. Then as in the proof of the proceeding theorem,

0 < µ(V ) 6 σj(~γ) <∞

for all j ∈ J and ~γ ∈ SjH ∩ Oj. Consider the function ψj defined by

ψ̂j =
1
√
σj

1Tj∩Oj .

Then ψ̂iψ̂j = 0 for i 6= j and

∥∥∥ψ̂j∥∥∥
∞

= sup
~γ∈R̂n

1√
σj(~γ)

6
1√
µ(V )

6 M,
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while also,

∥∥∥ψ̂j∥∥∥2

L2(Oj)
=

∫
Oj

∣∣∣ψ̂j(~γ)
∣∣∣2d~γ =

∫
Oj

1

σj(~γ)
1Tj(~γ)d~γ 6

1

µ(V )

∫
Oj

1Tj(~γ)d~γ

6
λ(Tj)

µ(V )
< M2C

(
α

β

)(j−1)n

.

This shows that the functions ψj ∈ Hj are well defined, and so is ψ =
∑
j∈J

ψj ∈ H.

Furthermore, for all ~γ ∈ SjH ∩ Oj, we have∫
H

∣∣∣ψ̂j(~γh)
∣∣∣2dµ(h) =

∫
H

1

σj(~γh)
1Tj(~γh)dµ(h) =

1

σj(~γ)

∫
H

1Tj(~γh)dµ(h) = 1

while if ~γ ∈ SiH ∩ SjH ∩ Oi ∩ Oj and i 6= j, then∫
H

χi(h)ψ̂i(~γh)χj(h)ψ̂j(~γh)dµ(h) = 0.

The assertion follows from Theorem 3.6.

3.2.5 Modulated Wavelet Frames

In Heil and Walnut (1989) it was shown how to obtain frames for wavelet

representations in L2(R). This was later generalized by Bernier and Taylor (1996)

to L2(Rn) in the case of open free H-orbits, and to the general case by Romero

(2006). A discrete subset P of H and a lattice Γ in Rn were chosen to obtain

wavelet frames of the form

{
π
(
(k, ~u)−1

)
ψ : k ∈ P, ~u ∈ Γ

}
.

The reason inverses π ((k, ~u)−1) are chosen is that

π
(
(k, ~u)−1

)
= π(k−1,−k−1~u) = T−k−1~uDk−1 = Dk−1T−~u

so that the frames vectors have the form

(Dk−1T−~uψ)(~x) = | det k|1/2ψ(k~x+ ~u)
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as with the discrete wavelet transform.

We now show how to obtain frames for sums of modulated wavelet trans-

forms, using the ideas of the above references as a starting point.

Definition 3.11. Let H be a closed subgroup of GLn(R). An N-tiling pair is a pair

(P, F ) of subsets of H where P is a countable subset of H and F is a pre-compact

subset of H satisfying

(a)
⋃
k∈P

Fk is co-null in H.

(b) N := sup
k∈P

card {p ∈ P : Fk ∩ Fp 6= ∅} <∞.

If N = 1, it is called a tiling pair.

The first condition says that the translates {Fk}k∈P cover H measurably,

while the second conditions say that at each set Fk may intersect at most N − 1

other sets Fp.

Theorem 3.12. Let (P, F ) be an N-tiling pair, and suppose

(a) H possesses property A

(b) card(H~γ) 6 M a.e. ~γ ∈ O.

Then given any B ∈ GLn(R) with corresponding lattice Γ = B−1Zn, there exists

ψ ∈ H such that {
πχ
(
(k, ~u)−1

)
ψ : k ∈ P, ~u ∈ Γ

}
is a frame for H with frame bounds 1 and MN .

Proof. Proceeding essentially as in the proof of Theorem 3.10 we obtain a family

{Tj}j∈J of disjoint Borel subsets of O of positive measure, Tj = SjV where V = F ,

all contained in the parallelpiped

R =

[
−1

2
,
1

2

]n
B
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and satisfying

0 < λ(Tj) 6 Cκj−1 (3.16)

for some C > 0 and 0 < κ < 1.

By (3.16), we may define ψ =
∑
j∈J

ψj ∈ H by

ψ̂j =
1√
β

1Tj∩Oj

for j ∈ J , where β = | detB|. Observe that the collection of function {e~u}~u∈Γ with

e~u(~γ) =
1√
β
e2iπ~γ~u (~γ ∈ R)

is an orthonormal basis of L2(R). Thus for f ∈ H, we have as ψ̂j is supported in

R,

〈
f, πχ

(
(k, ~u)−1

)
ψ
〉
H =

∑
j∈J

〈
fj, π

χj
j

(
(k, ~u)−1

)
ψ
〉
Hj

=
∑
j∈J

〈
fj, T−k−1~uD

χj
k−1ψj

〉
Hj

=
∑
j∈J

〈
f̂j, Ek−1~uD

χj
k−1ψ̂j

〉
L2(Oj)

=
∑
j∈J

∫
Oj
|det k|−1/2 f̂j(~γ)χj(k)ψ̂j(~γk−1)e−2iπ~γk−1~ud~γ

=
∑
j∈J

∫
Oj
|det k|1/2 f̂j(~γk)χj(k−1)ψ̂j(~γ)e−2iπ~γ~ud~γ

=
√
β

∫
R

|det k|1/2
∑
j∈J

f̂j(~γk)χj(k−1)ψ̂j(~γ)︸ ︷︷ ︸
:=φk(~γ)

e~u(~γ)d~γ

=
√
β 〈φk, e~u〉L2(R)

where φk ∈ L2(R) and exchange of sum and integral are justified as the functions

f̂j(~γk)ψ̂j(~γ) are integrable of disjoint and bounded support. (Here, all functions



 

 

 

 

 

 

 

 

72

are extended to R in a natural way.) The latter property also gives

∑
~u∈Γ

∣∣〈f, πχ ((k, ~u)−1
)
ψ
〉
H

∣∣2 = β
∑
~u∈Γ

∣∣∣〈φk, e~u〉L2(R)

∣∣∣2 = β ‖φk‖2
L2(R)

= β |det k|
∫
R

∣∣∣∣∣∑
j∈J

f̂j(~γk)χj(k−1)ψ̂j(~γ)

∣∣∣∣∣
2

d~γ

= β |det k|
∫
R

[∑
i∈J

f̂i(~γk)χi(k−1)ψ̂i(~γ)

][∑
j∈J

f̂j(~γk)χj(k−1)ψ̂j(~γ)

]
d~γ

= β
∑
j∈J

|det k|
∫
R

∣∣∣f̂j(~γk)
∣∣∣2 ∣∣∣ψ̂j(~γ)

∣∣∣2 d~γ
= β

∑
j∈J

|det k|
∫
Oj

∣∣∣f̂j(~γk)
∣∣∣2 ∣∣∣ψ̂j(~γ)

∣∣∣2 d~γ
= β

∑
j∈J

∫
Oj

∣∣∣f̂j(~γ)
∣∣∣2 ∣∣∣ψ̂j(~γk−1)

∣∣∣2 d~γ
and hence,

∑
k∈P

∑
~u∈Γ

∣∣〈f, πχ ((k, ~u)−1
)
ψ
〉
H

∣∣2 = β
∑
k∈P

∑
j∈J

∫
Oj

∣∣∣f̂j(~γ)
∣∣∣2 ∣∣∣ψ̂j(~γk−1)

∣∣∣2 d~γ
=
∑
j∈J

∫
Oj

∣∣∣f̂j(~γ)
∣∣∣2 [∑

k∈P

1Tj(~γk
−1)

]
d~γ =

∑
j∈J

∫
Oj

∣∣∣f̂j(~γ)
∣∣∣2 [∑

k∈P

1SjV (~γk−1)

]
d~γ

=
∑
j∈J

∫
Oj

∣∣∣f̂j(~γ)
∣∣∣2 [∑

k∈P

1SjV k(~γ)

]
d~γ

Observe that since the sets {V k}k∈P cover H measurably,

β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2 =

∑
k∈P

1Tj(~γk
−1) =

∑
k∈P

1SjV k(~γ) > 1SjA(~γ).

where A =
⋃
k∈P

V k is co-null in H. Hence by Proposition 3.8,

β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2 > 1

for a.e. γ ∈ Oj. Next suppose that ~γ ∈ SjV k ∩ SjV l. Then ~γ = ~γ0vk =

~γ0ṽl for some unique ~γ0 ∈ Sj, and v, ṽ ∈ V . Since card(H~γ0) 6 M , say H~γ0 =
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{h1, h2, ..., hM}, then

~γ0vk = ~γ0ṽl⇔ ~γ0vkl
−1ṽ−1 = ~γ0 ⇔ vkl−1ṽ−1 ∈ H~γ0

⇔ vkl−1ṽ−1 = hi for some i ∈ {1, 2, ...,M}

⇔ vk = hiṽl for some i ∈ {1, 2, ...,M}

⇔ vk ∈
M⋃
i=1

hiV l.

Now by assumption at most N of the set in {V l}l∈P overlap, so vk can be contained

in at most N of the sets hiV l for each i. It follows that vk is contained in at most

MN of the sets hiV l. Thus

β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2 =

∑
k∈P

1SjV k(~γ) 6 MN

for a.e. ~γ ∈ Oj. Hence

‖f‖2
H =

∑
j∈J

∥∥∥f̂j∥∥∥2

L2(Oj)
6
∑
k∈P

∑
~u∈Γ

∣∣〈f, πχ ((k, ~u)−1
)
ψ
〉
H

∣∣2
6 MN

∑
j∈J

∥∥∥f̂j∥∥∥2

L2(Oj)
= MN ‖f‖2

H .

The proof is thus complete.

We note here that R may be chosen to be any parallelpiped covering the

support of all functions ψ̂j and need not be centered at zero. For example, if

O is the first orthant in R̂n, we may choose R = [0, 1]n = ~γ0 + [−1
2
, 1

2
]n where

~γ0 =
(

1
2
, 1

2
, ..., 1

2

)
. One can also obtain frames from a bandlimited admissible

function by using the integrated wavelets of Heinlein (2003).

Theorem 3.13. Suppose there exists a bandlimited admissible function ϕ0 for the

usual wavelet transform on L2(Rn), with supp(ϕ̂0) ∩ Bε(0) = ∅ for some ε > 0.

Then given an N-tilling pair (P, V ) and B ∈ GLn(R) with corresponding lattice

Γ = B−1Zn, there exists ψ ∈ H such that

{
πχ
(
(k, ~u)−1

)
ψ : k ∈ P, ~u ∈ Γ

}
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is a frame for H with frame bounds 1 and N .

Proof. Let (P, V ) be an N -tilling pair. For each α > 0, the function ϕα defined by

ϕ̂α(~γ) = ϕ̂0(α~γ) (~γ ∈ Rn)

is also a admissible, and supp(ϕ̂α) = α−1supp(ϕ̂0) with the same constant cϕ0 .

Thus after replacing ϕ0 by an appropriate ϕα, we may assume by compactness of

V that

supp(ϕ̂0)V ⊂ R :=

[
−1

2
,
1

2

]n
B

while also supp(ϕ̂0)V ∩ Bm(0) = ∅ for some m > 0. In particular, there exists

0 < m < M such that

m 6 ‖~γ‖ < M

for all ~γ ∈ supp(ϕ̂0)V .

Next define ϕj ∈ Hj by ϕ̂j(~γ) = ϕ̂0(αj~γ)1Oj , where α = M/m. Then each

ϕj is admissible for π
χj
j with constant cϕ0 . Now let ψj be defined by∣∣∣ψ̂j(~γ)

∣∣∣2 =
1

βcϕ0

∫
V −1

|ϕ̂j(~γh)|2 dµ(h)

for ~γ ∈ Oj, where β = | detB|. So each ψ̂j is uniquely defined up to phase only.

Each ψ̂j is supported on α−jsupp(ϕ̂0)V ⊂ R. Thus by choice of α, ψ̂iψ̂j = 0 for

i 6= j, and also∥∥∥ψ̂j∥∥∥2

L2(Oj)
=

∫
Oj

∣∣∣ψ̂j(~γ)
∣∣∣2 d~γ =

∫
Oj

1

βcϕ0

∫
V −1

|ϕ̂j(~γh)|2 dµ(h) d~γ

=
1

βcϕ0

∫
V −1

∫
Oj

∣∣ϕ̂0(αj~γh)
∣∣2 d~γ dµ(h)

=
1

αjnβcϕ0

∫
V −1

|deth|−1

∫
Oj
|ϕ̂0(~γ)|2 d~γ dµ(h)

6
K

αjn
‖ϕ̂0‖2

L2(R̂n)

so that ψ =
∑
j∈J

ψj is defined in H.
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Observe that

β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2 =

∑
k∈P

1

cϕ0

∫
V −1

∣∣ϕ̂j(~γk−1h)
∣∣2 dµ(h)

=
1

cϕ0

∑
k∈P

∫
(V k)−1

|ϕ̂j(~γh)|2 dµ(h). (3.17)

Now as {V k}k∈P covers H measurably and ϕj is admissible, for L2(Oj),

1 =
1

cϕ0

∫
H

|ϕ̂j(~γh)|2 6
1

cϕ0

∑
k∈P

∫
(V k)−1

|ϕ̂j(~γh)|2 dµ(h) = β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2

for a.e. ~γ ∈ Oj. On the other hand, as at most N of the sets {V k}k∈P overlap,

then by (3.17)

β
∑
k∈P

∣∣∣ψ̂j(~γk−1)
∣∣∣2 =

1

cϕ0

∑
k∈P

∫
(V k)−1

|ϕ̂j(~γh)|2 dµ(h) 6
N

cϕ0

∫
H

|ϕ̂j(~γh)|2 dµ(h) = N.

Computing as in the proof of Theorem 3.12, we obtain that

‖f‖2
H =

∑
j∈J

‖f̂j‖2
L2(Oj) 6

∑
k∈P

∑
~u∈Γ

|
〈
f, πχ

(
(k, ~u)−1

)
ψ
〉
H|

2 6 N
∑
j∈J

‖f̂j‖2
L2(Oj) = N‖f‖2

H.

This proves the theorem.



 

 

 

 

 

 

 

 

CHAPTER IV

EQUIVALENCE OF THE METAPLECTIC

REPRESENTATION WITH A SUM OF

WAVELET REPRESENTATIONS

We now consider a class of subgroups of the symplectic group Sp(n,R)

which are semi-direct products of a vector group by a group of automorphisms,

and are isomorphic to affine groups. We show how the metaplectic representation of

such a group can be equivalent to a sum of wavelet representations, thus allowing

to apply the admissibility results from the previous chapter to the metaplectic

representation. A large part of this chapter is devoted to three groups of examples

illustrating these techniques.

The first group of examples employs simple one-parameter groups of dila-

tions, and illuminates a number of details of interest. For example, an admissible

group which only possesses admissible functions of slow decay at infinity is pre-

sented. Another example shows that the admissibility condition in Cordero et al.

(2006a) is more restrictive than the usual one.

The second group of examples shows that the dilation invariant subsets Uj

used to decompose the metaplectic representation into subrepresentations need not

be a union of orthants, but in general take the form of hypercones.

The last example reconsiders the similitude group SIM(2) discussed in

Cordero et al. (2006a). We show how this group fits into the framework presented

in this thesis, and are able to construct metaplectic frames.
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We begin by reviewing the admissibility results for the extended metaplectic

representation of Cordero et al. (2006a).

4.1 Admissibility for the Extended Metaplectic Represen-

tation

Let D be a closed subgroup of Sp(n,R) and consider the extended meta-

plectic representation of L = D o Hn on L2(Rn),

µe(A, (~z, t)) = ρ(~z, t)µ(A)

for A ∈ D, (~z, t) = (~x, ~y, t) ∈ Hn, where ρ is the Schrödinger representation of

Hn and µ the metaplectic representation of Sp(n,R), as presented in section 2.8.3.

The voice transform associated with φ ∈ L2(Rn) is

(Vφf)(A, (~z, t)) = 〈f, µe(A, (~z, t))φ〉 (f ∈ L2(R2)). (4.1)

Note that the group L is not admissible. To see this, observe that the center of

Hn can be identified with the closed normal subgroup Z = {(I2n, (0, t)) : t ∈ R} of

D o Hn, and we have

µe(I2n, (0, t)) = ρ(0, t)µ(I2n) = e2iπtId (4.2)

so that µe(I2n, (0, t+ k)) = µe(I2n, (0, t)) for all t ∈ [0, 1) and k ∈ Z. Since the

Haar measure on Hn is the Lebesgue measure d~z dt, then by (2.3) the Haar measure

on D o Hn is of the form dν (A, (~z, t)) = J(A−1) dµ(A) d~z dt, where dµ denotes

the Haar measure on D. Hence for all f, φ ∈ L2(Rn) we have

‖Vφf‖2
L2(L) =

∫
D

∫
R2n

∫
R
|〈f, µe (A, (~z, t))φ〉|2 dt d~z J(A−1) dA

=

∫
D

∫
R2n

∑
k∈Z

∫ 1

0

|〈f, µe (A, (~z, t))φ〉|2 dt d~z J(A−1) dA ∈ {0,∞}
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which shows that no φ is admissible. One therefore replaces L by the quotient

L = D o Hn/Z ∼= D o R2n.

