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CHAPTER 1

INTRODUCTION

A recurrent theme in analysis is the decomposition of a vector or function
into basic building blocks, also known as spectral analysis. For example, the Fourier
series is the decomposition of a periodic function into an infinite sum of trigono-
metric functions of fixed frequency. Thus, if one knows the frequency response of
a linear system, one can deduce the response of the system to any periodic signal.
Similarly, the Fourier transform can be considered as the decomposition of a non-
periodic function f into a continuous spectrum of basic frequencies. Under some
mild assumptions, the function f can be reconstructed from its Fourier transform
by means of the inverse Fourier transform.

In general, it is difficult to recognize local properties of f from its Fourier
transform. In applications such as image processing for example, one encounters
functions which possess steep but well localized gradients. The Fourier transform
is poorly suited to the analysis of such functions. First of all, the steep gradients
lead to Fourier transforms which decay only slowly at infinity. In addition, the

locations of the gradients cannot be detected easily from the Fourier transform.

1.1 The Wavelet Transform

The wavelet transform was introduced in Grossmann, Morlet and Paul

(1985, 1986) as one tool to overcome these difficulties. Here the given function



f € L*(R) is sampled in a window of variable location and scale,

Wf(a,x)—a1/2/Rf(y)w(a1(y—x))dy (a >0,z € R)

for some fixed window function ¢» € L*(R). Thus, the wavelet transform of f is a
function depending on the two parameters location and scale, yielding information
on both location and size of steep gradients. The question of reconstructing a
given function from its wavelet transform was solved by Grossmann et al. (1985)
using the theory of square integrable representations by Duflo and Moore (1976).
1 is called admissible, or a wavelet, if such a reconstruction is possible for every f,
and it turns out that the set of admissible functions is dense in L*(R).

The wavelet transform can be naturally extended to m-dimensional Eu-

clidean space,

Wf(a,@) = |deta| ™2 [ f(§) (e (F—7))dy  (T€R", f,¢ € L*(R"))

’ (1.1)
where a is now an element of a closed subgroup H of GL,(R). Bernier and Taylor
(1996) obtained results on existence and characterization of admissible functions
in case that H possess open, free orbits in R", extending those of Grossmann et
al. (1985, 1986), still exploiting the results from the theory of square integrable
representations.

Laugesen, Weaver, Weiss and Wilson (2002) finally succeeded to give general
sufficient and necessary conditions on the matrix group H for the existence of

admissible functions, as well as a characterization of these functions.

1.2 Transforms from Group Representations

The wavelet transform is only one example of decompositions arising from

group representations. Let G be a locally compact group with Haar measure v



and 7 a unitary representation of G on some Hilbert space H, and fix ¢ € H. The

voice transform of an element f of H is the function V f defined on G by

(V1) (g9) = (f,m(9)¢) - (1.2)

The vector ¢ is called admissible, if the linear map f — V,f is a multiple of an

isometry, that is if
Vol e = collfll3;  VfeH (1.3)

for some constant cs, > 0. In this case, an application of the polarization identity

leads to the reproducing formula

f=t /G (fm(9)d) 7(g)é dv(g) (1.4)

Co
as a weak integral in ‘H. If such a ¢ exists, then the group G is called admissible, ¢
is called an admissible vector and {m(g)d} . is called a resolution of the identity.
Having the form of a weak integral, the reproducing formula (1.4) is in
general difficult to compute. It is preferable to find a discrete subset I of G which

gives a basis-like reconstruction of the form
f=>_{f,7(g:)8) m(g:); (1.5)
el

which is the concept of a frame.

The groups considered in the wavelet transform (1.1) are affine groups, that

is semi-direct products G = H x R" that may be represented as matrix groups

h &
(h,Z) = : he H ¥eR"
0 1

for some closed subgroup H of GL,(R), acting by translations and dilations on
L3(R™),

7(h,Z)¢ = TgDp¢ (h,%) € G, ¢ € L*(R"). (1.6)



Constructions which yield frames from this representation were initially
obtained by Heil and Walnut (1989), Bernier and Taylor (1996) and Heinlein (2003)
and others, and frame construction continues to be an active field of research in

wavelet theory.

1.3 The Objectives of This Thesis

In a recent series of papers Cordero, De Mari, Nowak and Tabacco (2006a,
2006b, 2010) studied admissibility for the voice transform associated with the meta-
plectic representation of subgroups of the metaplectic group Sp(n,R) on L*(R™).
By employing the Wigner distribution, the authors obtained conditions for a func-
tion ¢ € L?(R") to be admissible, mirroring those given by Laugesen et al. (2002)
for the wavelet transform. The Wigner distribution is, however, difficult to work
with; as a consequence, almost all examples in these papers constructed admissible
functions for a special class of groups only; these groups are isomorphic to affine
groups and through an ad-hoc process, admissibility conditions could be derived
from those for the wavelet transform. A recent thesis of King (2009) continued
this ad-hoc construction.

In this thesis, we build on these examples, and investigate the underlying
mechanism in detail. Thus, we study subgroups of the symplectic group Sp(n,R)
which take the form of semidirect products K = D x M, where M is an n-
dimensional vector group and D a closed subgroup of GL,(R) which acts linearly
on M. These groups are isomorphic to subgroups, or finite extensions of subgroups
of the affine group, and thus possess a wavelet representation as well. It turns out
that in many cases, the metaplectic representation of K decomposes into a finite
sum of subrepresentations, each of which is equivalent to a sum of modulated

wavelet representations.



We therefore begin by introducing modulated wavelet representations, and
by studying their sums in a systematic way. In particular, we derive conditions
for a vector to be admissible, present a concrete method for the construction of
admissible and bandlimited admissible vectors, and discuss the construction of
frames.

We then make use of these results to show how to obtain admissibility
conditions for the metaplectic representation of the groups K from those for the
corresponding sum of wavelet representations. In particular, this process will allow
us to introduce frames for the metaplectic representation. We present a series of
examples which illuminate this process, one of which will show that the concept
of admissibility of Cordero et al. (2006a) through the Wigner distribution is more
narrow than the usual one.

It turns out that the groups involved in the examples given in Cordero et
al. (2006a, 2010), King (2009) and Czaja and King (preprint) all belong to the
same class of groups, namely are extensions of the Heisenberg group by a one-
parameter family of matrix groups. We introduce these extensions, classify them
up to isomorphism and show that they can indeed be presented as subgroups of
Sp(n,R) of the form D x M as discussed in this thesis. Our admissibility results
coincide with those for the groups given in Cordero et al. (2006a, 2010), King
(2009) and Czaja and King (preprint).