Because of (4.2), µe factors to a representation of D o R2n also denoted µe and

which again is uniquely defined up to a phase factor |λ| = 1, by

µe (A, ~z) = ρ(~z, 0)µ(A)

and the voice transform associated with φ ∈ L2(Rn) is now

(Vφf)(A, ~z) = 〈f, µe(A, ~z)φ〉

for A ∈ D and ~z ∈ R2n. A group K = D o R2n is thus admissible for µe if and

only if there exists φ ∈ L2(Rn) such that

‖Vφf‖2
L2(K) = cφ‖f‖2 for all f ∈ L2(Rn).

A characterization of admissibility in the flavour of Theorem 3.2 was derived

in Cordero et al. (2006a). The Fourier transform is replaced by the Wigner

distribution here.

Theorem 4.1. (Cordero et al., 2006a) Let K be a closed subgroup of Sp(n,R) o

R2n, and suppose that φ ∈ L2(Rn) satisfies∫
K

∣∣Wφ(k−1 · ~z)
∣∣ dν(k) 6 M (4.3)

for a.e. ~z ∈ R2n, for some M > 0. Then φ is admissible for µe if and only if there

exists cφ > 0 such that ∫
K

Wφ(k−1 · ~z)dν(k) = cφ

for a.e. ~z ∈ R2n. Here,

k · ~z = (A, ~q) · ~z = A~z + ~q

denotes the affine action of K on R2n.
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We note that there are a few shortcomings to this theorem. The Wigner

distribution is difficult to compute and work with, in particular for functions not

in the Schwartz class. The Wigner distribution usually takes both positive and

negative values, and thus the assumption (4.3) is required. However, one of our

examples will show that there exist admissible functions which do not satisfy con-

dition (4.3). We will also show by example that there exist admissible groups not

possessing admissible functions in the Schwartz class. Because of these difficul-

ties, the nontrivial examples presented in Cordero et al. (2006a, 2006b, 2010) all

work with groups K which are subgroups of Sp(n,R), so that µe reduces to the

metaplectic representation µ, and admissibility is proved in a different way: By

an ad-hoc method, it is shown that the metaplectic representation possesses sub-

representations which are equivalent to wavelet representations, and admissibility

conditions are derived from those of the wavelet representations. This chapter

will work this mechanism out in a systematic way, thus producing a class of sub-

groups of Sp(n,R) for which the metaplectic representation is equivalent to a sum

of wavelet representations.

4.2 Semi-Direct Product Subgroups of the Symplectic

Group

Every closed subgroup D of Gln(R) defines an action on the vector space

Sym(n,R) of symmetric matrices by

a ·m = αa(m) = (a−1)Tma−1 (4.4)

for a ∈ D, m ∈ Sym(n,R). If M is a D-invariant subspace of Sym(n,R), then the

corresponding semi-direct product

K = D oM = {(a,m) : a ∈ D,m ∈M}



 

 

 

 

 

 

 

 

80

possesses the group law

(a,m)(a′,m′) = (aa′,m+ a ·m′) = (aa′,m+ (a−1)Tm′a−1) (4.5)

for (a,m), (a′,m′) ∈ K.

This semi-direct product can be identified with a closed subgroup of

Sp(n,R). In fact, M and D are isomorphic and homeomorphic to the two closed

subgroups of Sp(n,R) of the form

N =

Nm :=

 I 0

m I

 : m ∈M

 ∼= M

L =

La :=

 a 0

0
(
aT
)−1

 : a ∈ D

 ∼= D

and LaNmL−1
a = N(a−1)Tma−1 . Therefore, the action of D on M transfers to an

action of L on N by

La · Nm = LaNmL−1
a = N(a−1)Tma−1 = Na·m

for all Nm ∈ N , La ∈ L. Since

NmLaNm′La′ = NmNa·m′LaLa′ = Nm+a·m′Laa′ ,

hence K can be represented by the closed subgroup

LoN =

NmLa =

 a 0

ma
(
aT
)−1

 : a ∈ D,m ∈M

 (4.6)

of Sp(n,R) and it is easy to see that the map (a,m) 7→ NmLa is a homeomorphism.

In particular, using (2.13) and (2.14), K has a metaplectic representation given

by µ(a,m) = N−mDa, which is now a proper representation. Given a Borel map

χ : D → Π, one can also define a modulated metaplectic representation µχ by

µχ(a,m) = µχ(NmLa) = N−mD
χ
a
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that is,

µχ(a,m)f(~x) = eiπ〈m~x,~x〉| det a|−1/2χ(a)f(a−1~x) (4.7)

for f ∈ L2(Rn) and ~x ∈ Rn.

Equation (4.4) shows that the action of D on the vector space M

is linear. That is, each a ∈ D determines an element Ψa of GL(M) =

{T : M →M : T is linear and invertible} by

Ψa(m) = a ·m

for m ∈M . Note that, for a, b ∈ D, we obtain

(a) Ψab(m) = (ab) ·m = a · (b ·m) = a · (Ψb(m)) = Ψa(Ψb(m)) = (ΨaΨb)(m)

(b) ΨaΨa−1(m) = ΨI(m) = I ·m = m

for all m ∈M . Hence Ψ is a homomorphism of D into GL(M).

Since M has finite dimension d, after fixing a basis for M , we may identify

M with Rd and GL(M) with GLd(R). In the following we will often use the

vector notation ~m when we consider an element m of M as a vector in Rn. Hence,

each Ψa ∈ GL(M) may be identified with a matrix ha ∈ GLd(R), and under this

identification

Ψa(~m) = ha ~m. (4.8)

Let us set H = range(Ψ), that is

H := {ha ∈ GLd(R) : a ∈ D} .

By (a) and (b), haha′ = haa′ , and also a · ~m = ha ~m. Note that Ψ is one-to-one

if and only if the action of D on M is effective, that is if the global stabilizer is

trivial. The map Ψ is easily seen to be continuous because the action (4.4) is.

However, H need not be closed in GLd(R). In what follows, we will thus make two

assumptions
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(a) H = range(Ψ) is closed,

(b) ker Ψ is compact.

The second assumption is required because stabilizers for admissible wavelet rep-

resentations need to be compact.

We can thus consider the closed subgroup G of Affd(R),

G := H o Rd =
{

(ha, ~m) : ha ∈ H, ~m ∈ Rd
}

with the group operation

(ha, ~m)(ha′ , ~m
′) = (haa′ , ~m+ ha ~m

′). (4.9)

The modulated wavelet representation πχ of G on L2(Rn) is given by

πχ(ha, ~m) = T~mD
χ
ha

and the Fourier transform induces a modulated wavelet representation δχ of G on

 L2(R̂n) by

(δχ(ha, ~m)f̂)(~γ) = (E−~mD
χ
ha
f̂)(~γ) = | detha|1/2e−2πi~γ ~mχ(a)f̂(~γha) (4.10)

for (ha, ~m) ∈ G and f̂ ∈ L2(R̂d).

By (4.8) and (4.9) the map Ψ extends to a group homomorphism Ψ of K

onto G by

Ψ(a,m) = (Ψ(a),m) = (ha, ~m).

Thus, the modulated wavelet representations πχ and δχ of G can be considered

as representations of K as well. Obviously, if we consider πχ a representation of

G, then χ : G → Π. If we consider it a representation of K, then χ : K → Π.

Furthermore, the Haar measure on K is given by

dν(a,m) =
1

| detha|
dµ(a)dλ(~m) (4.11)
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where λ is the Lebesgue measure on M ∼= Rd and µ the left Haar measure on D.

In fact, let (a′,m′) ∈ K be given. For all f ∈ Cc(K), as a ·m = ha ~m,∫
K

f ((a′,m′)(a,m)) dν(a,m) =

∫
D

∫
Rd
f(a′a, ~m′ + ha′ ~m)

d~mdµ(a)

|detha|

=

∫
D

∫
Rd
f(a, ~m′ + ha′ ~m)

d~mdµ(a)

|detha′−1 | |detha|

=

∫
D

∫
Rd
f(a, ha′ ~m)

|detha′| d~mdµ(a)

|detha|

=

∫
D

∫
Rd
f(a, ~m)

d~mdµ(a)

|detha|
=

∫
K

f(a, ~m)dν(a,m)

which proves (4.11).

The following is a necessary condition for admissibility of the modulated

metaplectic representation:

Proposition 4.2. Suppose, D is admissible for the modulated metaplectic repre-

sentation. Then ∆D 6≡ | det ◦Ψ|.

Proof. Pick an admissible vector φ ∈ L2(Rn) with cφ = 1 and set f = D1/2φ. Then

‖φ‖2
2 = ‖f‖2

2 = ‖Vφf‖2
2 =

∫
K

|〈f, µχ(a,m)φ〉|2 dν(a,m)

=

∫
K

∣∣∣∣∫
Rn

2n/2φ(2~y)eiπ〈m~y,~y〉 |det a|−1/2 χ(a)φ(a−1~y)d~y

∣∣∣∣2 dν(a,m)

=

∫
D

∫
Rd

∣∣∣∣∫
Rn

2−n/2φ(a~y)eiπ〈αa−1 (m/4)~y,~y〉 |det a|1/2 φ(~y/2)d~y

∣∣∣∣2 d~mdµ(a)

|detha|

=

∫
D

∫
Rd

∣∣∣∣∫
Rn
φ(a−1~y)eiπ〈αa(m/4)~y,~y〉 |det a|−1/2 (D2φ)(~y)d~y

∣∣∣∣2 |detha| d~mdµ(a)

∆D(a)

= 4d
∫
D

∫
Rd

∣∣∣∣∫
Rn
φ(a−1~y)e−iπ〈m~y,~y〉 |det a|−1/2 (D2φ)(~y)d~y

∣∣∣∣2 d~mdµ(a)

∆D(a)

= 4d
∫
K

∣∣∣∣∫
Rn

(D2φ)(~y)eiπ〈m~y,~y〉 |det a|−1/2 χ(a)φ(a−1~y)d~y

∣∣∣∣2 |detha|
∆D(a)

dν(a,m)

= 4d
∫
K

|〈D2φ, µ(a,m)φ〉|2 |detha|
∆D(a)

dν(a,m)

= 4d
∫
K

|(VφD2φ) (a,m)|2 |detha|
∆D(a)

dν(a,m).

Now if | detha| = ∆D(a) for all a ∈ D, this becomes

‖φ‖2
2 = 4d ‖VφD2φ‖2

L2(K) = 4d ‖D2φ‖2
2 = 4d ‖φ‖2

2
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which is impossible as φ 6= 0.

4.3 Admissibility for the Modulated Metaplectic Repre-

sentation

We now look at scenarios where the modulated metaplectic representation

of K = D oM may be equivalent to sums of modulated wavelet representations.

For each ~x ∈ Rn, the map

m 7→ 〈m~x, ~x〉 (m ∈M)

defines a bounded linear functional on M ∼= Rd. By the Riesz’s theorem, there is

a unique vector Φ(~x) ∈ R̂d such that

〈m~x, ~x〉 = 〈~m,−2Φ(~x)〉 = −2 〈~m,Φ(~x)〉 (4.12)

for all m ∈M . (Note that on the left, the brackets denote the inner product in Rn,

while on the right, they denote the duality between Rn, which really is an inner

product in Rn and R̂n are isomorphic.)

Note 3.1: Let us consider properties of the map Φ : Rn → R̂d.

(1) Φ(α~x) = α2Φ(~x) for all ~x ∈ Rn, α scalar.

(2) In particular Φ(−~x) = Φ(~x) for all ~x ∈ Rn. Thus Φ is not one-to-one.

(3) Each component of the row vector Φ(~x) is a polynomial of degree 2 in the

components of ~x, and hence Φ is a smooth function on Rn.

Note 3.2: For ~x ∈ Rn, m ∈M , and a ∈ D, we have

〈~m,Φ(~x)ha〉 = Φ(~x)ha ~m = 〈ha ~m,Φ(~x)〉 = 〈a · ~m,Φ(~x)〉 = −1

2
〈(a · ~m)~x, ~x〉

= −1

2

〈
(a−1)Tma−1~x, ~x

〉
= −1

2

〈
ma−1~x, a−1~x

〉
=
〈
~m,Φ(a−1~x)

〉
.
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Thus

Φ(a−1~x) = Φ(~x)ha (4.13)

for all a ∈ D and ~x ∈ Rn.

As we want the map Φ to be locally invertible, we will from now on assume

that d = n. Suppose U is an open D-invariant subset of Rn on which Φ is injective

and has non-vanishing Jacobian determinant JΦ(~x). By D-invariant we mean of

course that U is invariant under dilation

a · ~x = a−1~x ∈ U

for a ∈ D,~x ∈ U . D-invariance implies that L2(U) will be a µχ-invariant closed

subspace of L2(Rn) as can be seen from (4.7). The remaining assumptions guaran-

tee that the restriction Φ|U maps U homeomorphically onto an open subset O of

R̂n. For simplicity, write Φ for Φ|U . Furthermore, by (4.13) O is H-invariant. It

follows from (4.10) that L2(O) is a δχ-invariant closed subspace of L2(R̂n). Since

U is open, (4.13) implies that the map Ψ : a 7→ ha is one-to-one, so that K and

G are isomorphism groups. To see this, pick ~x0 ∈ U and an open ball Bε(0) such

that ~x0 +Bε(0) ⊂ U . Now suppose that ha = In. Then for all ~x ∈ Bε(0), we have

by (4.13),

a−1~x = a−1(~x0 + ~x)− a−1~x0 = Φ−1 (Φ(~x0 + ~x)ha)− Φ−1 (Φ(~x0)ha)

= Φ−1 (Φ(~x0 + ~x))− Φ−1 (Φ(~x0)) = (~x0 + ~x)− ~x0 = ~x.

As a−1~x = ~x for all ~x ∈ Bε(0), then a−1~x = ~x for all ~x ∈ Rn, so that a = In.

Proposition 4.3. The map Q : L2(U)→ L2(O) defined by

(Qf)(~γ) = |JΦ−1(~γ)|1/2f(Φ−1(~γ)) (4.14)

for f ∈ L2(U) and ~γ ∈ O, is a linear and surjective isometry.
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Proof. Clearly the map Q is linear. By (4.14) we have

‖Qf‖2
L2(O) =

∫
O
|Qf(~γ)|2 d~γ =

∫
O

∣∣f(Φ−1(~γ))
∣∣2 |JΦ−1(~γ)| d~γ

=

∫
U

|f(~x)|2 d~x = ‖f‖2
L2(U)

which shows that Qf ∈ L2(O) and that Q is an isometry. Finally, let g ∈ L2(O)

and set

f(~x) = |JΦ(~x)|1/2g(Φ(~x))

for ~x ∈ U . Then

‖f‖2
L2(U) =

∫
U

|f(~x)|2 d~x =

∫
U

|g(Φ(~x))|2 |JΦ(~x)|1/2 d~x =

∫
O
|g(~γ)|2 d~γ = ‖g‖2

L2(O)

which shows that f ∈ L2(U). Furthermore,

(Qf)(~γ) = |JΦ−1(~γ)|1/2f(~Φ−1(~γ)) = |JΦ−1(~γ)|1/2|JΦ(Φ−1(~γ))|1/2g(~γ) = g(~γ)

for all ~γ ∈ O. Thus Q is surjective.

Proposition 4.4. The restrictions µχ|L2(U) and δχ|L2(O) are equivalent. In par-

ticular,

E−~m = QN−mQ
−1 and Dχ

ha
= QDχ

aQ
−1

for all m ∈ M and a ∈ D, when these operators are restricted to the respective

invariant subspaces.

Proof. For simplicity, we use Φ to denote the restriction Φ|U .

Let m ∈M be given. By using (4.12), we obtain

(QN−mf)(~γ) = |JΦ−1(~γ)|1/2 (N−mf)(Φ−1(~γ))

= |JΦ−1(~γ)|1/2 eiπ〈mΦ−1(~γ),Φ−1(~γ)〉f(Φ−1(~γ))

= |JΦ−1(~γ)|1/2 e−2iπ〈~m,Φ(Φ−1(~γ))〉f(Φ−1(~γ))

= |JΦ−1(~γ)|1/2 e−2iπ〈~m,~γ〉f(Φ−1(~γ))

= e−2iπ〈~m,~γ〉(Qif)(~γ) = (E−~mQf)(~γ)
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for f ∈ L2(U) and ~γ ∈ O.

Next let a ∈ D. Now (4.13) yields that

a−1Φ−1(~γ) = Φ−1(~γha)

for all ~γ ∈ O and then by the Chain rule

| det a−1|JΦ−1(~γ) = JΦ−1(~γha)| detha|. (4.15)

Thus

(QDχ
af)(~γ) = |JΦ−1(~γ)|1/2 (Dχ

af)(Φ−1(~γ))

= χ(a) |JΦ−1(~γ)|1/2 |det a|−1/2 f(a−1Φ−1(~γ))

= χ(a) |JΦ−1(~γ)|1/2 |det a|−1/2 f(Φ−1(~γha))

= χ(a) |detha|1/2 |JΦ−1(~γha)|1/2 f(Φ−1(~γha))

= χ(a) |detha|1/2 (Qf)(~γha) = (Dχ
ha
Qf)(~γ)

f ∈ L2(U) and ~γ ∈ O. It follows that

Qµχ(a,m)Q−1 = QN−mD
χ
aQ
−1 = E−~mD

χ
ha

= δχ(ha, ~m)

for (a,m) ∈ K, which proves the proposition.

Now suppose that Rn decomposes measurably into a collection {Uj}j∈J of

D-invariant open subsets on each of which Φ is injective and has non-vanishing

Jacobian determinant JΦ(~x), ~x ∈ Uj. Correspondingly, we have a decomposition

L2(Rn) = ⊕
j∈J

L2(Uj)

into µχ-invariant subspaces. We set Oj = Φ(Uj), Φj = Φ|Uj and let Qj : L2(Uj)→

L2(Oj) denote the unitary operators of Proposition 4.4.
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Define a unitary operator Q : L2(Rn)→ H = ⊕
j∈J

L2(Oj) by

Q = ⊕
j∈J

Qj,

that is for φ ∈ L2(Rn),

Qφ =
∑
j∈J

Qjφj

where φj denotes the restriction of φ to Uj.

Correspondingly, let δχj denote the modulated wavelet representations of K

on L2(Oj). Then µχ|L2(Uj)
and δχj are equivalent for all j ∈ J by Proposition 4.4,

δχj = Qj µ
χ|L2(Uj)

Q−1
j . Set

δχ = ⊕
j∈J

δχj .

Then δχ = QµχQ−1.

Proposition 4.5. The modulated metaplectic representation µχ and the sum of

modulated wavelet representations δχ are equivalent representations of K.

Proof. Since each L2(Uj) is µχj -invariant, we have

Qµχ(a,m)Q−1 = Q

(
⊕
j∈J

µχ|L2(Uj)
(a,m)

)
Q−1 = ⊕

j∈J
Qj µ

χ|L2(Uj)
(a,m)Q−1

j

= ⊕
j∈J

δχj (a,m) = δχ(a,m).

By Proposition 4.5, we have

‖Vφf‖2
L2(K) =

∫
K

|〈f, µχ(a,m)φ〉|2 dν(a,m) =

∫
K

|〈Qf, δχ(a,m)Qφ〉|2 dν(a,m)

= ‖WQφQf‖2
L2(K) = ‖WQφg‖2

L2(K)
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where g = Qf . Since Q is a unitary operator, then

‖Vφf‖2
L2(K) = cφ ‖f‖2

L2(Rn) ∀f ∈ L2(Rn)

⇔ ‖WQφQf‖2
L2(K) = cφ ‖Qf‖2

L2(Rn) ∀f ∈ L2(Rn)

⇔ ‖WQφg‖2
L2(K) = cφ ‖g‖2

L2(Rn) ∀g ∈ ⊕
j∈J

L2(Oj)

That is, φ ∈ L2(Rn) is admissible for the modulated metaplectic representation µχ

of K if and only if Qφ is admissible for the sum of modulated wavelet representation

δχ. By applying Theorem 3.6, we can now specify an admissibility condition for

the metaplectic representation of K = D oM :

Proposition 4.6. φ ∈ L2(Rn) is admissible for µχ if and only if there exists cφ > 0

such that ∫
D

χi(a)Qiφi(~γha)χj(a)Qjφj(~γha)dµ(a) = δi,jcφ (4.16)

for a.e. ~γ ∈ Φ(Ui) ∩ Φ(Uj).

In many of the applications, the sets Φ(Uj) will all coincide, hence the sets

Uj will be homeomorphic. We fix one of the sets Uj0 and let Fj : Uj0 → Uj be

given by

Fj = Φ−1
j ◦ Φj0 , (4.17)

where Φj denotes the restriction of Φ to Uj for each j. By (4.15), we have for all

~γ = Φj0(~x) and ~x ∈ Uj0 ,

(Qjφj) (Φj0(~x)ha) =
∣∣∣JΦ−1

j
(Φj0(~x)ha)

∣∣∣1/2 φj (Φ−1
j (Φj0(~x)ha)

)
=
∣∣∣JΦ−1

j
(Φj0(~x))

∣∣∣1/2 |det a|−1/2 |detha|−1/2 φj
(
a−1Φ−1

j (Φj0(~x))
)

=
1

|JΦ (Fj(~x))|1/2 |det a|1/2 |detha|1/2
φj
(
a−1Fj(~x)

)
.
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Then (4.16) can be written as∫
D

χi(a)φi (a−1Fi(~x))χj(a)φj
(
a−1Fj(~x)

)
× 1

|JΦ(Fi(~x))JΦ(Fj(~x))|1/2 |det a| |detha|
dµ(a) = δi,jcφ (4.18)

for a.e. ~x ∈ Uj0 .

We observe that Proposition 4.5 allows for constructing frames for the meta-

plectic representation: If {π ((k, ~u)−1)ψ}k∈P,~u∈Γ is a frame for the representation

δχ of K as in Theorem 3.12 and 3.13, then the collection {µ ((k, ~u)−1)φ}k∈P,~u∈Γ

will be a frame for the metaplectic representation µχ of K, where φ = Q−1ψ.

4.4 Example 1: A Simple Dilation Group

Let us consider the n-dimensional subspace

M =
{
m(~u) := diag(−u1,−u2, ...,−un) : ~u = (u1, u2, ..., un)T ∈ Rn

}
of diagonal matrices of Sym(n,R), and let D be the one-parameter group,

D =
{
a(t) := A−t : t ∈ R

}
generated by a diagonal fixed matrix A = diag(a1, a2, ..., an), ak > 0 for all k and

ak 6= 1 for at least one k. The action (4.4) of D on M is given by

[
a(t)−1

]T
m(~u)a(t)−1 = Atm(~u)At = m(A2t~u) (4.19)

and is effective. By (4.6), the corresponding semi-direct product K = D oM can

be represented as the subgroup

K ∼=

k(t, ~u) =

 A−t 0

m(~u)A−t At

 : t ∈ R, ~u ∈ Rn


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of Sp(n,R), and the group law of K is

k(t, ~u)k(t′, ~u′) = k(t+ t′, ~u+ A2t~u′).

By (4.11) the left Haar measure ν on K is given by

dν(k(t, ~u)) = (a1a2 · · · an)−2tdt d~u.

Let us compute the map Φ. Since m(~u) is a diagonal matrix, we have for

~x = (x1, x2, ..., xn)T ∈ Rn,

〈m(~u)~x, ~x〉 = −
n∑
k=1

ukx
2
k = −2

〈
~u,

1

2
(x2

1, x
2
2, ..., x

2
n)T
〉

(4.20)

so we obtain

Φ(~x) =
1

2
(x2

1, x
2
2, ..., x

2
n).

The Jacobian of Φ is

JΦ(~x) = x1x2 · · · xn.

Since JΦ(~x) = 0 if and only if xk = 0 for some k, this leads to a splitting of Rn

into 2n orthants

Uα =
{
~x = (x1, x2, ..., xn)T ∈ Rn : sgn(xk) = αk

}
where α = (α1, α2, ..., αn) is a multi-index with αk ∈ {−1, 1} for all k. For each

~x ∈ Uα, we have as ak > 0 for all k,

a(t)−1~x = At~x = diag(a1, a2, ..., an)t~x = (at1x1, a
t
2x2, ..., a

t
nxn)T ∈ Uα

that is, each Uα is D-invariant.

We can thus make use of the technique discussed in the previous section to

show that the metaplectic representation µ of K is equivalent to a sum of wavelet

representations. In fact, by (4.20) µ is of the form

µ(k(t, ~u))f(~x) = (N−m(~u)Da(t)f)(~x)

= e
−iπ

n∑
k=1

ukx
2
k

(a1a2 · · · an)t/2 f(at1x1, a
t
2x2, ..., a

t
nxn)
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for f ∈ L2(Rn) and ~x ∈ Rn.

Observe that the restrictions Φα of Φ to Uα map the sets Uα homeomorphi-

cally onto the first orthant

O :=
{
~γ = (γ1, γ2, ..., γn) ∈ R̂n : γk > 0 ∀k

}
of R̂n. In fact, the inverse maps are given by

Φ−1
α (~γ) = (α1

√
2γ1, α2

√
2γ2, ..., αn

√
2γn), (αk = sgn(xk)),

and the Jacobians of Φ−1
α at ~γ ∈ O are

JΦ−1
α

(~γ) =
α1√
2γ1

α2√
2γ2

· · · αn√
2γn

.

By (4.19), K is isomorphic to the closed subgroup G = HoRn of Affn(Rn),

where

H =
{
h(t) := A2t : t ∈ R

}
.

As ε-stabilizers are trivial and H is abelian, by Theorem 3.3, H is admissible if

and only if detA = a1a2 · · · an 6= 1, which we will assume from here on.

Let U = U(1,1,...,1) denote the first orthant. By (4.17) the maps Fα =

Φ−1
α ◦ Φ

∣∣
U

are defined by

Fα(x1, x2, ..., xn) = (α1x1, α2x2, ..., αnxn).

Thus

|JΦ (Fα(~x)) | = |JΦ(α1x1, α2x2, ..., αnxn)| = x1x2 · · · xn

for all α = (α1, α2, ..., αn) and ~x = (x1, x2, ..., xn) ∈ U . Then by (4.18), φ ∈ L2(Rn)

is admissible for µ if and only if∫
R
φ (at1β1x1, at2β2x2, ..., atnβnxn)φ

(
at1α1x1, a

t
2α2x2, ..., a

t
nαnxn

)
× dt

(x1x2 · · · xn) (detA)t
= δα,βcψ (4.21)
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for almost every ~x in the first orthant. Without loss of generality we may assume

that a1 6= 1, and by shift-invariance of the Lebesgue measure, the above simplifies

to ∫
R
φ (at1β1, at2β2x2, ..., atnβnxn)φ

(
at1α1, a

t
2α2x2, ..., a

t
nαnxn

)
× dt

(x2 · · · xn)(detA)t
= δα,βcψ (4.22)

for almost every (x2, ..., xn)T in the first orthant of Rn−1.

An admissible function to which Theorem 4.1 does not apply. We

let n = 1 and a1 = e. Hence,

K =

k(t, u) =

 e−t 0

−ue−t et

 : t, u ∈ R

 .

By (4.22) and a change of variables, a function φ ∈ L2(R) is admissible for µ if

and only if ∫ ∞
0

φ ((−1)lz)φ
(
(−1)jz

) dz
z2

= δj,lcφ (j, l ∈ {0, 1})

In particular,

φ = 2 · 1[−4,−2] +
√

2 · 1[1,2]

is admissible, with cφ = 1.

We now show that Theorem 4.1 can not be applied here. The Wigner

distribution of φ is

Wφ(x, ω) =

∫
R
φ
(
x+

y

2

)
φ
(
x− y

2

)
e−2πiωydy

that is

Wφ(x,w) = 4

∫
R

1[−4,−2]

(
x+

y

2

)
1[−4,−2]

(
x− y

2

)
e−2πiwydy

+2
√

2

∫
R

1[−4,−2]

(
x+

y

2

)
1[1,2]

(
x− y

2

)
e−2πiwydy

+2
√

2

∫
R

1[1,2]

(
x+

y

2

)
1[−4,−2]

(
x− y

2

)
e−2πiwydy

+2

∫
R

1[1,2]

(
x+

y

2

)
1[1,2]

(
x− y

2

)
e−2πiwydy.
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Note that

1[−4,−2]

(
x+

y

2

)
= 1⇔ y ∈ [−8− 2x,−4− 2x]

1[−4,−2]

(
x− y

2

)
= 1⇔ y ∈ [4 + 2x, 8 + 2x]

1[1,2]

(
x+

y

2

)
= 1⇔ y ∈ [2− 2x, 4− 2x]

1[1,2]

(
x− y

2

)
= 1⇔ y ∈ [−4 + 2x,−2 + 2x].

Thus, for 1 6 x 6 3/2, we have

1[−4,−2]

(
x+

y

2

)
1[−4,−2]

(
x− y

2

)
= 1⇔ y ∈ [2− 2x,−2 + 2x]

and, hence

Wφ(x,w) = 2

∫ −2+2x

2−2x

e−2πiwydy = −2
e−2πiwy

2πiw

∣∣∣∣−2+2x

y=2−2x

= 2
e4πiw(x−1) − e−4πi(x−1)

2πiw

=
2 sin(4πw(x− 1))

πw
= 8(x− 1)sinc(4πw(x− 1))

where sinc x = sinx
x

.

Now the inverse matrix of k(t, u) is

k(t, u)−1 =

 et 0

e−tu e−t


and hence for ~z = (x,w)T ∈ R2 with 1 6 x 6 3/2, we have∫

K

∣∣Wφ(k(t, u)−1 · ~z)
∣∣ dν(k(t, u)) =

∫
R

∫
R

∣∣Wφ(etx, e−tux+ e−tw)
∣∣ e−2tdu dt

=

∫
R

∫
R

∣∣Wφ(etx, u)
∣∣ du dt
etx

=

∫ ∞
0

∫
R
|Wφ(y, u)| du dy

y2

>
∫ 3/2

1

8(y − 1)

y2

∫
R
|sinc(4πu(y − 1))| du dy =∞

as the sinc-function is not integrable. It follows that Theorem 4.1 cannot be used

to prove admissibility of φ.

A group which possesses no admissible function in the Schwartz

class. We let n = 2, choose r > 0 and a1 > 0 and set a2 = a
−1/(2r+1)
1 , so that
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a2 < 1 and detA = a1a2 > 1. If φ ∈ L2(R2) is admissible, then by (4.22) in

particular, ∫
R

∣∣φ (at1, at2x2

)∣∣2 dt

x2at1a
t
2

= cφ > 0

for a.e. x2 > 0. Now suppose that φ is in Schwartz class, or more generally,

φ ∈ L2(R2) satisfies

|φ(~x)| 6 M

‖~x‖r+ε
(~x 6= 0)

for some ε > 0. Then for all x2 > 1, the condition (4.22) becomes∫
R

∣∣φ (at1, at2x2

)∣∣2 dt

x2at1a
t
2

=

∫ ∞
0

∣∣φ (at1, at2x2

)∣∣2 dt

x2at1a
t
2

+

∫ ∞
0

∣∣φ (a−t1 , a−t2 x2

)∣∣2 at1at2dt
x2

6
∫ ∞

0

M2

a
2t(r+ε)
1 x2

dt+

∫ ∞
0

M2

a
−2t(r+ε)
2 x

2(r+ε)
2

a
−t(2r+1)
2 at2
x2

dt

6
M2

x2

[∫ ∞
0

1

a
2t(r+ε)
1

dt+

∫ ∞
0

a2εt
2 dt

]
→ 0 as x2 →∞.

Hence φ cannot be admissible.

The dilation group need not be connected. For ease of exposition we

choose n = 2; the case of general n proceeds similarly. The group D is modified

to include reflections along the coordinate axes,

D =
{
a(t, p, q) := A−tRpSq

∣∣ t ∈ R, p, q ∈ {0, 1}
}

where A =
[
a1 0
0 a2

]
with a1, a2 > 0, a1, a2 6= 1, R = [ −1 0

0 1 ] and S = [ 1 0
0 −1 ]. This

group is not connected; the reflections divide D into four connectedness compo-

nents. Since [
a(t, p, q)−1

]T
m(~u) a(t, p, q)−1 = m(A2t~u) (4.23)

then (4.23) still determines a linear action of D on M , and the group operation on

K = D oM is

k(t, p, q, ~u)k(t′, p′, q′, ~u′) = k(t+ t′, (p+ p′) mod 2, (q + q′) mod 2, ~u+ A2t~u′)
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so that

H = { h(t) = A2t
∣∣ t ∈ R }.