This thesis is organized as follows. Chapter II gives a short introduction
into the concepts and a review of the mathematical tools required. Chapter III
begins with a quick summary of the usual wavelet transform, and presents our
results on sums of modulated wavelet transforms, including the characterization
and construction of admissible vectors and of frames. The relationship between

the metaplectic representation and sums of wavelet representations for subgroups



of the symplectic group arising as semi-direct products is explored in Chapter IV,
and illustrated by numerous examples. Chapter V is devoted to a discussion and
classification of extensions of the Heisenberg group by one-parameter groups of

matrices. Finally, these results are all briefly summarized in Chapter VI.



CHAPTER 11

BASIC BACKGROUND

In this chapter, we review the mathematical concepts and theorems from the
literature that are used in this thesis. We begin with the basics of locally compact
groups, followed by matrix groups and their Lie algebras. We also review the
fundamental concepts in time-frequency analysis, such as the Fourier transform and
its properties, frames in Hilbert space, the Wigner distribution and the metaplectic
representation. Throughout, it is assumed that the reader is familiar with the
foundations of real analysis, such as measure theory and function spaces. Details
and proofs of the material presented here can be found in Folland (1989, 1999),

Baker (2001), Knapp (1996) and Gréchenig (2000).

2.1 Locally Compact Groups

Definition 2.1. A topological group is a group G endowed with a topology such
that the group operations (h,k) — hk and h — h™' are continuous from G x G

and G to G.

Simple examples include topological vector spaces (the group operation be-
ing addition), groups of invertible n x n real matrices (with the relative topology
induced from R"*") and all groups equipped with the discrete topology. If G is a
topological group, we denote the identity element of G by e, and for A, B C GG and
h € G we define hA = {hk : k € A}, Ah={kh : k€ A}, A~ ={k7' : k € A}
and AB = {kh : k € A,h € B}. We say that A is symmetric if A = A~1.

Here are some of the basic properties of topological groups:



Proposition 2.2. Let G be a topological group.

(a) The maps g € G+ hg (h € G fized) and g € G — g~ are homeomorphisms.
In particular, the topology of G is translation and inversion invariant: If U

is an open subset of G and h € G, then Uh, hU and U~ are open.

(b) For every neighborhood U of e there exists a symmetric open neighborhood V

of e with V C U.

(c) For every open neighborhood U of e there exists an open neighborhood V' of e

with VV C U.
(d) If H is a subgroup of G then so is H.
(e) Every open subgroup of G is also closed.
(f) If K1, K5 are compact subsets of G then so is K Ks.

If f is a function on the topological group G and k € G, the left and the

right translates of f through k are defined by

Lef(h) = f(k7'R),  Rypf(h) = f(hk).

(The point of using k~! on the left and k on the right is to obtain homomorphism
properties: Ly = LiL; and Ry = Ry R;.) f is called left (resp. right) uniformly
continuous if for every € > 0 there is a neighborhood V' of e such that || Ly f— f||c <
e (resp. ||Ref — fllo <€) for k € V.

We write f € C.(G), if f is continuous and there exists a compact subset K

of G outside of which f vanishes. The smallest such subset K is called the support

of f, denoted supp(f).

Proposition 2.3. If f € C.(G), then f is left and right uniformly continuous.



A locally compact group is a topological group whose topology is locally
compact and Hausdorff. The next proposition shows that closed and open sub-

groups of a locally compact group are again locally compact.
Proposition 2.4. Let G be a locally compact Hausdorff space.
(a) If H C G is closed, then H is also locally compact Hausdorff.

(b) If K C G is open, then K is also locally compact Hausdorff.

2.1.1 Haar Measure

Locally compact groups are of interest because they carry a translation
invariant measure: If G is a locally compact group, being a topological space,
G has a measurable structure, namely the g-algebra generated by the open sets,
called the Borel o-algebra. A measure i on the Borel sets is called a Borel measure,

and it is called a Radon measure it
(a) p(K) is finite for every compact set K;
(b) every Borel set E is outer regular: p(E) = inf{u(U) : E C U,U open}; and
(c) every open set FE is inner regular: u(E) =sup{u(K) : K C E, K compact}.

These conditions assure that every f € C.(G) is integrable, and C.(G) is dense in
LP(G) for every 1 < p < 0.

A Borel measure p on G is called left-invariant (rvesp. right-invariant) if
w(hE) = p(E) (resp. u(Eh) = pu(E)) for all h € G and all Borel subsets E of G. If
in addition, p is a nonzero Radon measure, then it is called a left (resp. right) Haar
measure. For example, the Lebesgue measure is a (left and right) Haar measure

on R™. The following proposition summarizes some elementary properties of Haar
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measures; in it, we employ the notation

Cr={feC.(G) : f>0 and ||f|lc > 0}.

Proposition 2.5. Let G be a locally compact group, and i a nonzero Radon mea-

sure on G

(a) pu is a left Haar measure if and only if the measure ji defined by i( E) = u(E~1)

1s a right Haar measure.

(b) p is a left Haar measure if and only if [, f(k~'h)du(h fG h) for
all f € Cr k € G if and only if [, f(k~'h)du(h fG h) for all
fel'(G),ked.

(c) If w is a left Haar measure on G, then p(U) > 0 for every nonempty open
UCG and [, f(h)du(h) >0 for all f € CF.

(d) If 1 is a left Haar measure on G, then u(G) < oo if and only if G compact.

Theorem 2.6. FEvery locally compact group G possesses a left Haar measure. The
left Haar measure is essentially unique, that is, if p and v are left Haar measures
on G, there exists ¢ > 0 such that u = cv. By symmetry, similar statements hold

for a right Haar measure.

If 11 is a left Haar measure on G and h € G, the measure u,(E) = p(Eh)
is again a left Haar measure, because of the commutativity of left and right trans-
lations which results from the associative law. Hence, by Theorem 2.6, there is a
positive number A(h) such that p, = A(h)u. The function A : G — (0,00) thus
defined is independent of the choice of i by Theorem 2.6, and is called the modular

function of G.
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Proposition 2.7. A is a continuous homomorphism from G into the multiplicative

group of positive real numbers. Moreover, if p is a left Haar measure on G, then

for any f € LY(G) and k in G we have
| somautey = 67 [ pmdno. 2.1)
Proof. For every h, k € G and Borel subset E of G of positive measure,
A(hk)u(E) = (Ehk) = A(k)u(Eh) = A(k)A(h)u(E),
and as j is nonzero, A is a homomorphism. Also, since 1, (hk)=1_ _, (h),

/G 1, (hk)dpu(h) = p(BE ) = Ak )(E) = AGk™) / 1, (h)du(h).

This proves (2.1) when f = 1, is the characteristic function of a Borel set E, and
the general case follows by the definition of the integral. Finally, using Proposition
2.3 and Radon condition (a) one easily shows that the map k — [, f(hk)du(h) is

continuous for any f € C.(G), so the continuity of A follows from (2.1). ]

Evidently, a left Haar measure on G is also a right Haar measures precisely
when A is identically 1, in which case G is called unimodular. Of course, every

Abelian group is unimodular.
Proposition 2.8. If G is compact, then G is unimodular.