Thus, the map Ψ : D → H has kernel {a(0, p, q) : p, q ∈ {0, 1}} and

G = H o R2 is a quotient of K.

By the presence of the reflections, none of the four quadrants is D-invariant,

so the considerations leading to (4.21) can not be applied. However, we can split

L2(R2) into a direct sum of four closed subspaces

L2
i,j(R2) =

{
f ∈ L2(R2) | DRf = (−1)if and DSf = (−1)jf

}
for i, j ∈ {0, 1}. The projections of L2(R2) onto these subspaces are given by

Pi,j =
1

4

[
Id + (−1)iDR + (−1)jDS + (−1)i+jDRDS

]
.

Recall that the metaplectic representation of K is

µ(k(t, p, q, ~u)) = N−m(~u)Da(t,p,q) = N−m(~u)DA−tDRpDSq .

We observe that the subspaces L2
i,j(R2) are µ-invariant. In fact, as D is an abelian

group, it follows that

Pi,jDa(t,p,q) = Da(t,p,q)Pi,j

for all a(t, p, q) ∈ D. On the other hand by (4.23), m(~u) is invariant under the

action of R = a(0, 1, 0) , hence for all f ∈ L2(R2) and ~x ∈ R2,

(
DRN−m(~u)f

)
(~x) = eiπ〈m(~u)R−1~x,R−1~x〉f

(
R−1~x

)
= eiπ〈m(~u)~x,~x〉 (DRf) (~x) =

(
N−m(~u)DRf

)
(~x),

and similarly,

DSN−m(~u) = N−m(~u)DS.

We conclude that

Pi,jN−m(~u) = N−m(~u)Pi,j
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as well. It follows that Pi,jµ(k(t, p, q, ~u)) = µ(k(t, p, q, ~u))Pi,j, hence L2
i,j(R2) =

range(Pi,j) is µ-invariant.

Now each of these four subspaces can be identified with L2(U), U denoting

the first quadrant, via the unitary maps Vi,j : L2
i,j(R2)→ L2(U) given by

(Vi,jf) (~x) = 2f(~x) (~x ∈ U)

for f ∈ L2
i,j(R2). Let us compute the corresponding representations µi,j = Vi,jµV

−1
i,j

of K on L2(U). For each f ∈ L2
i,j(R2) and ~x ∈ U we have

(
Vi,jDa(t,p,q)f

)
(~x) = 2 (DA−tDRpDSqf) (~x) = 2| detA|t/2 (DRpDSqf) (At~x)

= 2| detA|t/2(−1)ip(−1)jqf(At~x) = (−1)ip+jq | detA|t/2 (2f)(At~x)

= χi,j(t, p, q) (DA−tVi,jf) (~x)

where χi,j is the character on D given by χi,j(t, p, q) = (−1)ip+jq. That is

Vi,jDa(t,p,q)V
−1
i,j = χi,j(t, p, q)DA−t . (4.24)

Also,

(
Vi,jN−m(~u)f

)
(~x) = 2

(
N−m(~u)f

)
(~x) =

(
N−m(~u)(2f)

)
(~x) =

(
N−m(~u)Vi,j

)
(~x)

which shows that

Vi,jN−m(~u)V
−1
i,j = N−m(~u).

It follows that each µ
χi,j
i,j is a modulated metaplectic representation,

µ
χi,j
i,j (t, p, q, ~u) = Vi,jN−m(~u)Da(t,p,q)V

−1
i,j = χi,j(t, p, q)N−m(~u)DA−t ,

and that the metaplectic representation of K on L2(R2) is equivalent to the sum

of representations ⊕
i,j
µ
χi,j
i,j of K on ⊕

i,j
L2(U). We now apply the results of section

4.2 to show that K is admissible for this sum of representations, and hence for the

metaplectic representation µ, and obtain an admissibility condition.
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Let φ ∈ L2(R2). The corresponding element in ⊕
i,j
L2(U) is

∑
i,j

Vi,jPi,j. Next

let Q : L2(U) → L2(O) be as in Proposition 4.4, which shows that each µ
χi,j
i,j

is equivalent to a modulated wavelet representation δ
χi,j
i,j on L2(O), by δ

χi,j
i,j =

Qµ
χi,j
i,j Q

−1. Then Q amplifies to a unitary map Q̃ = ⊕
i,j
Q : ⊕

i,j
L2(U) → ⊕

i,j
L2(O)

between the sums of the four function spaces, and Q̃ implements an equivalence

between the representation µ̃ = ⊕
i,j
µ
χi,j
i,j and the sum of modulated wavelet repre-

sentations δ̃ = ⊕
i,j
δ
χi,j
i,j . Hence φ is admissible for µ̃ if and only if Q̃φ = ⊕

i,j
QVi,jPi,jφ

is admissible for δ̃ if and only if

1∑
p=0

1∑
q=0

∫
R
χi,j(t, p, q)χk,l(t, p, q) [QVi,jPi,jφ](~γA2t) [QVk,lPk,lφ] (~γA2t)dt

= cφδi,kδj,l (4.25)

for a.e. γ ∈ O. (Clearly the Haar measure on D is given by
∑

p∈{0,1}

∑
q∈{0,1}

dt.) The

above can be summarized in the diagram

µ
split−−→ ⊕

i,j
µ|L2

i,j(R2)

⊕
i,j

adVi,j

−−−−−→ ⊕
i,j
µ
χi,j
i,j

adQ̃−−→ δ = ⊕
i,j
δ
χi,j
i,j

↓ ↓ ↓ ↓

L2(R2)
⊕
i,j
Pi,j

−−−→ ⊕
i,j
L2
i,j(R2)

⊕
i,j
Vi,j

−−−→ ⊕
i,j
L2(U)

Q̃=⊕
i,j
Q

−−−−→ ⊕
i,j
L2(O)

.

Now recall that

(Qf)(~γA2t) =
∣∣JΦ−1(~γA2t)

∣∣1/2f (Φ−1(~γA2t)
)

for f ∈ L2(U) and where Φ = Φ
∣∣∣
U

, and that Φ−1(~γA2t) = AtΦ−1(~γ). Setting

~x = Φ−1(~γ) it follows from (4.25) that φ is admissible if and only if

1∑
p=0

1∑
q=0

∫
R
χi,j(t, p, q)χk,l(t, p, q) [Vi,jPi,jφ](At~x) [Vk,lPk,lφ] (At~x)

× dt

x1x2 | detA|t
= cφδi,kδj,l
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a.e. ~x = (x1, x2)T ∈ U , for i, j, k, l ∈ {0, 1}. Because by (4.24) DA−tVi,j = Vi,jDA−t

and by definition of Vi,j, this is equivalent to

4
1∑
p=0

1∑
q=0

(−1)(i+k)p (−1)(j+l)q

∫
R

[Pi,jφ](At~x) [Pk,lφ](At~x)
dt

x1x2 | detA|t
= cφδi,kδj,l.

Observe that the left-hand side vanishes when i 6= k or j 6= l, as the integral is

independent of p and q, and thus the admissibility condition reduces to

16

∫
R

∣∣∣ [Pi,jφ](At~x)
∣∣∣2 dt

x1x2 | detA|t
= cφ

a.e. ~x = (x1, x2)T ∈ U , for i, j ∈ {0, 1}. As before, we may choose x1 = 1; hence φ

is admissible if and only if

16

∫
R

∣∣∣ [Pi,jφ](at1, a
t
2x2)

∣∣∣2 dt

x2 at1a
t
2

= cφ

a.e. x2 > 0, for i, j ∈ {0, 1}. By the change of variables y = at1 this becomes

16

∫ ∞
0

∣∣∣ [Pi,jφ](y, xyα)
∣∣∣2 dy

x ln a1 yα+2
= cφ

a.e. x > 0, for i, j ∈ {0, 1}, where α = ln a2/ ln a1. Using the definition of the

projections Pi,j, this condition can be rewritten as∫ ∞
0

∣∣∣φ(y, xyα) + (−1)iφ(−y, xyα) + (−1)jφ(y,−xyα) + (−1)i+jφ(−y,−xyα)
∣∣∣2dµx(y)

= cφ

a.e. x > 0, for i, j ∈ {0, 1}, where we have set dµx(y) = dy
x ln a1 yα+2 . Expanding, we

obtain∫ ∞
0

[ ∣∣φ(y, xyα)
∣∣2 +

∣∣φ(y, xyα)
∣∣2 +

∣∣φ(y, xyα)
∣∣2 +

∣∣φ(y, xyα)
∣∣2]dµx(y)

+ (−1)i
∫ ∞

0

2Re
[
φ(y, xyα)φ(−y, xyα) + φ(y,−xyα)φ(−y,−xyα)

]
dµx(y)

+ (−1)j
∫ ∞

0

2Re
[
φ(y, xyα)φ(y,−xyα) + φ(−y, xyα)φ(−y,−xyα)

]
dµx(y)

+ (−1)i+j
∫ ∞

0

2Re
[
φ(y, xyα)φ(−y,−xyα) + φ(−y, xyα)φ(y,−xyα)

]
dµx(y)

= cφ
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a.e. x > 0, for i, j ∈ {0, 1}. In short,

ax + (−1)ibx + (−1)jcx + (−1)i+jdx = cφ (i, j ∈ {0, 1})

The solution of this system of four equations in four unknowns is ax = cφ, bx =

cx = dx = 0. Hence, φ is admissible if and only if∫ ∞
0

[ ∣∣φ(y, xyα)
∣∣2+
∣∣φ(−y, xyα)

∣∣2+
∣∣φ(y,−xyα)

∣∣2+
∣∣φ(−y,−xyα)

∣∣2] dy

x ln a1 yα+2
= cφ

for a.e. x > 0.

4.5 Example 2: The D-Invariant Subsets are Cones

In most of the examples, we have a decomposition of L2(Rn) into µ-invariant

subspaces L2(Uj), where each Uj is an orthant or a union of orthants. In general,

since Φ(α~x) = α2Φ(~x), Φ maps cones to cones, and hence one expects the sets Uj

to have at least the form of cones. In this example, they will indeed turn out to

be not orthants, but cones.

Let n > 3 and consider the n-dimensional subspace of Sym(n,R),

M =

m(u,~v) :=

 −uIn−1 −~v

−~vT −u

 : u ∈ R, ~v ∈ Rn−1

 .

Then fix a closed subgroup F of the orthogonal group O(n− 1), and consider the

closed subgroup of GLn(R),

D =

a(t, b) := e−t

 b 0

0 1

 : t ∈ R, b ∈ F

 ∼= R× F.

For each a(t, b) ∈ D and m(u,~v) ∈M , we have

(a(t, b)−1)Tm(u,~v)a(t, b)−1 = m(e2tu, e2tb~v). (4.26)
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The corresponding semi-direct product K = D o M can be represented as the

subgroup of Sp(n,R) of Sp(n,R) of the form

K =

k(t, b, u, ~v) =

 a(t, b) 0

m(u,~v)a(t, b)
(
a(t, b)T

)−1

 : t, u ∈ R, ~v ∈ Rn−1, b ∈ F

 ,

and the group law of K is

k(t, b, u, ~v)k(t′, b′, u′, ~v′) = k(t+ t′, bb′, u+ e2tu′, ~v + e2tb~v′)

Let us compute the map Φ. For ~x = (~x0, xn)T ∈ Rn,

〈m(u,~v)~x, ~x〉 = −u ‖~x‖2 − 2xn~v
T~x0 = −2

〈 u

~v

 , 1

2

 ‖~x‖2

2xn~x0

〉

so we obtain

Φ(~x) =
1

2

(
‖~x‖2 , 2xn~x

T
0

)
.

The Jacobian of Φ is

JΦ(~x) = (−xn)n−2
(
‖~x0‖2 − x2

n

)
.

It follows that JΦ(~x) = 0 if and only if xn = 0 or |xn| = ‖~x0‖. These two

hypersurfaces lead to a splitting of Rn into four open hypercones

U1 =
{
~x = (~x0, xn)T ∈ Rn : 0 < ‖~x0‖ < xn

}
U2 =

{
~x = (~x0, xn)T ∈ Rn : xn < −‖~x0‖ < 0

}
U3 =

{
~x = (~x0, xn)T ∈ Rn : 0 < xn < ‖~x0‖

}
U4 =

{
~x = (~x0, xn)T ∈ Rn : −‖~x0‖ < xn < 0

}
and for each ~x ∈ Uj, j = 1, ..., 4, we obtain

a(t, b)−1~x = et

 bT 0

0 1


 ~x0

xn

 =

 etbT~x0

etxn

 ∈ Uj
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which shows that the Ui are D-invariant subsets. Consequently, the metaplectic

representation of K is given by,

µ(k(t, b, u, ~v))f(~x) = (N−m(u,~v)Da(t,b)f)(~x) = e−iπ(u‖~x‖2+2xn~vT ~x0)ent/2f
(
etbT~x0, e

txn
)

for f ∈ L2(Rn) and ~x ∈ Rn, and we have a decomposition L2(Rn) =
4
⊕
j=1

L2(Uj)

into µ-invariant subspaces.

The restrictions Φj of Φ to Uj, j = 1, ..., 4 map the each set Uj diffeomor-

phically onto the open hypercone

O :=
{
~γ = (γ1, ~γ0) = (γ1, γ2, ..., γn) ∈ R̂n : 0 < ‖~γ0‖ < γ1

}
in R̂n for all j = 1, ..., 4. In fact, the inverse maps are given by

Φ−1
j (~γ) =

(
(−1)q

~γ0

sp(~γ)
, (−1)qsp(~γ)

)T
, (j = 2p+ q + 1; p, q ∈ {0, 1})

where sp(~γ) =
√
γ1 + (−1)pl(~γ) and l(~γ) =

√
γ2

1 − ‖~γ0‖2 for all ~γ ∈ O. Further-

more, the Jacobians of Φ−1
j at ~γ ∈ O are

JΦ−1
j

(~γ) =
(−1)p+q+1

2l(~γ)sn−2
p (~γ)

.

It is easier to express ~x0 ∈ Rn−1 in spherical coordinates, ~x0 = r ~w where ~w ∈ Sn−2

and r > 0. Then

Φ(~x) = Φ(~x0, xn) = Φ(r ~w, xn) =

(
1

2
(x2

n + r2), xnr ~w
T

)
.

Similarly, if ~γ0 = ρ~κ with ~κ ∈ Sn−2 and ρ > 0, then

l(~γ) = l(γ1, ρ~κ) =
√
γ2

1 − ρ2.

Note that l(~γ) and hence sp(~γ) are independent of ~κ. Thus,

Φ−1
j (~γ) = Φ−1

j (γ1, ρ~κ) =

(
(−1)q

ρ~κ

sp(γ1, ρ)
, (−1)qsp(γ1, ρ)

)T
.
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So if we choose U = U1, then

l(~γ) = l (Φ(r ~w, xn)) =

√
1

4
(x2

n + r2)2 − (rxn)2 =
x2
n − r2

2

for all ~x ∈ U and ~γ = Φ(~x), giving by (4.17),

Fj(~x) = Φ−1
j (Φ(r ~w, xn)) = Φ−1

j

(
1

2
(x2

n + r2), rxn ~w
T

)
=

(
(−1)q

rxn ~w
T

sp(r, xn)
, (−1)qsp(r, xn)

)T
and

|JΦ (Fj(~x))| =
∣∣∣∣JΦ

(
(−1)q

rxn ~w
T

sp(r, xn)
, (−1)qsp(r, xn)

)∣∣∣∣
= sn−2

p (r, xn)

(
(rxn)2

s2
p(r, xn)

− s2
p(r, xn)

)
where

sp(r, xn) =

√
1

2
(x2

n + r2) + (−1)p
1

2
(x2

n − r2) =

 xn

r

if p = 0

if p = 1
.

By (4.26),

H =

h(t, b) = e2t

 1 0

0 b

 : t ∈ R, b ∈ F

 .

so that det (h(t, b)) = e2nt, while det (a(t, b)) = e−nt. Furthermore, the left Haar

measure ν on D is given by

dµ(a(t, b)) = dt db

where db is a left Haar measure of F .