Proof. For any h € GG, obviously G = Gh. Hence if p is a right Haar measure, we
have pu(G) = p(Gh) = A(h)u(G), and since 0 < p(G) < oo, by compactness we
conclude that A(h) = 1. O

We observed above that if u is a left Haar measure, then ji(F) = u(E™!) is

a right Haar measure. We now show how to compute it in terms of p and A.

Proposition 2.9. dji(h) = A(h) " du(h).
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Proof. By (2.1), for f € C.(G),

/Gf(h)A( ) ~tdu(h) /fhk; (hk)~‘dp(h) /fhk; )y tdu(h).

Thus the Radon measure determined by A~!dyu is right-invariant, so by theorem
2.6, A=Ydu = cdji for some ¢ > 0. If ¢ # 1, we can pick a symmetric neighborhood
U of e in G such that [A(h) ' —1] < L{e—1|for h € U. But a(U) = p(U~') = p(U),

SO

¢ = 1u(U) = lep(U) — pU)| =

a contradiction. Hence ¢ = 1 and dpp = A~ dpu. O

This proposition shows that left and right Haar measures are mutually

absolutely continuous.

2.1.2 Continuous Group Actions

Definition 2.10. Let X be a set, G a group. By a (left)action of G on X, we
mean a map

a:GxX —X
satisfying
(a) a(e,x) =z Vo € X where e denotes the identity of G,
(b) a(h,a(h,x)) = a(hh/,x) Vh,h € G,z € X.
The triple (X, G, «) is also called a transformation group, and X is called a G-set.

It is often convenient to denote a(h,z) by h-x (or az(x)). Then (a) and

(b) become

(@)e-x=uxz (or a.(z) =) VrelX,
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(b)) h- (R -x)=(hh) -z (or ap(ap(z)) = apw(x)) Yh,h' € G, z € X.

If X is a topological space and G a topological group, then one also requires that

the map « be continuous, and calls X a G-space. In this case,
(a) a is an open map,

(b) for fixed h € G, the map x +— h - x is a homeomorphism of X onto X, since

it has a continuous inverse, namely z — h~!- .

Given z € X, the set O(x) =G -x ={h-x : h € G} is called the orbit of . The
stabilizer of x € X is the set G, ={h € G : h-x =xz}. It is a closed subgroup of
G provided that X is a Tj-space. The orbit O(z) is called free if G, = {e}. The
global stabilizer is Gy = ﬂX G, and the action is called effective if Gy = {e}.

ze

For example, let X = R" and G = GL,(R). There is a natural action of

GL,(R) on R™ given by multiplication of a matrix with vector,
a-T = a,(7) = a

for a € GL,(R) and & € R". The stabilizer of ¥ = 0 is GL,(R) itself, and each
T # 0 has a nontrivial stabilizer: if ¥ = (z1, %9, ...,x,)T, (n > 2), then o, (%) = &
where «a, denotes reflection along the line through .

Now if a is a diagonal matrix, a = diag(ay, as, ..., a,) with a5 > 0 for all k, let
D = {da' : t e R}. D is called the one-parameter subgroup of GL,(R) generated
by a. The orbit of ¥ € R", ¥ # 0, is free, as whenever z;, # 0, and ¢ # 0 then
atxy # x). This also shows that the action of D on R" is effective.

Similarly, if R denotes Euclidean space whose elements are written as row

vectors, then

for a € GL,(R) and 7 € R", defines an action of GL,(R) on R
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2.1.3 Semi-Direct Products

Let D and N be locally compact groups and let o be an action of D on N

by group automorphisms. We can form a new group by setting
G={(a,n) :a€ D,ne N}
endowed with the product topology and the group law
(a,n)(a’,n') = (ad',nay(n")) = (ad’, ag(a-1(n)n’))

for (a,n), (a’,n') € G. It is not difficult to verify that G is a locally compact group
with identity (ep,en) where ep is the identity of D, and ey is the identity of N,
and that the inverse of element (a,n) is (@™, ap-1(n)™1).

Furthermore, identifying N with the closed subset {(ep,n) : n € N} of G,
then N is a normal subgroup of G, and G/N is naturally isomorphic to D. We
call G the semi-direct product of D and N with respect to a and write G = D x N.

Now let pup and py denote the left Haar measures on D and N respectively.
As a4, is a homeomorphism for each a € D, it is also a Borel isomorphism and
hence py(E) := pn(aq(E)) is a left Haar measure on N. By uniqueness of the
Haar measure, there is a number J(a) > 0, such that uy(a,(F)) = J(a)un(E) for
all Borel subset E' of N. Since « is a group automorphism, then J : D — (0, c0)

is a homomorphism. Equivalently by the definition of the integral,

J(a) /N £ (Ca(n))dpin(n) = /N F(n)dun () (2.2)

first for all characteristic functions f = 1g (F Borel) and hence for all f € L}(N).

The Haar measure v on G is determined by

dv(a,n) = J(a Vdup(a) dux(n). (2.3)
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To verify this, note that for all (a/,n’) € G and f € C.(G), we have by left invariant

of ux and pp,

/Gf((a’ﬂ/)(a,n))dy(a,n) :/ / F(d'a, o (g1 (n')n)) d/lN(nzd,;LD(a)

a

e e S
i it

:/Gf(a,n)du(a,n).

2.1.4 Group Representations

Definition 2.11. Let G be a locally compact group and H be a Hilbert space. A

(unitary) representation w of G on H is a mapping satisfying:
(a) m: G —UH). (U(H) is the group of unitary operators on H.)
(b) m is a homomorphism: w(hk) = w(h)m(k) for all h,k € G.

(¢) m is continuous with respect to the strong operator topology of U(H), that is

h +— w(h)y is continuous for each 1 € H.
If H = C, then 7 is called a character of G.

A closed subspace K of H is called w-invariant, if w(h)y € K for all ¢ € K,
h € G. The orthogonal complement K= is also 7m-invariant.
Now let {m;};cs be a collection of representations of G on Hilbert spaces

H;, and let H = @ H;. Since each m;(h) is a unitary operator, then the operator
JjeJ

m(h) on H defined by

Wy = mi(h)Y;
j€J
for v = Y 9; € H, ¢; € H; is a well defined unitary operator on H. One can
jeJ
verify that 7 is a representation of G on H, called the sum of the representations
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{m;}jes, and we write
™= & 7.
jeJ

If 7 is a representation of ‘H and K a m-invariant subspace, then 7 restricts to a

representation 7r| « of G on K. Since K+ is also m-invariant, then
= W‘;c D W‘ICJ-'

Definition 2.12. A representation 7 is called irreducible if {0} and H are the only

m-invariant closed subspaces of H.
For example, every character is irreducible.

Theorem 2.13. (Schur’s Lemma) Let m be a unitary representation of a locally

compact group G on a Hilbert space H. Then the following are equivalent:
(a) 7 is irreducible.

(b) For every ¢ € H\ {0} the subspace spanned by the finite linear combinations

of m(g), g € G, is dense in H.

(¢) If a bounded operator S : H — H satisfies w(g)S = Sw(g) for all g € G, then

S = My for some A € C.

2.2 Matrix Groups

In this section, k will denote the fields k = R or k = C.

Let M,, (k) be the set of m x n matrices whose entries are in k. We denote
the (7, j)-th entry of an m x n matrix a by a;; and also write a = [a;;]. If m = n,
then we write M, (k) for this set.

M, m(k) is a k-vector space under the operations of matrix addition and

scalar multiplication. The zero vector is the m x n zero matrix 0,,, which we
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will often denote by 0 when the size is clear from the context. As a vector space
M,, (k) is isomorphic to k™™ and thus inherits the topology of k™. M,, (k) is also
a ring with the usual addition and multiplication of square matrices, with zero 0,
and the n x n identity matrix I, as its unity; M, (k) is not commutative except
when n = 1. We usually give M, (k) the operator norm, but as all norms on a
finite dimensional vector space are equivalent, then a,, — a in M, (k) if and only
if the sequences of corresponding entries all converge: (a,);; — a;; for all 4, j. The

conjugate transpose of a matrix will be denoted by a*, and the transpose by a”.
Proposition 2.14. The determinant det : M,,(k) — k is a continuous function.

Proof. The determinant is obtained by composing the continuous function

M, (k) — k™ identifying M, (k) with k™ with a polynomial function k»* — k. [
Next, we consider two particular subsets of M, (k):
GL,(k)={a € M,(k) : deta#0} and SL,(k)={ae€ M,(k) : deta =1}

which are both groups under matrix multiplication. Furthermore, SL, (k) is a
subgroup of G'L, (k). By Proposition 2.14, then GL, (k) = M, (k)\ det™"' {0} is an
open subset of M, (k), similarly, SL, (k) = det™" {1} C GL,(k) is closed in M, (k)
and GL, (k). By Proposition 2.4, then GL, (k) and SL, (k) are a locally compact

groups.

Definition 2.15. A subgroup G of GL, (k) which is closed in GL, (k) is called a

matrix group.

Proposition 2.16. Let G be a matriz group. Then every closed subgroup H of G

is also a matriz group (called a matriz subgroup of G ).

Proof. Since H is closed in G and G is closed in GL,(k), then H is closed in

GL, (k). O
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Since a matrix group H is a closed subgroup of G L, (k), then by Proposition

2.4, its topology is locally compact. Hence H has a left Haar measure.

Proposition 2.17. Let G be a matriz group. If H is a matriz subgroup of G and

K is a matrix subgroup of H, then K is a matrix subgroup of G.
Proof. This is a straightforward generalization of Proposition 2.16. O]

Definition 2.18. Let G and H be two matrix groups. A group homomorphism
¢ : G — H is called a matrix group homomorphism if it is continuous and its
image ©(G) is closed in H, that is, is a matriz subgroup of H. In addition, if ¢~

exists and is continuous, then o is called a matrix group isomorphism.

Remark 2.1. It is important to require that ¢(G) be closed in H. For
example, let 7 be an irrational number. Now G = {e™ : n € Z} is a closed subgroup

of GL;(R) = R". Define ¢ : G — GL3(R) by p(e") = R, € GLy(R) where Ry =

cos sinf | ) { ) ) )
is a rotation matrix. Then ¢ is a continuous homomorphism,

—sinf cos6

but o(G) ={Ry : 0 <0 <271} # ¢(G). Hence ¢(G) is not a matrix group.
Remark 2.2. Let ¢ : G — H be a matrix group homomorphism. Since
¢ is continuous, then ker p = ¢! ({e}) is a closed subset of G hence is a matrix
group. The quotient group G/ ker ¢ can be identified with the matrix group ¢(G)
by the usual quotient isomorphism @ : G/ker¢o — (G) (which need not be a

homomorphism of matrix groups since GG/ ker ¢ need not be a matrix group).

2.3 Lie Algebras

The theory of Lie algebra is a rich and well developed field. As we will use
this theory for the classification of matrix groups, we focus here on the connection

between matrix groups and Lie algebras.
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Definition 2.19. Let g be a vector space over k. g is called a Lie algebra over k,

if there exists a k-bilinear map [-,-] : g X g — @ called the Lie bracket, satisfying:

(a) skew-symmetry:

[z, y] = —ly, 2]

(b) Jacobi identity:

[, [y, 2] + [y, [z, =] + [z, [2,9]] = 0
forall z,y,z € g.
For example, M, (k) is a Lie algebra over k with the Lie bracket
[A,B] = AB — BA

for A, B € M, (k).

If a and b are subsets of a Lie algebra g, we write
[a,b] =span{[z,y] : z €a, y € b}.
Definition 2.20. Let g be a Lie algebra over k.
(a) The center of g is
2(g) ={z€g: [z,2]=0 foral x € g}.
(b) [g, 9] is called the derived algebra of g.
Definition 2.21. Let g be a Lie algebra overk and b a vector subspace of g. Then
(a) b is called a Lie subalgebra of g, if [h,h] C b.

(b) b is called a Lie ideal of g, if [g,b] C b.

Proposition 2.22. Let g be a Lie algebra over k. If a and b are ideals of g, then

so are a+b,anb, and [a,b].
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Proof. The conclusions for a+ b and aNb are obvious. In the case of [a, b], by the

Jacobi identity and skew-symmetry, we have
(9, [0, 6]] = [[g, a, b] + [a, [g, b]] C [a,b] + [a,b] C [a, b].
O

Definition 2.23. Let g,h be Lie algebras over k. A k-linear transformation ® :

g — b is called a Lie algebra homomorphism, if for all x,y € g,

O([z,y]) = [@(x), 2(y)].

Such a homomorphism s called a Lie algebra isomorphism, if it is also a k-linear

isomorphism.

Let a be an ideal of the Lie algebra g. The quotient vector space g/a inherits

a bracket operation defined by
[z +a,y+a =[z,y +a

for z,y € g. This is easily seen to make g/a into a Lie algebra so that the
quotient linear transformation g — g/a is a homomorphism of Lie algebras. g/a is
referred to as the quotient Lie algebra of g with respect to the ideal a. The usual

isomorphism results apply:
Proposition 2.24. Let ® : g — b be a homomorphism of k-Lie algebras. Then

(a) ker ® is an ideal of g.