Thus, if S is a transversal for the action of F on the sphere Sn−2 in Rn−1,

then the set S̃ = {(r ~w, 1) : ~w ∈ Sn−2, 0 < r < 1} will be a transversal for the

action of D on U , as U is a cone and

a(t, b)−1

 r ~w

1

 =

 etrbT ~w

et

 .
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Now we can determine the admissibility condition for the metaplectic representa-

tion µ of K. By (4.18), φ ∈ L2(Rn) is admissible if and only if∫
R

∫
F

φ

(
(−1)detbT ~w

sc(r)
, (−1)detsc(r)

)
φ

(
(−1)qetbT ~w

sp(r)
, (−1)qetsp(r)

)
× db dt

[sp(r)sc(r)]
n/2−1(1− r2)ent

= δc,pδd,qcφ (4.27)

a.e. ~w ∈ Sn−2 and 0 < r < 1, where p, q, c, d ∈ {0, 1} and sp(r) = rp.

4.5.1 Admissibility in Case n = 3

In the particular case where n = 3 and F is the rotation group SO(2), we

can specify this admissibility condition more precisely. We parameterize SO(2) as

F =

Rθ =

 cos θ sin θ

− sin θ cos θ

 : θ ∈ [0, 2π)


and give it Haar measure dθ. Hence D ∼= R × SO(2). Express a vector ~x0 in the

polar coordinates, ~x = (~x0, x3) = (reiη, x3) with r > 0 and 0 6 η < 2π and pick

the transversal

S̃ = {(r, 1) : 0 < r < 1}

for the action of D on U = {(reiθ, x3) : r < x3} in these coordinates. Thus

φ ∈ L2(R3) is admissible for the metaplectic representation µ of K = D o M if

and only if∫
R

∫ 2π

0

φ

(
(−1)dreteiθ

sc(r)
, (−1)detsc(r)

)
×φ
(

(−1)qreteiθ

sp(r)
, (−1)qetsp(r)

)
dθ dt√

sp(r)sc(r)(1− r2)e3t
= δc,pδd,qcφ

a.e. r ∈ (0, 1), where p, q, c, d ∈ {0, 1}. Switching to Cartesian coordinates,

~y = eteiθ, this condition can be written∫
R2

φ ((−1)d (r1−c~y, rc ‖~y‖))φ
(
(−1)q

(
r1−p~y, rp ‖~y‖

)) d~y

‖~y‖5 r(c+p)/2(1− r2)
= δc,pδd,qcφ

a.e. r ∈ (0, 1).
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4.5.2 Classification in Case n = 3

Let n = 3 and fix (α, β), α 6= 0. Consider the one-parameter group of the

form

Dα,β =

aα,β(t) := e−αt


cos βt sin βt 0

− sin βt cos βt 0

0 0 1

 : t ∈ R

 .

Each Dα,β is a subgroup of the group R × SO(2) considered in subsection 4.5.1.

The corresponding subgroups Kα,β = Dα,β o M can be represented as subgroups

of Sp(3,R)

Kα,β
∼=

kα,β(t, u,~v) =

 aα,β(t) 0

m(u,~v)aα,β(t)
(
aα,β(t)T

)−1

 : t, u ∈ R, ~v ∈ R2

 .

We classify these groups up to isomorphism, and derive the admissibility

condition for the metaplectic representation. It turns out that the classification

of the isomorphic affine groups Gα,β = Hα,β o R3 is easier to accomplish. The

subgroup H of GLn(R) corresponding to Dα,β is the one-parameter group

Hα,β =

hα,β(t) = e2αt


1 0 0

0 cos βt sin βt

0 − sin βt cos βt

 : t ∈ R


and hence Gα,β = Hα,β o R3 is of the form

Gα,β =


 hα,β(t) ~x

0 1

 : t ∈ R, ~x ∈ Rn

 .

In general, we classify subgroups of the affine group Affn(R) of the form

GB =


 etB ~x

0 1

 : t ∈ R, ~x ∈ Rn


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where B is a fixed non-skew symmetric n × n matrix. This classification may be

known, but we are not aware of any reference. Since the groups GB are simply

connected Lie groups (using the argument presented in section 5.2), it suffices to

classify the corresponding Lie algebras gB.

Theorem 4.7. Two Lie algebras gB̃ and gB are isomorphic if and only if B̃ is

similar to a nonzero scalar multiple of B.

Proof. Observe that the Lie algebra gB of GB (and similarly gB̃) is easily seen to

be of the form

gB =


 sB ~x

0 0

 : s ∈ R, ~x ∈ Rn

 ,

and thus decomposes into the direct sum of vector spaces gB = VM ⊕ VX where

VM =

sM : s ∈ R, M =

 B 0

0 0


 ' R

VX =

X~x =

 0 ~x

0 0

 : ~x ∈ Rn

 ' Rn,

and the only nontrivial Lie brackets are determined by [M,X~x] = XB~x.

Now if B̃ = αSBS−1, where α 6= 0 and S is an invertible matrix, then the

Lie algebras gB̃ and gB are isomorphic. In fact define a vector space isomorphism

T : gB → gB̃ by

T (M) =
1

α
M̃ and T (X~x) = XS~x

then

[T (M), T (X~x)] =

[
1

α
M̃,XS~x

]
=

1

α
XB̃S~x =

1

α
XαSBS−1S~x = XSB~x

= T (XB~x) = T ([M,X~x]) .
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Conversely, let T : gB → gB̃ be a Lie algebra isomorphism. In light of the

vector space decomposition VM ⊕ VX , and the fact that T maps the nilradical VX

onto the nilradical VX̃ , we may represent T by a matrix a 0

~v S


where a 6= 0, ~v ∈ Rn and S ∈ GLn(R). That is

T (M) = aM̃ +X~v and T (X~x) = XS~x.

Thus

[T (M), T (X~x)] =
[
aM̃ +X~v, XS~x

]
=
[
aM̃,XS~x

]
= XaB̃S~x.

On the other hand

T ([M,X~x]) = T (XB~x) = XSB~x.

Since T is a Lie algebra isomorphism, then SB~x = aB̃S~x for all ~x ∈ Rn, which

shows that

B̃ =
1

a
SBS−1

and proves the theorem.

Note that each hα,β(t) is of the form eBα,βt where

Bα,β =


2α 0 0

0 2α β

0 −β 2α

 .

Since Bα,β is similar to a multiple of Bα̃,β̃ if and only if
∣∣β
α

∣∣ =
∣∣∣ β̃α̃∣∣∣ (for α 6= 0,

α̃ 6= 0), we thus have shown:

Proposition 4.8. Gα,β and Gα̃,β̃ are isomorphic if and only if
∣∣β
α

∣∣ =
∣∣∣ β̃α̃ ∣∣∣.
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Next we discuss admissibility condition of the groups Kα,β
∼= Gα,β. By

Proposition 4.8, we may assume that α = 1 and β > 0. Recall that U =

{(reiθ, x3) : 0 < r < x3, θ ∈ [0, 2π)}. One quickly verifies that

S̃ =
{

(reiθ, 1) : r ∈ (0, 1), θ ∈ [0, 2π)
}

is a transversal for the action of D1,β on U . As it is enough to verify the admis-

sibility condition for elements ~x in the transversal, then by (4.16), φ ∈ L2(R3) is

admissible for µ if and only if∫
R
φ

(
(−1d)

ret

sc(r)
ei(θ+βt), (−1)detsc(r)

)
φ

(
(−1q)

ret

sp(r)
ei(θ+βt), (−1)qetsp(r)

)
× dt

[sp(r)sc(r)]n/2−1(1− r2)e3t
= δc,pδd,qcψ

a.e. r ∈ (0, 1) and θ ∈ [0, 2π) where sp(r) = rp and p, q, c, d ∈ {0, 1}.

4.6 Example 3: The Two-Fold Covering of the SIM(2)

Group

Let n = 2 and Rθ =

 cos θ sin θ

− sin θ cos θ

. Consider the subspace

M =

m(~u) :=

 −u1 −u2

−u2 u1

 : ~u = (u1, u2)T ∈ R2


of Sym(2,R), and the group

D =
{
a(t, θ) := t−1/2R−θ/2 : t > 0, θ ∈ [0, 4π)

}
of dilations and rotations in the plane. Since every invertible symmetric 2 × 2

matrix whose column vectors are orthogonal is of form m(~u), then D acts on M

by [
a(t, θ)−1

]T
m(~u)a(t, θ)−1 = m(tR−θ~u) (4.28)
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with global stabilizer Do = {a(1, 0), a(1, 2π)}. Thus, the corresponding semi-direct

product K = D oM can be represented as the subgroup

K ∼=

k(t, θ, ~u) :=

 t−1/2R−θ/2 0

t−1/2m(~u)R−θ/2 t1/2R−θ/2

 : t > 0, ~u ∈ R2, θ ∈ [0, 4π)


of Sp(2,R) with the group law

k(t, θ, ~u)k(t′, θ,′ ~u′) = k(tt′, (θ + θ′) mod 4π, ~u+ tR−θ~u
′).

Cordero et al. (2006a) showed that K/Do is isomorphic to the group of

similitudes SIM(2), and that the restriction of the symplectic representation of K

to the subspace of even functions in L2(R2) factors to a representation of K/Do

which is equivalent to the wavelet representation of SIM(2). In addition, admis-

sibility conditions for the metaplectic representation of a class of subgroups of the

form SO(2)oGβ of Sp(2,R) were derived. A simple reparametrization shows that

these groups are actually all identical to K, and we show now how the admissibility

condition in Cordero et al. (2006a) arises from a sum of wavelet representations.

This will allow us to introduce metaplectic frames as well.

By (4.28), the group H is of the form

H = { h(t, θ) := tR−θ : t > 0, θ ∈ [0, 2π) }

and hence,

G = H o R2 =

 g(t, θ, ~u) :=

tR−θ ~u

0 1

 : t > 0, θ ∈ [0, 2π), ~u ∈ R2


with the group law

g(t, θ, ~u, )g(t′, θ′, ~u′) = g(tt′, (θ + θ′) mod 2π, ~u+ tR−θ~u
′).

which is the similitude group SIM(2).
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We note that the map Ψ : a ∈ D 7→ ha ∈ H is not an isomorphism, but its

kernel is Do. It follows that H ∼= D/Do, and similarly, as Do is naturally embedded

in K as the normal subgroup Ko = {k(1, 0, 0), k(1, 2π, 0)}, that G ∼= K/Ko.

The metaplectic representation of K is given by

µ [k(t, θ, ~u)] = N−m(~u)Dt−1/2DR−θ/2 (4.29)

that is,

(µ [ k(t, θ, ~u) ] f) (~x) = eiπ〈m(~u)~x,~x〉t1/2f(t1/2Rθ/2~x) (4.30)

for f ∈ L2(R2), ~x ∈ R2 and k(t, θ, ~u) ∈ K.

Observe that

〈m(~u)~x, ~x〉 = −u1(x2
1 − x2

2)− 2u2x1x2 = −2

〈
~u,

1

2

(
x2

1 − x2
2, 2x1x2

)〉
and hence,

Φ(~x) =

(
x2

1 − x2
2

2
, x1x2

)
.

Now Φ maps the two half planes {~x ∈ R2 : x1 > 0} and {~x ∈ R2 : x1 < 0}

homeomorphically onto a dense open subset of R2. However, none of these half

planes is rotation invariant, thus the process discussed in the previous examples

can not be employed. One way to bypass this obstacle would be to omit rotations

and consider the closed subgroup

K1 = R+ oM =
{
k(t, 0, ~u) : t > 0, ~u ∈ R2

}
.

As each of the two half planes is invariant under scalar dilation, an admissible

function g for K1 may be obtained as shown in the previous examples. Since K

is an extension of K1 by the compact group SO(2), g will also be admissible for

K. However, this construction does not yield all of the admissible functions. We

therefore choose to proceed differently, by decomposing µ into a sum of subrepre-

sentations.
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For convenience, express elements of R2 in polar form, ~x = reiη, 0 6 η < 2π,

and elements of R̂2 as ~γ = qeiϕ, 0 ≤ ϕ < 2π. Then split L2(R2) as

L2(R2) = L2
even(R2)⊕ L2

odd(R2),

the closed subspaces of a.e. even, respectively odd functions. One notes from

(4.30) that both of these subspaces are µ-invariant, hence µ splits into a sum of

subrepresentations µ1⊕µo along these subspaces. Observe that the map V : f 7→ f̃

given by f̃ (reiη) = eiηf (reiη) maps L2
odd(R2) isometrically onto L2

even(R2), and

carries µo to a representation µ2 of L2
even(R2) by

(µ2 (k(t, θ, ~u)) f)
(
reiη

)
=
(
V µo(k(, t, θ, ~u))V −1f

) (
reiη

)
= eiη

(
N−m(~u)Dt−1/2DR−θ/2V

−1f
) (
reiη

)
= eiηeiπ〈m(~u)reiη ,reiη〉

(
Dt−1/2DR−θ/2V

−1f
) (
reiη

)
= eiηeiπ〈m(~u)reiη ,reiη〉t1/2

(
V −1f

) (
t1/2reiη−

θ
2

)
= ei

θ
2 eiπ〈m(~u)reiη ,reiη〉t1/2f

(
t1/2reiη−

θ
2

)
=
(
ei
θ
2N−m(~u)Dt−1/2DR−θ/2f

) (
reiη

)
(4.31)

for f ∈ L2
even(R2). Thus, the metaplectic representation µ of K on L2(R2) is

equivalent to the sum µ1 ⊕ µ2 of representations on L2
even(R2)⊕ L2

even(R2).

Note that in polar coordinates,

Φ(~x) = Φ
(
reiη

)
=

(
r2

2
e2iη

)
. (4.32)

Furthermore, Φ maps the half plane U = {reiη : r > 0, 0 6 η < π} bijectively

onto O = R̂2\{0}. Observe that

JΦ(~x) = JΦ(reiη) = r2 = ‖~x‖2

and when Φ is restricted to U , then

Φ−1(~γ) = Φ−1(qeiϕ) =
√

2qeiϕ/2
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and also

JΦ−1(~γ) = JΦ−1(qeiϕ) =
1

JΦ(Φ−1(qeiϕ))
=

1

2q
=

1

2‖~γ‖
.

Now L2
even(R2) can be identified with L2(U) in a natural way via the map f(~x) 7→

√
2f(~x) for ~x ∈ U . Composing this map with the unitary operator Q of Proposition

4.3, we obtain a new unitary operator Q : L2
even(R2)→ L2(O) by

(Qf)(~γ) =
√

2 |JΦ−1(~γ)|1/2 f
(
Φ−1(~γ)

)
or equivalently,

(Qf)(qeiϕ) =
1
√
q
f
(√

2qeiϕ/2
) (

f ∈ L2
even(R2)

)
(4.33)

whose inverse is

(
Q−1ψ̂

)
(reiη) =

r√
2
ψ̂

(
r2

2
e2iη

) (
ψ̂ ∈ L2(O)

)
. (4.34)

It is easy to see that the assertion of Proposition 4.4 still holds for this operator

Q, and in particular,

QDR−θ/2Q
−1 = DR−θ .

Thus µ1⊕µ2 is equivalent to a sum δ = δ1⊕δ2 of modulated wavelet representations

on L2(O)⊕ L2(O), where by (4.29), (4.31) and Proposition 4.4,

δ1(t, θ, ~u) = E−~uDtDR−θ and δ2(t, θ, ~u) = eiθ/2E−~uDtDR−θ .

This sequence of equivalences can be represented as a diagram

µ
split−−→ µ1 ⊕ µo

Id⊕adV−−−−→ µ1 ⊕ µ2
adQ⊕adQ−−−−−→ δ1 ⊕ δ2

↓ ↓ ↓ ↓

L2(R2)
split−−→

L2
even(R2)

⊕L2
odd(R2)

Id⊕V−−−→
L2
even(R2)

⊕L2
even(R2)

Q⊕Q−−−→ L2(O)⊕ L2(O)
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Since D acts transitively on O we may pick the singleton consisting of

~γo = qeiϕ with q = 1 and ϕ = 0 as transversal. By Theorem 3.6, φ = φ1 ⊕ φ2 ∈

L2
even(R2)⊕ L2

even(R2) is admissible for µ1 ⊕ µ2 if and only if∫
D

|(Qφj)(~γoR−θt)|2 dµ(t, θ) = cφ (j = 1, 2)

and ∫
D

(Qφ1)(~γoR−θt) eiθ/2(Qφ2)(~γoR−θt) dµ(t, θ) = 0.