(b) If go and by are ideals in g and by, respectively, and ®(go) C ho, then ® induces

a Lie algebra homomorphism ® : g/gy — b/bo given by

®(x + go) = ®(x) + bo (z € g).

Furthermore, if ® is an isomorphism mapping go onto b, then ® will also

be an isomorphism.
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Remark 2.3. Let ® : g — h be a homomorphism of k-Lie algebras. By
Proposition 2.24, the quotient Lie algebra g/ ker ® can be identified with ®(g) by
the quotient isomorphism ® : g/ ker & — ®(g).

Every element u € g defines a k-linear automorphism ad, of g, called the
adjoint action of u on g by

ad,(x) = [u, x]

for z € g. Once a basis of g is chosen, ad : g — M, (k) where n = dim(g).

Definition 2.25. Let g be a finite dimensional k-Lie algebra. The derived algebras

g’ of g are defined recursively

0

=g g =[g9, ., ¢=]

¢, ¢'].
Then the decreasing sequence
g=¢'Dg'Dg’D--

is called the derived series of g. If g = 0 for some j, we say that g is solvable.

The maximal solvable ideal of g is called its radical.

Definition 2.26. Let g be a finite dimensional k-Lie algebra. The ideals g; of g

are defined recursively

go=9 m=Iga, - gn=I[8gal
Then the decreasing sequence
g=002001 0922 -

is called the lower central series of g. If g; = 0 for some j, we say that g is
nilpotent. The smallest j with g; = 0 is called the degree of nilpotency. The

mazimal nilpotent ideal of g s called its nilradical.
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Examples.

(1) Every nilpotent Lie algebra is solvable. The Lie algebra g consisting of ma-

trices of the form | , . . | is solvable, but not nilpotent if a; # 0 for

0 0 an
some k.

0 * *

(2) The Lie algebra g consisting of matrices of the form | is nilpotent.

*

0 0 0

Remark 2.4. If ® : g — b is a Lie algebra isomorphism of g onto the Lie
algebra b, then ® sends center to center, nilradical to nilradical, the derived series

to the derived series, etc.

2.3.1 Tangent Space of Matrix Groups as Lie Algebras

Definition 2.27. Let G be a subset of M, (k). A differentiable curve in G is a
function

7:(a,0) = G
for which the derivative '(t) exists for each t € (a,b). Here ~'(t) is defined as an

element of M, (k) by

provided this limit exists.

The usual product rule applies. Suppose «, 3 : (a,b) — M, (k) are differen-
tiable curves. Then

v:=af: (a,b) — M,(k)

is a differentiable curve, and

(1) = S (@8)1) = /(OB + oI D) (¢ € (a.b)).
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Similarly, if o : (a,b) — GL,(R) is a differentiable curve, then o' : (a,b) —

GL,(k) is differentiable and

d -1 _ -1 7 —1
Zo) =t (o) (tE (a,b)). (24)

Definition 2.28. Let G be a matrixz group. The tangent space to G at P € G is
TpG = {+'(0) € M,(k) : vis a differentiable curve in G with v(0) = P}.
Proposition 2.29. TpG is a real vector subspace of M, (k).

Proof. Suppose that «, 3 are differentiable curves in G for which «(0) = 5(0) = P.

Then by the product rule
v - dom(a) Ndom(B) — G;  ~(t) = a(t) P~ 3(t),
is also a differentiable curve, and
Y(t) =o' () PTIB(t) + a(t) PT B/ (t),

hence
7' (0) = &/ (0) P71 B(0) + a(0) P71 3'(0) = &/(0) + 3(0),

which shows that Tp is closed under addition.
Similarly, if » € R and « is a differentiable curve in G with «(0) = P, then
n(t) = a(rt) defines another such curve. Since 1'(0) = ra/(0), we see that TpG is

closed under real scalar multiplication. O

We will use the notation g = T7G for this real vector subspace of M, (k)

when P = I. g is called the Lie algebra of (G, due to the following theorem:

Theorem 2.30. Let G be a matriz group. Then g is an R-Lie subalgebra of M, (k).
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Proof. By Proposition 2.29, it suffices to show that for two differentiable curves «
and 3 in G which satisfy «(0) = 8(0) = I, we have [&/(0), 5'(0)] € g.

Consider the function
F :dom(a) x dom(B) — G; F(s,t) = a(s)B(t)a(s) "

This is clearly continuous and differentiable with respect to each of the variables
s,t. For each s € dom(«), the function F(s,-) : dom() — G is a differentiable

curve in G with F(s,0) = I, and

d / -1
P =a@F0als) ™,

so that
a(s)3'(0)a(s) ™" € g.
Since g is a linear subspace of M, (k), it is closed in M, (k), hence we also have

lim  (a(s)8(0)a(s) " — #(0)) €.

s—0 S

This limit exists, as by the product rule and (2.4)

iy (a(s) 0)afs)”* = 7(0) = o Oa(s)"|
= &/(0)5(0)a(0) — a(0)(0)a(0) e/ (O)a(0)
= &/(0)3(0) ~ #0)a/(0) = [(0). (0)]
which shows that [/(0), 3/(0)] € g. 0

Definition 2.31. Let G and H be matriz groups and ¢ : G — H be a continuous

map. Then ¢ is said to be a differentiable map if it satisfies:

(a) for every differentiable curve v : (a,b) — G, the curve p o~ : (a,b) — H is

differentiable
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(b) if two differentiable curves «, 3 : (a,b) — G satisfy

then

(poa)(0) = (poB)(0).

A continuous homomorphism of matrix groups that is also a differentiable

map is called a Lie homomorphism.

Theorem 2.32. Let ¢ : G — H be a matriz group homomorphism. Then ¢ is

differentiable, that is, is a Lie homomorphism.

Let ¢ : G — H be a matrix group homomorphism. If v : (a,b) — G is
a differentiable curve through the identity I of (G, then by Theorem 2.32, ¢ oy :

(a,b) — H 1is a differentiable curve through the identity of H. Define a map
dp g —b by

de(v/(0)) = (¢ 2 v)'(0):

Theorem 2.33. Let G and H be matriz groups and ¢ : G — H be a differentiable

homomorphism. Then the derivative dp : g — b§ is a Lie algebra homomorphism.

2.3.2 Exponentials and One-Parameter Subgroups

The matrix exponential of A € M,,(k) is defined by the matrix-valued series

which converges for all A € M, (k) € M,(k). The logarithm of A is defined by the

the matrix-valued series

log(4) =} Hznl (A— 1)

which converges for ||A —I|| < 1.
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Proposition 2.34. Let A, B € M, (k).

(a) The maps A — e? and A v+ log(A) are continuous.
(b) If A, B commute, then e/4TB) = eAePB.