Normalising the Haar measure on D to dµ(t, θ) = dt dθ
4πt

,∫ ∞
0

∫ 4π

0

|(Qφj)(~γoR−θt)|2
dt dθ

4πt
= cφ (j = 1, 2) (4.35)

and ∫ ∞
0

∫ 4π

0

(Qφ1)(~γoR−θt) eiθ/2(Qφ2)(~γ0R−θt)
dt dθ

4πt
= 0. (4.36)

We observe that the inner integral in (4.36) can be written as∫ 2π

0

(Qφ1)(~γoR−θt) eiθ/2(Qφ2)(~γoR−θt) dθ−
∫ 2π

0

(Qφ1)(~γoR−θt) eiθ/2(Qφ2)(~γoR−θt) dθ

and thus vanishes, hence the admissibility condition reduces to (4.35). Employing

(4.33), it becomes∫ ∞
0

∫ 4π

0

∣∣∣φj(√2teiθ/2)
∣∣∣2 dt dθ

4πt2
= cφ (j = 1, 2). (4.37)

Replacing φ2 by V −1φ2 it follows that φ = φ1 ⊕ φ2 ∈ L2
even(R2) ⊕ L2

odd(R2) is

admissible for µ if and only if (4.37) holds. Switching over to Cartesian coordinates,

this admissibility condition is equivalent to

2

π

∫
R2

|φj(~x)|2

‖~x‖4
d~x = cφ (j = 1, 2).

That is φ ∈ L2(R2) is admissible if and only if its even and odd parts are orthogonal

vectors of equal length in the space L2(R2, 2dx
π‖x‖4 ). Using symmetry and the fact
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that φ1(~x) = [φ(~x) + φ(−~x)] /2 and φ2(~x) = [φ(~x)− φ(−~x)] /2, one easily shows

that this condition is equivalent to the admissibility conditions derived in Cordero

et al. (2006a),

1

π

∫
R2

|φ(~x)|2

‖~x‖4
d~x = cφ and

∫
R2

φ(~x) φ(−~x)

‖~x‖4
d~x = 0.

Note that here we have normalized the Haar measure of SO(2) to one; this is why

the constant in front of the first integral differs from that in Cordero et al. (2006a).

4.6.1 Metaplectic Frames

Having established an equivalence of the metaplectic representation of K

with a sum of wavelet representations, we can now make use of the rich theory

wavelet frames to introduce frames for the metaplectic representation. As an il-

lustration, we construct a Parseval frame along the lines of the proof of Theorem

3.12.

Since the global stabilizer Do of K is not trivial, but we want to obtain a

tight frame, we begin with the group G = H o Rn. Fix an even positive integer

p ≥ 8, set

F =

{
h(t, θ) ∈ H :

1

2
< t 6 2, 0 6 θ <

2π

p

}
and

P =

{
h
(

4d,
2πl

p

)
∈ H : d ∈ Z, l ∈ Zp

}
.

Then (P, F ) is a tiling for H. We again choose the singleton S = {~γo} as transver-

sal, and let

T1 = SF = {~γoh(t, θ) : h(t, θ) ∈ V } =

{
te−iθ :

1

2
< t 6 2, 0 6 θ <

2π

p

}
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and

T2 = SR− 2π
p
F =

{
~γoR− 2π

p
h(t, θ) : h(t, θ) ∈ F

}
=

{
te−iθ :

1

2
< t 6 2,

2π

p
6 θ <

4π

p

}
.

Observe that T1 ∪ T2 is contained in the unit square R = [0, 1]× [−1, 0] by choice

of p. Now set

ψ̂1(qeiϕ) = 1T1(qe
iϕ), ψ̂2(qeiϕ) = eiϕ/21T2(qe

iϕ).

These two functions are defined as in the proof of Theorem 3.12, except that ψ̂2

has a phase factor eiϕ/2 which does not affect the proof of Theorem 3.12. By the

theorem {
δ

(
g

(
4d,

2πl

p
, ~u

)−1
)(

ψ̂1 + ψ̂2

)
: d ∈ Z, l ∈ Zp, ~u ∈ Z2

}

is a Parseval frame for the sum of modulated wavelet representations of G = HoR2

on L2(O)⊕ L2(O).

Since the map Ψ : K → G has kernel Do, for each g
(

4d, 2πl
p
, ~u
)
∈ G,

there exist two elements in K with Ψ
(
k
(

4d, 2πl
p
, ~u
))

= g
(

4d, 2πl
p
, ~u
)

, namely

k
(

4d, 2πl
p
, ~u
)

and k
(

4d, 2π + 2πl
p
, ~u
)

; we choose first one. Hence{
δ

(
k

(
4d,

2πl

p
, ~u

)−1
)(

ψ̂1 + ψ̂2

)
: d ∈ Z, l ∈ Zp, ~u ∈ Z2

}

is a frame for the sum of modulated wavelet representations δ of K = D oM on

L2(O) ⊕ L2(O). Next we transfer this frame back to a frame of L2(R2) for the

modulated metaplectic representation. The elements in the two copies of L2
even(R2)

corresponding to ψ̂j (j = 1, 2) are by (4.33),

φ1(reiη) =
(
Q−1ψ̂1

) (
reiη

)
=

r√
2

[
1S1 + 1(−S1)

](
reiη

)
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and

φ2(reiη) =
(
Q−1ψ̂2

) (
reiη

)
=
reiη√

2

[
1S2 − 1(−S2)

](
reiη

)
where

S1 =

{
te−iθ : 1 < t 6 2, 0 6 θ <

π

p

}
, S2 =

{
te−iθ : 1 < t 6 2,

π

p
6 θ <

2π

p

}
.

Replacing φ2 by V −1φ2, we obtain

φ2(reiη) =
r√
2

[
1S2 − 1(−S2)

] (
reiη

)
∈ L2

odd(R2).

Thus, if we let φ = φ1 + φ2, then the collection{
gd,l,~u := µ

(
k

(
4d,

2πl

p
, ~u

)−1
)
φ : d ∈ Z, l ∈ Zp, ~u ∈ Z2

}

will be a Parseval frame for L2(R2). Now as

k

(
4d,

2πl

p
, ~u

)−1

= k

(
4−d, 4π − 2πl

p
,−4−dR 2πl

p
~u

)
it follows from (4.30) that

gd,l,~u (~x) = 2−de
iπ〈m(−4−dR 2πl

p
~u)~x,~x〉

φ
(

2−dR−πl
p
~x
)
,

and a detailed computation shows that these functions are of the form

gd,l,~u (~x) = 2−(d+1/2) e
−iπ4−d〈m(R 2πl

p
~u)~x,~x〉

‖~x‖
[
1
S

(0,0)
l,d

+ 1
S

(0,1)
l,d

+ 1
S

(1,0)
l,d
− 1

S
(1,1)
l,d

]
(~x)

where

S
(α,β)
l,d =

{
te−iθ ∈ R2 : 2d < t 6 2d+1, π(βp+α+l)

p
6 θ < π(βp+α+l+1)

p

}
for α, β ∈ {0, 1}.



 

 

 

 

 

 

 

 

CHAPTER V

EXTENSIONS OF THE HEISENBERG

GROUP BY DILATIONS

In this chapter, we extend the Heisenberg group by a one-parameter group

of matrix dilations. We then classify these extensions up to isomorphism and show

that they can be represented as subgroups of the symplectic group of the form

discussed in this thesis.

5.1 The Groups Ga,B,c

Recall from chapter II that the Heisenberg group Hn can be represented in

matrix form as the polarized Heisenberg group

Hn =

h(~x, ~y, z) =


1 ~yT z

0 In ~x

0 0 1

 : ~x, ~y ∈ Rn, z ∈ R

 .

In this parametrization, the group law is

h(~x, ~y, z)h(~x′, ~y′, z′) = h(~x+ ~x′, ~y + ~y′, z + z′ + ~yT~x′).

Now fix nonnegative real numbers r and s, and an exponential n×n matrix

A = eB, with at least one of r, s, A not the identity. Next let D denote the closed

subgroup of GLn+2(R) consisting of block-diagonal matrices of the form

D =
{
d(t) := diag(rt, At, st) : t ∈ R

}
.
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We assume that A is not an orthogonal matrix in case r = s = 1; this is equivalent

to B being not skew-symmetric and guarantees that the map t → d(t) is one-to-

one. The group D acts on the Heisenberg group Hn by conjugation,

d(t)h(~x, ~y, z) d(t)−1 = h(s−tAt~x, rt(AT )−t~y, rts−tz); (5.1)

and this action gives rise to a semi-direct product

D o Hn = {(d(t), h(~x, ~y, z)) : d(t) ∈ D, h(~x, ~y, z) ∈ Hn}

with the group operation

(d(t), h(~x, ~y, z)) (d(t′), h(~x′, ~y′, z′))

=
(
d(t+ t′), h(~x+ s−tAt~x′, ~y + rt(AT )−t~y′, z + rts−tz′ + s−t~yTAt~x′

)
.

As the action (5.1) is by conjugation, this semi-direct product can be presented in

matrix form as

D o Hn = Hr,A,s := {h(~x, ~y, z) d(t) : h(~x, ~y, z) ∈ Hn, d(t) ∈ D} ,

that is,

Hr,A,s =

h(t, ~x, ~y, z) :=


rt ~yTAt stz

0 At st~x

0 0 st

 : ~x, ~y ∈ Rn, t, z ∈ R


and we may rewrite the group operation as

h(t, ~x, ~y, z)h(t′, ~x′, ~y′, z′)

= h(t+ t′, ~x+ s−tAt~x′, ~y + rt(AT )−t~y′, z + rts−tz′ + s−t~yTAt~x′).

5.2 Classification of the Group Ga,B,c

In order to classify the groups Hr,A,s, we choose a simpler parametrization,

replacing ~yTAt with ~yT , st~x with ~x and stz with z. Furthermore, to distinguish
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between these parametrizations, we rename these groups to Gr,A,s,

Gr,A,s =

g(t, ~x, ~y, z) :=


rt ~yT z

0 At ~x

0 0 st

 : ~x, ~y ∈ Rn, t, z ∈ R


and the group operation is given by

g(t, ~x, ~y, z) g(t′, ~x′, ~y′, z′) = g(t+ t′, st
′
~x+ At~x′, (AT )t

′
~y + rt~y′, st

′
z + rtz′ + ~yT~x′).

It will be simpler to write the dilations in exponential form and relabel the groups

yet again,

Ga,B,c =



eat ~yT z

0 eBt ~x

0 0 ect

 : ~x, ~y ∈ Rn, t, z ∈ R


where a, c ∈ R, B ∈ Mn(R) and B is not skew-symmetric in case a = c = 0, with

group law

g(t, ~x, ~y, z) g(t′, ~x′, ~y′, z′)

= g(t+ t′, ect
′
~x+ eBt~x′, eB

T t′~y + eat~y′, ect
′
z + eatz′ + ~yT~x′). (5.2)

The groups Ga,B,c are simply connected. In fact being semi-direct products, they

are topological products D×Hn. Now Hn carries the topolgy of R2n+1, and is thus

simply connected. Since products of simply connected spaces are again simply

connected, it suffices to show that D is homeomorphic to R.

Clearly, t 7→ d(t) is continuous. We need to show that its inverse is also

continuous. If a 6= 0, then t 7→ eat is a homeomorphism of R into (0,∞). Thus, if

d(tn)→ d(t0), then eatn → eat0 and hence tn → t0. A similarly argument applies if

c 6= 0. It is left to consider the case a = c = 0. Then by assumption, B is not skew-

symmetric and hence the map t 7→ eBt is one-to-one, as can be seen, for example,

from the Jordan normal form of eBt. Suppose first that, eBtn → I. Then for
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sufficiently large n, ‖eBtn−I‖ < 1 and hence log(eBtn) exists, and elog(eBtn ) = eBtn .

But as the map t 7→ eBt is one-to-one, we conclude that log(eBtn) = Btn. Since

the log function is continuous in a neighborhood of the identity, it follows that

Btn = log(eBtn) → log(I) = 0, and hence, as B 6= 0, tn → 0. In general, suppose

d(tn) → d(t0). Then eBtn → eBt0 so that eB(tn−t0) → I. By the above, it follows

that tn − t0 → 0 or equivalently, tn → t0. This shows that the inverse of t 7→ d(t)

is also continuous and hence D is homeomorphic to R, so that Ga,B,c is simply

connected.

Because the groups Ga,B,c are simply connected, it is enough to classify their

Lie algebras ga,B,c.

We now show that ga,B,c is the set of matrices of the form


sa ~yT z

0 sB ~x

0 0 sc

 : s, z ∈ R, ~x, ~y ∈ Rn

 . (5.3)

In fact, consider the differentiable curve γ : R→ Ga,B,c given by

γ(t) =


east t~yT tz

0 eBst t~x

0 0 ecst


which satisfies γ(0) = In+2. One quickly verifies that

γ′(0) =


sa ~yT z

0 sB ~x

0 0 sc


so that the set (5.3) is a subset of ga,B,c. Conversely, let γ : (−ε, ε) → Ga,B,c be

any differentiable curve with γ(0) = In+2. As the map t 7→ d(t) is one-to-one, we
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can write this curve as

γ(t) =


eaγ1(t) γ3(t)T γ4(t)

0 eBγ1(t) γ2(t)

0 0 ecγ1(t)


with γ1, γ4 : (−ε, ε) → R and γ2, γ3 : (−ε, ε) → Rn and γi(0) = 0 for all i.

Computing the derivative at 0 we obtain by chain rule,

γ′(0) =


γ′1(0)a γ′3(0)T γ′4(0)

0 γ′1(0)B γ′2(0)

0 0 γ′1(0)c


which is an element of the set (5.3).

Now ga,B,c has a decomposition as a direct sum of vector spaces

ga,B,c = VM ⊕ VX ⊕ VY ⊕ VZ

where

VM =

sM : s ∈ R, M =


a 0 0

0 B 0

0 0 c


 ' R

VX =

X~x =


0 0 0

0 0 ~x

0 0 0

 : ~x ∈ Rn

 ' Rn

VY =

Y~y =


0 ~yT 0

0 0 0

0 0 0

 : ~y ∈ Rn

 ' Rn

VZ =

Zz =


0 0 z

0 0 0

0 0 0

 : z ∈ R

 ' R.

.
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and the nontrivial Lie algebra brackets are

[M,X~x] = X(B−cI)~x, [M,Y~y] = Y(aI−BT )~y,

[M,Zz] = Z(a−c)z, [Y~y, X~x] = Z~yT ~x.

(5.4)

The Lie algebras g = ga,B,c are all solvable: In fact, we have

g1 = [g, g] ⊆ VX ⊕ Vy ⊕ VZ

g2 =
[
g1, g1

]
⊆ [VX ⊕ Vy ⊕ VZ , VX ⊕ Vy ⊕ VZ ] = VZ

g3 =
[
g2, g2

]
⊆ [VZ , VZ ] = {0}.

The classification now involves several steps. Throughout, I will denote the n× n

identity matrix In.

Proposition 5.1. If any of the following conditions hold, then gã,B̃,c̃ and ga,B,c are

isomorphic Lie algebras.

1. ã = a, c̃ = c and B̃ is similar to B, say B̃ = SBS−1 for some S ∈ GLn(R).

2. (ã, B̃, c̃) = α(a+ k,B + kI, c+ k) for some scalars α 6= 0, k.

3. (ã, B̃, c̃) = (c, BT , a).

Proof. Throughout, we let M̃ = diag(ã, B̃, c̃). Furthermore, elements of the sub-

spaces ṼX , ṼY and ṼZ of gã,B̃,c̃ will still be denoted by X~x, Y~y and Zz, respectively.

1. Suppose that ã = a, c̃ = c and B̃ = SBS−1. Define a vector space

isomorphism T : ga,B,c → gã,B̃,c̃ by

T (M) = M̃, T (X~x) = XS~x, T (Y~y) = Y(S−1)T ~y, T (Zz) = Zz.
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A straightforward computation shows that T preserves Lie brackets,

[
T (M), T (X~x)

]
=
[
M̃,XS~x

]
= X(B̃−c̃I)S~x = X(SBS−1−cI)S~x = XS(B−cI)~x

= T (X(B−cI)~x) = T
(

[M,X~x]
)

[
T (M), T (Y~y)

]
=
[
M̃, Y(S−1)T ~y

]
= Y(ãI−B̃T )(S−1)T ~y = Y(aI−(SBS−1)T )(S−1)T ~y

= Y(S−1)T (aI−BT )~y = T (Y(aI−BT )~y) = T
(

[M,Y~y]
)

[
T (M), T (Zz)

]
=
[
M̃, Zz

]
= Z(ã−c̃)z = Z(a−c)z = T (Z(a−c)z) = T

(
[M,Zz]

)
[
T (Y~y), T (X~x)

]
=
[
Y(S−1)T ~y,XS~x

]
= Z~yTS−1S~x = Z~yT ~x = T (Z~yT ~x) = T

(
[Y~y, X~x]

)
.

2. Next suppose that (ã, B̃, c̃) = α(a+ k,B + kI, c+ k) with α 6= 0. Define

a vector space isomorphism T : ga,B,c → gã,B̃,c̃ by

T (M) =
1

α
M̃, T (X~x) = X~x, T (Y~y) = Y~y, T (Zz) = Zz.

We only need to verify that Lie brackets involving M are preserved,

[
T (M), T (X~x)

]
=

[
1

α
M̃,X~x

]
= X( 1

α
B̃− 1

α
c̃I)~x = X([B+kI]−[c+k]I)~x

= X(B−cI)~x = T (X(B−cI)~x) = T
(

[M,X~x]
)

[
T (M), T (Y~y)

]
=

[
1

α
M̃, Y~y

]
= Y( 1

α
ãI− 1

α
B̃T )~y = Y([a+k]I−(BT+kI])~y

= Y(aI−BT )~y = T (Y(aI−BT )~y) = T
(

[M,Y~y]
)

[
T (M), T (Zz)

]
=

[
1

α
M̃, Zz

]
= Z( 1

α
ã− 1

α
c̃)z = Z([a+k]−[c+k])z

= Z(a−c)z = T (Z(a−c)z) =
(

[M,Zz]
)
.

3. Finally, suppose that (ã, B̃, c̃) = (c, BT , a). Define a vector space iso-

morphism T : ga,B,c → gã,B̃,c̃ by

T (M) = −M̃, T (X~x) = Y~x, T (Y~y) = X~y, T (Zz) = Zz.
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Then T preserves Lie brackets, as

[
T (M), T (X~x)

]
=
[
−M̃, Y~x

]
= Y(B̃T−ãI)~x = Y(B−cI)~x

= T (X(B−cI)~x) = T
(

[M,X~x]
)

[
T (M), T (Y~y)

]
=
[
−M̃,X~y

]
= X(c̃I−B̃)~y = X(aI−BT )~y

= T (Y(aI−BT )~y) = T
(

[M,Y~y]
)

[
T (M), T (Zz)

]
=
[
−M̃, Zz

]
= Z(c̃−ã)z = Z(a−c)z = T (Z(a−c)z) = T

(
[M,Zz]

)
[
T (Y~y), T (X~x)

]
=
[
X~y, Y~x

]
= Z~xT ~y = Z~yT ~x = T (Z~yT ~x) = T

(
[Y~y, X~x]

)
.

This proves the proposition.

Proposition 5.2. Suppose B is a block-diagonal matrix, B = diag(B1, ..., Bl). Let

B̃ denote the matrix obtained from B by replacing the i-th block Bi with pI −BT
i ,

where p = a+ c. Then ga,B̃,c and ga,B,c are isomorphic.

Proof. By the first part of the previous proposition, we may assume that the block

to be modified is the first block,

B =

 B1 0

0 B2

 and B̃ =

 pIm −BT
1 0

0 B2

 .
Let Rn = Rm ⊕ Rn−m be the corresponding decomposition of Rn. Define a vector

space isomorphism T : ga,B,c → ga,B̃,c by

T (M) = M̃, T (X(~x1,~x2)) = −Y(~x1,0) +X(0,~x2),

T (Y(~y1,~y2)) = X(~y1,0) + Y(0,~y2), T (Zz) = Zz
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where M̃ = diag(a, B̃, c), and ~x1, ~y1 ∈ Rm, ~x2, ~y2 ∈ Rn−m. Then

[
T (M), T (X(~x1,~x2))

]
=
[
M̃,−Y(~x1,0) +X(0,~x2)

]
=
[
M̃,−Y(~x1,0)

]
+
[
M̃,X(0,~x2)

]
= −Y(aI−B̃T )(~x1,0) +X(B̃−cI)(0,~x2) = −Y(B1~x1−c~x1,0) +X(0,B2~x2−c~x2)

= T (X(B1~x1−c~x1,B2~x2−c~x2)) = T (XB(~x1,~x2)−c(~x1,~x2)) = T
( [
M,X(~x1,~x2)

] )
[
T (M), T (Y(~y1,~y2))

]
=
[
M̃,X(~y1,0) + Y(0,~y2)

]
=
[
M̃,X(~y1,0)

]
+
[
M̃, Y(0,~y2)

]
= X(B̃−cI)(~y1,0) + Y(aI−B̃T )(0,~y2) = X(a~y1−BT1 ~y1,0) + Y(0,a~y2−BT2 ~y2)

= T (Y(a~y1−BT1 ~y1,a~y2−BT2 ~y2)) = T (Ya(~y1,~y2)−BT (~y1,~y2)) = T
( [
M,Y(~y1,~y2)

] )
[
T (M), T (Zz)

]
=
[
M̃, Zz

]
= Z(a−c)z = T (Z(a−c)z) = T

(
[M,Zz]

)
[
T (Y(~y1,~y2)), T (X(~x1,~x2))

]
=
[
X(~y1,0) + Y(0,~y2),−Y(~x1,0) +X(0,~x2)

]
=
[
X(~y1,0),−Y(~x1,0)

]
+
[
Y(0,~y2), X(0,~x2)

]
= Z~xT1 ~y1 + Z~yT2 ~x1

= T (Z(~y1,~y2)T (~x1,~x2)) = T
( [
Y(~y1,~y2), X(~x1,~x2)

] )
.

This shows that T preserves the Lie brackets and proves the proposition.

By Proposition 5.1, we may normalize the algebras ga,B,c so that c = 0,

a ∈ {0, 1} and B is in real Jordan normal form. Then p = a, and Proposition

5.2 allows us to assume that Re(λ) > p
2

for each eigenvalue λ of B. Denote the

normalized Lie algebras by gp,B. The Lie brackets (5.4) are thus of the form

[M,X~x] = XB~x, [M,Y~y] = Y(pI−BT )~y, [M,Zz] = Zpz, [Y~y, X~x] = Z~yT ~x. (5.5)

Let us investigate the structure of gp,B for various values of p and types of B.

Begin with the case p = 1. It is easy to see from (5.5) that each Lie algebra

g = g1,B has trivial center. In addition, the nilradical is h = VX ⊕ VY ⊕ VZ . To see

this, note that g itself is not nilpotent:

g1 = [g, g] ⊇ span
{
XB~x, Y(I−BT )~y : ~x, ~y ∈ Rn

}



 

 

 

 

 

 

 

 

126

and continuing inductively,

gj = [g, gj−1] ⊇ span
{
XBj~x, Y(I−BT )j~y : ~x, ~y ∈ Rn

}
for all j. Now if B is not nilpotent then obviously, {XBj~x : ~x ∈ Rn} 6= {0} for

all j. On the other hand, if B is nilpotent, then I − BT is not nilpotent, so that{
Y(I−BT )j~y : ~y ∈ Rn

}
6= {0} for all j. Thus, gj 6= {0} for all j. In addition, h is a

maximal ideal in g, and this ideal is nilpotent, as

h1 = [h, h] = VZ

h2 = [h, h1] = [h, VZ ] = {0}.

Thus, h is the nilradical of g.

Next consider the case p = 0. Clearly, g = g0,B has center VZ . We split

B into its nilpotent and invertible parts B0 and B1 respectively, and by a change

of basis we may assume that B has form B = diag(B0, B1). Now whenever B is

not nilpotent, we may further normalize to det(B1) = 1; after this normalization,

the eigenvalues of B still have non-negative real parts. Furthermore arguing as in

case p = 1, one sees that {XBj~x : ~x ∈ Rn} 6= {0} for all j, so that g has nilradical

VX ⊕VY ⊕VZ . On the other hand, if B itself is a nilpotent matrix of degree k > 1,

then g0,B is a nilpotent Lie algebra of nilpotency k + 1 > 2. For suppose, Bk = 0

while Bk−1 6= 0. Then

g1 = [g, g] = span
{
XB~x, YBT ~y, Zz : ~x, ~y ∈ Rn, z ∈ R

}
and by induction,

gj = [g, gj−1] = span
{
XBj~x, Y(BT )j~y, Zz : ~x, ~y ∈ Rn, z ∈ R

}
6= {0}

for all j 6 k. Observe that as Bk = 0, then gk = {Zz : z ∈ R} = VZ . It follows

that

gk+1 = [g, gk] = [g, VZ ] = {0}.
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There is one additional exceptional case, namely (a,B, c) = (k, kI, k). Here,

we normalize to k = 1 and denote this normalized Lie algebra by g2,I . It has center

VM ⊕ VZ .

It follows that two Lie algebras gp̃,B̃ and gp,B can only be isomorphic if

p̃ = p. Furthermore, g0,B̃ and g0,B can only be isomorphic if B and B̃ have

identical degrees of nilpotency. In fact, we have:

Theorem 5.3. Two normalized Lie algebras gp,B̃ and gp,B are isomorphic if and

only if B̃ and B are similar.

Proof. The sufficiency implication is an immediate consequence of Proposition 5.1.

To prove necessity, let T be a Lie algebra isomorphism mapping gp,B onto gp,B̃.

Using the vector space decomposition of these Lie algebras gp,B = VM⊕VX⊕VY⊕VZ

and gp,B̃ = ṼM ⊕ ṼX ⊕ ṼY ⊕ ṼZ , we may represent T by the matrix

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


with each aij corresponding to a linear mapping between Euclidean spaces. (Here

we write elements of the Lie algebras as column vectors.)

First suppose that p = 1. As T maps nilradical to nilradical, and the center

VZ of the nilradical to the center ṼZ of the nilradical, it follows that T has matrix

a11 0 0 0

a21 a22 a23 0

a31 a32 a33 0

a41 a42 a43 a44


(5.6)

with a11 6= 0, a44 6= 0 by invertibility of T . Next suppose that p = 0 and B, hence

B̃, is not nilpotent. (The case p = 0 and B nilpotent will be treated later.) Then
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T maps nilradical to nilradical, and the center VZ of g0,B to the center ṼZ of g0,B̃;

hence again has matrix representation (5.6).

In both cases, as T maps the ideal VZ onto the ideal ṼZ , it determines a Lie

algebra isomorphism T0 between the quotient algebras,

T0 : k := gp,B/VZ → k̃ := gp,B̃/ṼZ . (5.7)

Observe that k (and similarly k̃) is isomorphic as a vector space to VM ⊕ VX ⊕ VY

and has nontrivial Lie brackets

[M,X~x] = XB~x, [M,Y~y] = Y(pI−BT )~y,

hence T0 has matrix representation
a11 0 0

a21 a22 a23

a31 a32 a33


with a11 6= 0. That is,

T0(M) = a11M̃ + X̃a21 + Ỹa31

T0(X~x) = X̃a22~x + Ỹa32~x

T0(Y~y) = X̃a23~y + Ỹa33~y.

Note that

[
T0(M), T0(X~x)

]
= T0

(
[M,X~x]

)
= T0(XB~x) = X̃a22B~x + Ỹa32B~x[

T0(M), T0(Y~y)
]

= T0

(
[M,Y~y]

)
= T0(Y(pI−BT )~y) = X̃a23(pI−BT )~y + Ỹa33(pI−BT )~y

while also

[
T0(M), T0(X~x)

]
= X̃a11B̃a22~x

+ Ỹa11(pI−B̃T )a32~x[
T0(M), T0(Y~y)

]
= X̃a11B̃a23~y

+ Ỹa11(pI−B̃T )a33~y
.
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Comparing coefficients, we see that T0 preserves Lie brackets if and only if

a11

 B̃ 0

0 pI − B̃T


 a22 a23

a32 a33

 =

 a22 a23

a32 a33


 B 0

0 pI −BT

 . (5.8)

Now the matrix 
a11 0 0

0 a22 a23

0 a32 a33

 (5.9)

still represents an isomorphism of vector spaces and satisfies system (5.8), hence

we may assume the T0 is of this simplified form.

Next we determine the value of a11. If p = 1, then by (5.6) and as T

preserves Lie brackets,

a44Zz = T (Zz) = T ([M,Zz]) = [T (M), T (Zz)] =
[
a11M̃, Z̃a44z

]
= a11a44Zz,

and it follows that a11 = 1. On the other hand if p = 0, using the fact that the

matrix
[ a22 a23

a32 a33

]
is invertible by (5.9), equation (5.8) shows that a11diag(B̃,−B̃T )

and diag(B,−BT ) are similar, hence so are their invertible parts a11diag(B̃1,−B̃T
1 )

and diag(B1,−BT
1 ). However, the determinants of the invertible parts have been

normalized to one, it thus follows that a11 = 1 as well.

Recall that we assume throughout that B and B̃ are in real Jordan normal

form, and we are now ready to show that they have identical Jordan blocks. Con-

sider the adjoint action of M , adM : k → k given by adM(V ) = [M,V ] for V ∈ k.

Since

adM(X~x) = XB~x, and adM(Y~y) = Y(pI−BT )~y,

then VX and VY are both adM -invariant subspaces, and the restriction of adM to

VX ⊕ VY ' Rn ⊕ Rn can be represented by the matrix B 0

0 pI −BT

 .
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Since each eigenvalue λk of B has real part equal or greater than p/2, it follows

that the collection of eigenvalues and Jordan blocks of adM is obtained from that

of B as follows. A Jordan block Jk of B corresponding to some eigenvalue λk (for

ease of notation, we consider a complex conjugate pair of eigenvalues as a single

eigenvalue here) gives rise first to an identical Jordan block on VX belonging to

the very same eigenvalue λ+
k = λk of adM so that Re(λ+

k ) > p/2, and secondly

to a Jordan block on VY derived from pI − JTk and belonging to the eigenvalue

λ−k = p − λk, so that Re(λ−k ) 6 p/2. As we have identified VX and VY each with

Rn in the obvious way, these two Jordan blocks operate on the same subspace of

Rn. A similar statement holds for adM̃ .

Now since T0 maps V = VX ⊕ VY onto Ṽ = ṼX ⊕ ṼY , maps M to M̃ and

preserves Lie brackets, we have

adM̃ = T0|V ◦ adM ◦ (T0|V )−1.

Thus, adM̃ and adM have identical eigenvalues and identical Jordan blocks.

The above description shows that there is a one-to-one correspondence be-

tween the Jordan blocks of B belonging to eigenvalues Re(λ) > p/2 and those

of adM belonging to eigenvalues Re(λ) > p/2, the latter blocks operating on VX

only. As B̃ and adM̃ have the same property, B and B̃ must have identical Jordan

blocks for this range of eigenvalues. On the other hand, as each Jordan block of

B belonging to an eigenvalue Re(λ) = p/2 determines a pair of identical Jordan

blocks of adM , one acting on VX and the other on VY , and a similar statement is

true for B̃ and adM̃ , there is also a one-to-one correspondence between the Jordan

blocks of B and B̃ belonging to an eigenvalue Re(λ) = p/2. This shows that B

and B̃ are similar matrices.

It is left to discuss the case where p = 0 and B, B̃ are both nilpotent of

degree k, so that g0,B and g0,B̃ are both of nilpotency k + 1. As B and B̃ are
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nilpotent, all their eigenvalues are zero, so it suffices to verify that they both have

Jordan blocks of identical sizes. Again, T maps center to center and thus factors

as in (5.7). Note that k and k̃ are both of nilpotency k only. In fact, considering

the lower central series

kj = [k, kj−1] = [M, kj−1] = span
{
XBj~x, Y(BT )j~y : ~x, ~y ∈ Rn

}
(5.10)

where k0 = k, we see that kj 6= {0} for j < k, and by nilpotency of B, kk = {0}. For

each 1 6 r 6 k, let nr (respectively ñr) denote the number of Jordan blocks of B,

hence of −BT , (respectively B̃ and −B̃T ) which are nilpotent of degree r. Since a

Jordan block of nilpotency r has size r as well, (5.10) shows that a Jordan block of

B of nilpotency r will result in two component subspaces of kj of dimension r − j

each, provided that r > j. Counting the dimensions of the component subspaces

of each kj we obtain

dim(k0) = 1 + 2
k∑
r=1

rnr dim(k̃0) = 1 + 2
k∑
r=1

rñr

dim(kj) = 2
k∑

r=j+1

(r − j)nr dim(k̃j) = 2
k∑

r=j+1

(r − j)ñr

where 1 6 j 6 k− 1. Now as kj and k̃j are isomorphic Lie algebras, it follows that

nr = ñr for all 1 6 r 6 k, and hence B and B̃ have Jordan blocks of identical

sizes. Thus, the proof of the theorem is complete.