(c) et € GL,(k) and ()™t = e=4.

(d) det e? = efm(4),

(e) If |[A —I|| <1, then €8 = A,

(f) If |[e® — I|| < 1, then loge® = B.

Definition 2.35. Let G be a matriz group. A one-parameter group in G is a

continuous function v : R — G which is differentiable and also satisfies

V(s +1) =v(s)v(?)
for all s,t € R.
Proposition 2.36. Let G be a matrix group with Lie algebra g. Then

(a) e* € G for all A € g.

(b) The exponential map exp : A +— et maps an open neighborhood of 0 in g

homeomorphically onto an open neighborhood of I in G.

Remark 2.5. Let A € M, (k) be such that !4 € G for all t € R. Then

7(t) = et is a one-parameter subgroup in G and A = +/(0) € g. In fact,

ietA_iii(tA)n_ ©© ii(tA)n_iLAn_Aii(tA)n_AetA
dt dt &= n! - “dtnl I ) L ) N '

n=0 n=1

Here we have used the fact that limits and derivatives can be taken entrywise.
Conversely, if A € g, then tA € g for all ¢t € R, and by Proposition 2.36, !4 € G

for all £ € R. We thus have a characterization of g:

g={AecM,(k) : e eG forall teR}.
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Remark 2.6. Let v : (a,b) — G be a differentiable curve in G through
the identity. Since 7 is continuous, then 7(a,b) is a connected set lying in the
connectedness component of the identity of G. Thus the Lie algebra g of G is
determined by the connectedness component of the identity of G.

As a consequence of Theorem 2.33, isomorphic matrix groups have isomor-

phic Lie algebra. For the converse one has:

Proposition 2.37. Let G and H be simply connected matrix groups with Lie
algebra g and by, respectively. Then G and H are isomorphic if and only if g and

b are isomorphic.

2.4 The Fourier Transform

Throughout, R™ will denote Euclidean space with elements written as col-
umn vectors. We usually use symbols Z, ¥, etc. to denote these column vectors.
R" will denote Euclidean space with elements written as row vectors, which we
denote by Greek symbols 7, & etc.

The inner product in a Hilbert space will be denoted by (-,-). In case of
Euclidean space if one of the vectors is written as row vector, we can also write
the inner product as, yZ. We will often deal with column vectors as arguments of
functions. In this case and whenever convenient we will write ¥ = (z1, x2, ..., T,,)
even though 7 is a column vector.

The idea of the Fourier transform on L? ([0, 1]) is simply a restatement of
the concept of Hilbert space basis. Since L? ([0, 1]") is naturally identified with
L*(I1"), where IT = {z € C : |z| = 1} denotes the complex unit circle, one may

work in the latter space as well.
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Theorem 2.38. The collection of functions {em(Z) = > ™Yo sn is an or-

thonormal basis of L*([0,1]™).

Proof. Orthogonality follows from the fact that fol e?™mtdt equals 1 if m = 0 and

equals 0 otherwise. Next, since ezep = e, the set of finite linear combinations

of the ez’s is an algebra. It clearly separates points on II"; also, ¢g = 1 and
€m = e_m. Since 11" is compact, the Stone-Weierstrass theorem implies that this
algebra is dense in C'(IT") in the uniform norm and hence in the L*(IT") norm. But

C(II") is itself dense in L?(IT"), hence this algebra is dense in L*(IT"). Tt follows

that {es hmezn is a Hilbert space basis of L*(I1"). O

If f e L*([0,1]"), we define its Fourier transform f, a function on Z", by

i) = (f,em) = f(@)e 2 dz (2.5)

[0,1]”

for m € Z", and we call the series

the Fourier series of f.

The term Fourier transform is also used to denote the map f — ]? Theorem
2.38 then implies that the Fourier transform maps L?([0,1]") onto [*(Z"), that
Hﬂ'g = ||f|l2 (Parseval’s identity) and that the Fourier series of f converges to f
in the L?([0, 1]™) norm.

The integral (2.7) makes sense if f is merely in L!([0,1]"), and as | f(i7)| <
| f]l1, the Fourier transform extends to a norm-decreasing map from L'([0, 1]") to
1>°(Z™).

The situation on R™ is more complicated. The formal analogue of Theorem

2.38 should be

~

f@ = | [y, where f(7) = [ f(Z)e >z
R» R™
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These relations turn out to be valid when suitably interpreted, but some care is
needed. In the first place, the integral defining f(i) is only assured to exist if
f € LY(R™). We therefore begin by defining the Fourier transform of f € L*(R")
by

~

FI@) =f@) = | f@e ™%t
Rn
for ¥ € Rn. (We use the notation F for the Fourier transform only where it is

needed for clarity. Also, the argument of ]? is usually written as a row vector.)

Clearly the operator F is linear and || f]|ss < ||f||1, and from the theorem below,
F: LNR™) — Co(R7).
We summarize the elementary properties of F in a theorem.

Theorem 2.39. Suppose f,g € L*(R").

(a) If T*f € L*R") for a multi-index || < k, then [ € C’k(]l/@) and 9°f =

—

(—2mix)ef.

(b) If f € CF¥(R™), 0°f € LY(R") for |a| < k, and 8°f € Co(R™) for |a] < k —1,
then (0 f)(7) = (2mi7)*f (7).

(c) (Riemann-Lebesque Lemma): fe C’o(]l/@).

Parts (a) and (b) of Theorem 2.39 point to a fundamental property of the
Fourier transform: Smoothness properties of f are reflected in the rate of decay of
fat infinity, and vice versa.

We are now ready to invert the Fourier transform. If f € L'(R"™), we define

the inverse Fourier transform by

~ ~

f(@) = f(=7) = @fﬁ)em%d’?
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for ¥ € R™. Note that J?need not be integrable in general, but if it is, then by the

next theorem we can reconstruct f from fby
1@ = (@ = [ T (2.
for a.e. ¥ € R™.

Theorem 2.40. (The Fourier Inversion Theorem) If f € L'(R") and fe Ll(ﬂ/@),

then f agrees almost everywhere with a continuous function fy, and (]?)V = (f)/\ =

fo-

Corollary 2.41. If f € L*(R") and ]?: 0, then f =0 a.e. That 1s, the Fourier

transform F is a one-to-one mapping.
The following is the analogue of theorem 2.38.

Theorem 2.42. (The Plancherel Theorem) If f € LY(R™) N L*(R"), then fe
LQ(@), 1f]l2 = | flly, and the restriction of F to L*(R™)N L*(R™) extends uniquely

to a unitary isomorphism of L*(R™) onto Lz(@), which we also denote by F.