5.3 The Metaplectic Representations of the Groups Ga,B,c

We now show that the groups Ga,B,c and hence Hr,A,s, are isomorphic to

subgroups of the symplectic group Sp(n + 1,R). With applications in mind, we

normalize only mildly by assuming that c = 0, and setting p = a. We thus consider
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groups

Gp,B =

g(t, ~x, ~y, z) :=


ept ~yT z

0 eBt ~x

0 0 1

 : ~x, ~y ∈ Rn, t, z ∈ R


with p ∈ R and B ∈Mn(R) fixed, so that the group law is

g(t, ~x, ~y, z)g(t′, ~x′, ~y′, z′) = g(t+ t′, ~x+ eBt~x′, eB
T t′~y + ept~y′, z + eptz′ + ~yT~x′).

Consider the n+ 1 dimensional subspace of Sym(n+ 1,R),

M =

m(z, ~x) :=

 −z −~xT
−~x 0

 : ~x ∈ Rn, z ∈ R


and the closed subgroup of GLn+1(R),

Dp,B =

a(t, ~y) :=

 e−pt/2 0

−1
2
e−pt/2e−B

T t~y ept/2e−B
T t

 : t ∈ R, ~y ∈ Rn

 .

The group law in Dp,B is

a(t, ~y)a(t′, ~y′) = a(t+ t′, eB
T t′~y + ept~y′). (5.11)

Now M is invariant under the Dp,B-action, in fact

(
a(t, ~y)−1

)T
m(z, ~x) a(t, ~y)−1 = m(eptz + ~yT~x, eBt~x) (5.12)

for m(z, ~x) ∈M and a(t, ~y) ∈ Dp,B. We thus obtain a semi-direct product

K = Kp,B = {k(t, ~x, ~y, z) : t, z ∈ R, ~x, ~y ∈ Rn}

which can be represented as a closed subgroup of Sp(n+ 1,R) by

Kp,B =

k(t, ~x, ~y, z) =

 a(t, ~y) 0

m(z, ~x)a(t, ~y)
(
a(t, ~y)T

)−1

 : t, z ∈ R, ~x, ~y ∈ Rn


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and by (5.11) and (5.12) possesses the group law

k(t, ~x, ~y, z) k(t′, ~x′, ~y′, z′) = k(t+ t′, ~x+ eBt~x′, eB
T t′~y + ept~y′, z + eptz′ + ~yT~x′).

Note that this is the same group law as in Gp,B. In fact, since Dp,B acts effectively

on M , then by the discussion in chapter IV, Kp,B is isomorphic to an affine group

Hp,B o Rn+1, where by (5.12),

Hp,B =

h(t, ~y) :=

 ept ~yT

0 eBt

 : ~y ∈ Rn, t ∈ R

 .

and hence

Hp,B o Rn+1 =


 h(t, ~y)

[ z
~x

]
0 1

 : h(t, ~y) ∈ Hp,B, (z, ~x)T ∈ Rn+1


which is precisely the group Gp,B.

We now discuss admissibility of Kp,B for the metaplectic representation,

which is given by

µ (k(t, ~x, ~y, z)) = N−m(z,~x)Da(t,~y).

Now as

a(t, ~y)−1(s, ~w) =

 ept/2 0

1
2
e−pt/2~y e−pt/2eB

T t


s
~w

 =

 ept/2s

e−pt/2
(
s
2
~y + eB

T t ~w
)


(5.13)

and

〈m(z, ~x)(s, ~w), (s, ~w)〉 = −s2z − 2s~wT~x = −2

〈
[z, ~x] ,

1

2

[
s2, 2s~w

]〉
(5.14)

it follows that

µ (k(t, ~x, ~y, z))f(s, ~w)

= e−iπ(s2z+2s~wT ~x)e(1−n)pt/4etr(B)t/2 f
(
ept/2s, e−pt/2

(s
2
~y + eB

T t ~w
))
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for f ∈ L2(Rn+1) and (s, ~w) ∈ Rn+1. Next we compute the map Φ : Rn+1 → R̂n+1.

Equation (5.14) shows that

Φ(s, ~w) =
1

2
(s2, 2s~wT )

and its Jacobian is computed as

JΦ(s, ~w) = sn+1. (5.15)

We note that JΦ(s, ~w) = 0 if and only if s = 0. This leads to a splitting of Rn+1

into two open half spaces

U1 = Rn+1
− :=

{
(s, ~w) ∈ Rn+1 : s < 0

}
U2 = Rn+1

+ :=
{

(s, ~w) ∈ Rn+1 : s > 0
}

which by (5.13) are both Dp,B-invariant.

The restrictions Φj of Φ to Uj, j = 1, 2 map the sets Uj homeomorphically

onto the open half space

O+ :=
{

(ω,~γ) ∈ R̂n+1 : ω > 0
}
.

of R̂n+1, and the inverse maps are given by

Φ−1
j (ω,~γ) =

(
(−1)j

√
2ω,

(−1)j~γ√
2ω

)T
for all (ω,~γ) ∈ O+. Furthermore, by (5.15), the Jacobians of Φ−1

j at (ω,~γ) ∈ O+

are

JΦ−1
j

(ω,~γ) =
1

JΦ

(
Φ−1
j (ω,~γ)

) =
(−1)(n+1)j

(2ω)(n+1)/2
.

Now as the sets Uj are Dp,B-invariant, it follows that the two complementary

closed subspaces L2(Uj) of L2(Rn) are both µ-invariant. Thus, by the discussion

in section 4.2, the metaplectic representation of Kp,B is equivalent to the sum

δ = δ1 ⊕ δ2 of wavelet representations of Gp,B
∼= Kp,B on L2(O+) ⊕ L2(O+),
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where δi denotes the wavelet representation of K1,B on the corresponding copy of

L2(O+). We therefore can make use of the admissibility results for the wavelet

representation.

The Hp,B-orbit of a point (ω,~γ) ∈ O+ is

(ω,~γ)h(t, ~y) = (ω,~γ)

ept ~yT

0 eBt

 =
(
eptω, ω~yT + ~γeBt

)
.

Now when p = 0, then the H0,B-stabilizers of a point (ω,~γ) ∈ O+ is of the form

H0,B(ω,~γ) =

{
a(t, ~y) ∈ H0,B : ~yT =

~γ

ω

[
I − eBt

]}
and is not compact so that the group is not admissible. We thus will assume that

p 6= 0 in what follows. For p 6= 0 the stabilizers are easily see to be trivial.

Now we determine what function φ are admissible for the metaplectic rep-

resentation. One way would be use (4.18) directly. In order make the connection

with the wavelet representation clear once more, we will use (4.16) instead. We

may choose the singleton consisting of (ω,~γ) = (1, 0) as transversal, whose orbit is

O(1,0) =
{

(ept, ~yT ) : ~y ∈ Rn, t ∈ R
}

= O+.

Since O+ is a free, open orbit, Hp,B is admissible by the results of Bernier and

Taylor (1996). (Alternatively, one can verify that ∆ 6= | det | and ε-stabilizers are

compact.) One easily verifies that the left Haar measure on Hp,B is

dµ(h(t, ~y)) = e−pnt dt d~y.

By Proposition 3.6, a vector ψ = ψ1 + ψ2 ∈ L2(O+)⊕ L2(O+) is admissible for δ,

if and only if there is a constant cψ > 0 such that∫
Rn

∫
R
ψi(ept, ~yT )ψj(e

pt, ~yT )e−pnt dt d~y = δi,jcψ. (5.16)
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Next, we determine the corresponding admissibility condition for the meta-

plectic representation µ. By Proposition 4.3, the unitary maps Qj : L2(Uj) →

L2(O+), j = 1, 2 are defined by

(Qjφj)(ω,~γ) =
1

(2ω)(n+1)/4
φj

(
(−1)j

√
2ω,

(−1)j~γ
T

√
2ω

)
.

for φj = φ|Uj ∈ L2(Uj) and (ω,~γ) ∈ O+. Thus for φ ∈ L2(Rn),

(Qjφ)(ept, ~yT ) =
1

(2ept)(n+1)/4
φ

(
(−1)j

√
2ept,

(−1)j~y√
2ept

)
.

By (5.16) and Proposition 4.6, φ ∈ L2(Rn) is admissible for µ if and only if∫
Rn

∫
R
φ

(
(−1)i

√
2ept,

(−1)i~y√
2ept

)
φ

(
(−1)j

√
2ept,

(−1)j~y√
2ept

)
e−pntdt d~y

(2ept)(n+1)/2
= δi,jcφ,

Setting ~x = (x1, ~x0)T where x1 =
√

2ept, ~x0 = ~y/x1, this can be simplified to∫
Rn+1

+

φ ((−1)i~x)φ
(
(−1)j~x

) 2n+1

|p|x2n+2
1

d~x = δi,jcφ. (5.17)

Note that this admissibility condition does not depend on the choice of dilation

matrix B !

5.4 Connection with Known Groups

In order to relate the groups G1,B with some of the groups already discussed

in the literature, we reparametrize all groups involved by changing the variable ~y

to eB
T t~y. (This means we revert back from the groups Gr,A,s to the groups Hr,A,s.)

Thus,

D = Dp,B =

a(t, ~y) =

 e−pt/2 0

−1
2
e−pt/2~y ept/2e−B

T t

 : ~y ∈ Rn, t ∈ R

 .

with group law

a(t, ~y) a(t′, ~y′) = a(t+ t′, ~y + e(pI−BT )t~y′).
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Since the D-action now is

(
a(t, ~y)−1

)T
m(z, ~x) a(t, ~y)−1 = m(eptz + ~yT eBt~x, eBt~x), (5.18)

it follows that the group law on K = Kp,B = Dp,B oM is now parametrized as

k(t, ~x, ~y, z) k(t′, ~x′, ~y′, z′) = k(t+ t′, ~x+ eBtx′, ~y + e(pI−BT )t~y′, z + eptz′ + ~yT eBt~x′)

(5.19)

and the metaplectic representation of K thus turns out to be parametrized by

µ(k(t, ~x, ~y, z))f(s, ~w) = [N−m(z,~x)Da(t,~y)f ](s, ~w)

= e−iπ(s2z+2s~wT ~x)e(1−n)pt/4etr(B)t/2f
(
ept/2s, e−pt/2eB

T t
(s

2
~y + ~w

))
.

for f ∈ L2(Rn+1) and (s, ~w) ∈ Rn+1.

Furthermore, we have

Hp,B =

h(t, ~y) =

 ept ~yT eBt

0 eBt

 : ~y ∈ Rn, t ∈ R


and the group operation on the affine group

Gp,B = Hp,B o Rn+1 =

g(t, ~x, ~y, z) :=


ept ~yT eBt z

0 eBt ~x

0 0 1

 : ~x, ~y ∈ Rn, t, z ∈ R


follows the law (5.19).

The Hp,B-orbit of the transversal (ω,~γ) = (1, 0) becomes

O(1,0) =
{

(ept, ~yT eBt) : ~y ∈ Rn, t ∈ R
}

and the left Haar measure of Hp,B is now parametrized to

dµ(h(t, ~y)) = e(tr(B)−pn)t dt d~y. (5.20)
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By Proposition 3.6, a vector ψ = ψ1 + ψ2 ∈ L2(O+) ⊕ L2(O+) is admissible for δ

if and only if there is a constant cψ > 0 such that∫
Rn

∫
R
ψi(ept, ~yT eBt)ψj(e

pt, ~yT eBt)e(tr(B)−pn)t dt d~y = δi,jcψ. (5.21)

A change of variables leads back to admissibility condition (5.16) and hence to

(5.17).

We now show that some of the groups discussed in the recent literature fall

into the class of the groups Gp,B. First choose p = 2 and B = In. Thus the dilation

group is

H2,In =

h(t, ~y) =

 e2t et~yT

0 etIn

 : ~y ∈ Rn, t ∈ R


which by (5.20) has Haar measure dµ(h(t, ~y)) = e−nt dt d~y. Furthermore

G2,In =

g(t, ~x, ~y, z) :=


e2t ~yT et z

0 etIn ~x

0 0 1

 : ~x, ~y ∈ Rn, t, z ∈ R


with group operation

g(t, ~x, ~y, z)g(t′, ~x′, ~y′, z′) = g(t+ t′, ~x+ etx′, ~y + et~y′, z + e2tz′ + et~yT~x′).

Now we switch from the polarized Heisenberg group to the Heisenberg group by

changing z to u = 2z − ~yT~x. The group law is now

g(t, ~x, ~y, u)g(t′, ~x′, ~y′, u′) = g(t+ t′, ~x+ etx′, ~y + et~y′, u+ e2tu′ + et [(~x, ~y), (~x′, ~y′)]),

and we have obtained the group Hn
e of Cordero et al. (2010).

Next we choose p = 1 and B = In, to obtain the group

H1,In =

h(t, ~y) =

 et et~yT

0 etIn

 : ~y ∈ Rn, t ∈ R


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whose Haar measure by (5.20) is dµ(h(t, ~y)) = dt d~y. The group law on

G1,In =

g(t, ~x, ~y, z) :=


et ~yT et z

0 etIn ~x

0 0 1

 : ~x, ~y ∈ Rn, t, z ∈ R


is

g(t, ~x, ~y, z)g(t′, ~x′, ~y′, z′) = g(t+ t′, ~x+ etx′, ~y + et~y′, z + e2tz′ + et~yT~x′).

This is the group (TDS)n of King (2009).

Finally, we choose p = 1 and B = diag( 1
n
, 2
n
, ..., n−1

n
, 1). The group G1,B =

H1,B o Rn+1 is the group (CDS)n of Czaja and King (preprint).

We observe that the admissibility conditions given by the authors of these

last three examples coincide with (5.17).



 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSION

The results of this thesis fall into three parts.

In the first part, finite and countably infinite sums of modulated wavelet

representations were introduced. Theorem 3.6 gives a characterization for a vector

to be admissible for the sum of wavelet representations. Theorem 3.9 shows that

a subgroup of the affine group is admissible for a sum of wavelet representations

if and only if it is admissible for the usual wavelet representation, and its proof

presents a concrete way on how to obtain an admissible vector. Theorem 3.10 then

shows how to construct a bandlimited admissible vector, provided that the dilation

group possesses an expanding matrix. This condition also allows the construction

of frames as outlined in Theorems 3.12 and 3.13.

The second part considered subgroups of Sp(n,R) which arise as semidirect

products K = D o M and are isomorphic to or compact extension of subgroups

G = H o Rn of the affine group. By examples, it was shown that in many cases,

the metaplectic representation of DoM decomposes into a finite sum of subrepre-

sentations, each of which is equivalent to a modulated wavelet representation of G,

and hence of K. The admissibility results on sums of wavelet representations can

thus be used to obtain concrete conditions for a function to be admissible for the

metaplectic representation, and even to construct metaplectic frames. It was also

shown that the concept of admissibility for the metaplectic representation given in

Cordero et al. (2006a) is more narrow than the usual one. Finally, these techniques

clarify the relationship between the metaplectic and wavelet representations of the
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group SIM(2) derived ad-hoc in Cordero et al. (2006a), and show how frames

can be introduced to the metaplectic representations of SIM(2) and its two-fold

covering.

In the third part, a one-parameter matrix group of dilations on the Heisen-

berg group Hn was introduced, generalizing previous results for H1 in Schulz and

Taylor (1999). In Theorem 5.3, the extensions of Hn by such one-parameter groups

were classified up to isomorphism using Lie-algebra techniques. It was shown that

these extensions are subgroups of Sp(n,R) as discussed in part 2, and hence ad-

missibility conditions for the metaplectic representation could be derived. It the

was shown that the groups TDS in Cordero et al. (2006a), (TDS)n in King (2009)

and (CDS)n in Czaja and King (Preprint) are special cases of this construction.

While Proposition 3.8 gives a necessary condition for subgroups D oM of

Sp(n,R) to be admissible, there is no sufficiency result yet which mirrors part 2

of Theorem 3.9 and provides conditions sufficient for admissibility of the meta-

plectic representations. The difficulty here is that in general, no analogue of the

Plancherel Theorem is available. Work towards this goal, together with algorithms

for constructing admissible functions, could be the direction of future research.
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Grossmann, A., Morlet, J. and Paul, T. (1985). Transforms associated to square

integrable group representations I: General results. J. Math. Phys. 26:

2473-2479.

Grossmann, A., Morlet, J. and Paul, T. (1986). Transforms associated to

square integrable group representations I: Examples. Ann. Inst. Henri
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