Since F : L*(R") — LQ(H/@) is unitary, then its inverse certainly exists.
However, only when f € L'(R")NL2(R") can it be computed by formula (2.6). We
use the symbol f to denote the inverse Fourier transform of a function f € L? (]1/@)
as well.

Next we define three types of unitary operators on L*(R™). These operators
are fundamental in the wavelet transform, and will be used throughout. Given
h € GL,(R), ¢ € M,(R) with ¢ = ¢, and ¥ € R", the dilation operator Dy, the
translation operator T%, the modulation operator £z and the chirp operator N, are

defined by
(Daf)(@) = [ det h| 2 f(h™'), (T31)(@) = f(§— D),

(Bzf)(5) = ™5 f(5), (Nf)(§) = e f()
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for f € L*(R") and i € R". The corresponding dilation and modulation operators

on L2(f&71) are
(Drf)(7) = |det h['2f(Fh)  and  (Ezf)(7) = 7 f(7)

for f € L2(]1/%7‘) and 7 € ]1/@, respectively. These are easily seen to be unitary

operator on L?(R"). For example,

— —1 = 2 — — —
1Dufls= [ Jdecn | £ ag = [ 1@ g = 1113
R" R"
for all f € L*(R™), so that Dy, is an isometry. Here we have used the fact that

|detal | f(aZ)dZ = f(@)dz

Rn R"
for all @ € GL,(R) and f € L'(R"). In addition, DD} = Dy, for all h,k €
GL,(R). Using techniques from group representations (see Folland (1999), for
example), one shows that the mappings h — Dy, ¥ +— Tz, & — Ez and ¢ — N,
are strongly continuous homomorphisms of the respective groups into the group
of unitary operators on L*(R™) (respectively L%@) ), that is, they are group

representations.

Proposition 2.43. For h € GL,(R) and ¥ € R",
(a) FD, = Dy F
(b) FTx = E_+F.

Proof. For f € L'(R") N L?(R"),

(FDuf)() = / (Duf)(@e > dg = [ | det h|~2f(h™"g)e > TVdy
n Rn

= | |deth|'2f(§e *"7dg = |det h|'V*(F )(Th) = (DrF [)(7)

RTL
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and also

(Tff)(’tj)e%ﬁgdg:/ f(gj—f)emwdzj:/ F(§)e 2@+ g7

n

FTnm = |

n n

_ p2miTE 5 f@e TV dig = e 2T (FF)(7) = (E_sF£) (7).

The assertion follows from density of L'(R") N L*(R") in L*(R™) and continuity of

all operators involved. O

2.5 The Affine Group

As already shown in the section on group actions, the group D = GL,(R)

acts naturally on N = R" by matrix multiplication,
h- ¥ = ap(¥) = h

for h € GL,(R) and & € R"™. The corresponding semi-direct product is called the

n-dimensional affine group,
Aff,(R) := GL,(R) x R",

with the group law

for (h, ), (k, ) € Aff,(R).

Elements of Aff,,(R) are best represented in matrix form. It is easy to verify

h &
that (h, ) — is an isomorphism and homeomorphism of Aff,,(R) onto a
0 1

closed subgroup of GL,,11(R); one therefore often identifies Aff,,(R) with the group

considering these matrices,
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Now given Z € R", we have

or in short (h,Z) - 2 = hZ'+ . Recall that a map 2+ hZ + & is called an affine

map, therefore the name affine group. If (h, ), (k,¥) € Aff,(R), then

That is (h, ) - Z'is a (clearly continuous) action of Aff,(R) on R", called the affine
action.

Since the affine action involves dilations and translations of vectors, it in-
duces a representation 7 of Aff,(R) on H = L*(R"). In fact, given ¢ € L*(R")

and (h,¥) € Aff,,(R), we have

|det h|~Y24p((h, @)~ - 2) = |det h| 72 (A7, —h717) - 2)

(2.7)

Now for each (h,Z) € Aff,(R), 7(h,Z) defined by
™ (h, T ) = Tj‘Dh
is a unitary operator on L*(R"). Furthermore, 7 is a homomorphism as

(w((h, 2)(k, 5)¥)(2) = |det bk (0, 7) (k, )" - 2)
= [det A% [det k72 (((h5) 7! (h, ) 7) - 2)
= [det b ™2 |det k|2 (k. )7 (B 3) - 2)

= |det h| " (x(k, DY) ((h, )" - 2) = (n(h, B)(k, H)¥)(2).
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Since the mappings h — D), and ¥ — T% are strongly continuous maps into the set
of unitary operators on L*(R™), so is the composition 7 : (h,T) — TzDj. Hence
7 is a representation of Aff,(R) on L?*(R"). As shown in (2.7), given ¢ € L*(R")

and (h,Z) € Aff,,(R), then

(w(h, D)¥)(7) = (TeDtp)(7) = | det b~ /2(h~} (7 — 7))

for all ¥ € R™.

Recall that the Fourier transform F : L*(R") — L2(]1/%7l) is an isomorphism
of Hilbert spaces. Thus it induces a representation ¢ of Aff,(R) on the phase space
L*(R") defined by

d=FomoF L

Computing, we obtain by Proposition 2.43 for (h,7) € G,

6(h,Z) = Form(h,@)oF ' = FI:DyF ' = E_zFD,F

= F :D,FF'=FE_.D,

that is

-~

(6(h, D)0)(7) = | det h|"/2e=2"%4) (Fh)

for ¢ € L*(R") and 7 € R”.
We will also consider subgroups of Aff,(R) arising from subgroups of
GL,(R). Given a closed subgroup H of GL,(R), we consider the corresponding

subgroup G of Aff,(R),
G ={(h,7) € Atf,(R) : he H,Z € R"}.

We identify H with the subgroup {(h, %) € G : h € H,Z = 0} and refer to it as the

dilation subgroup of G, and R"™ with the subgroup {(h,Z) € G : h =e, ¥ € R"},
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and call it the translation subgroup of G. Thus G = H x R" is a closed subgroup

of Aff,(R). By (2.2),
\deth| [ flan(@)di = |deth| | fhe)di= | f(z)dz
Rn R’I’L Rn

for all f € C.(R"), it follows from (2.2) that

L _ du(h) dA(T)
dv(h,Z) = “deth]

(2.8)
is a left Haar measure for G, where p is a left Haar measure on H and A the
Lebesgue measure on R".

In addition, the restriction of the representation 7 of Aff,(R) to G is called

the affine representation of G, or the wavelet representation.

2.6 Frame Theory

Definition 2.44. A sequence {e; : j € J} in a Hilbert space H is called a frame

if there exist positive constants A, B > 0 such that for all f € H

ANFIP <D K f e < BIIP (2.9)

jeJd
The constants A, B are called frame bounds. If A= B, then {e; : j € J} is called
a tight frame. If A = B =1, then it is called a Parseval frame, as (2.9) reduces

to Parseval’s identity.

Thus a frame is a natural generalization of the concept of Hilbert space
basis. One now wants to reconstruct f from its frame coefficients (f,e;). Note
that the vectors e; need not be linearly independent. However, by (2.9) the set
{e; : j € J} is bounded.

Definition 2.45. For any subset {e; : j € J} C H, the coefficient operator or

analysis operator C' is given by

Cf=1{{fe) i€t}
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The synthesis operator or reconstruction operator D is defined for a finite sequence
¢ = (¢j)jes by
Dc = Z cje; € H,
j€J
and the frame operator S is defined by

Sf=> (f.e)e

jet
The following proposition guarantees that the operators D and S are well

defined for a sequence ¢ = (¢;);jes with infinitely many nonzero terms.
Proposition 2.46. Suppose that {e; : j € J} is a frame for H.

(a) C is a bounded operator from H into ¢*(J) of norm less than or equal to BY/?

with closed range.

(b) The operators C and D are adjoint to each other; that is, D = C*. Con-
sequently, D extends to a bounded linear operator from (*(J) into H and

satisfies | D|| < BY2.

¢) The frame operator S = C*C = DD* maps H onto H and is a positive
(c) I p p
invertible operator satisfying Al < S < Bly and B 11y < S7! < A7,

In particular, {e; : j € J} is a tight frame if and only if S = Aly.

(d) The optimal frame bounds are By = ||S| and Agp = ||S72| ™", where || - || is

the usual operator norm of S.

Proof. (a) The statement follows directly from the frame inequalities (2.9). (b)
Let ¢ = (¢;)jes be a finite sequence. Since C'is a bounded linear operator of norm

|C|| < B'?, then its adjoint C* is also linear and bounded, and for every finite

sequence {¢;}jes,

(Coe. ) =(c.Cf) = "c;{f.ej) = <chej,f> = (Dc, f) .
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It follows that C* is the extension of D to a bounded linear operator C* : ¢*(J) —
H with the same operator norm, ||D|| = ||C*|| = ||C||. Thus (b) follows. We now

formally write

Dc = Z cje;

jed
for ¢ € ¢%(J). (c) Obviously the frame operator can be expressed as S = C*C' =

DD* and consequently S is defined, self-adjoint and positive. Since
(S, ) =(CLCE) = ICFI* =Y _1{F.e) (2.10)

jed

the operator inequality Al < S < Bly is just (2.9) rewritten. S is invertible on
H because A > 0. Inequalities are preserved under multiplication with positive
commuting operator, therefore AS™! < §S™! < BS™! as desired. (d) follows
from the frame inequalities (2.9) and the fact that the operator norm of a positive
operator is determined by ||S|| = sup {(Sf, f) : ||f|| < 1}. The argument for A,

is similar. O

Statement (b) shows that > . ;c;e; and Y . ;(f, e;)e; are well defined for
an arbitrary /2-sequence by means of the adjoint operator, even though the frame
vectors e; are not orthogonal in general. Convergence of this series is to be under-

stood as follows.

Corollary 2.47. Let {e; : j € J} be a frame for H. If f =3, ;cje; for some
c € (%(J), then for every e > 0 there exists a finite subset Fy = Fy(e) C J such
that

Hf— chej <e€

jEF

for all finite subsets F' O Fy. We say that the series ZjeJ cjej converges uncondi-

tionally to f € 'H.



38

Proof. Choose Fy C J such that > .. lc;|” < &/B'Y?. Given a finite subset
F D Fyof J, let cp =c-1p € £2(J) be the finite sequence with terms cp; = ¢; if
j € Fandcp; =0if j ¢ F. Then ) . . cje; = Der and by Proposition 2.46 (b)
we obtain

=

jJEF

= ||De — Dexll = || D(c = cp)|| < B2 e — cr|l, <.

]

As another consequence of Proposition 2.46 we obtain a first reconstruction

formula for f from the frame coefficients (f, e;).

Corollary 2.48. If {e; : j € J} is a frame with frame bounds A, B > 0, then
{S~te; : j € J} is a frame with frame bounds B~', A~' > 0, called the dual frame.
FEvery f € H has non-orthogonal expansions
2 2 o Shke;
j€J
and

F=Y (fe;) S

jeJ

where both sums converge unconditionally in H.

Proof. First observe that by (2.10),
SIS e =D S e[ = (ST ST ) = (ST )
jeJ jeJ
Therefore Proposition 2.46 (c¢) implies that
BAIP < (ST f) = D KE 5 e < AT £
jeJ
which shows that the collection {S~'e; : j € J} is a frame with frame bounds B!

and A1,
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Using the factorizations I; = S~1S = SS~!, we obtain the series expansions
F=S8SSTH =) (S feiyes=> (f,57"e;)e;
jed jed

and

F=S5TSF =) (fie))S e
Jj€J

Because both {(f,e;)},.; and {(/, Silej)}jej are in (%(.J), both of the above series

converge unconditionally by Corollary 2.47. O]

The above corollary shows that f can be reconstructed from its sequence
of frame coefficients by means of the dual frame. In some particular cases, recon-

struction is easier:
Proposition 2.49.

(a) If {e; : j € J} is a Parseval frame of H, then

f:Z<f>€j>€j-
jeJ

(b) If {e; : j € J} is a Parseval frame of H and if ||e;|| = 1 for all j € J, then

{e;} is an orthonormal basis.

Proof. (a) Since A = B =1, then S = Iy. (b) By (2.9) we have

L= llewll” =D Kem e =1+ Kem, e,

jeJ j#£Em

and consequently (e, e;) = 0; . O

2.7 The Wigner Distribution

In time-frequency analysis, one studies a function and its Fourier transform
simultaneously, as one wishes to understand its behavior with respect to time and

frequency. The Wigner distribution was introduced for this purpose.
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Definition 2.50. The Wigner distribution Wy of a function f € L*(R™) is defined

on R?™ to be

Wi (&, 0) = / f (j‘+ %) f (:E— %)e—%w@dg

By polarizing this quadratic expression, one obtains the cross-Wigner distribution

of two functions f,g € L*(R"):

W) = [ 1 (f+ g)g (f— g)wdy

Proposition 2.51. For f,g € L*(R") the cross-Wigner distribution has the fol-

lowing properties.

(a) Wy4 is uniformly continuous on R*", and

Wrollse < 2" 11l N9l -

(b) Wyy =Wy, In particular, Wy is real-valued.
(c¢) For u,v,1,d € R, we have

WTﬁEﬁfvTi'EDg (j’i U_j)

— (@) @) 2mE (1-0) o ~2imd- @Dy U+ 777 L, n+d .
’ 2 2
In particular, Wy is covariant, that is Wr, g, ;(%, W) = Ty, Wy(Z, 10).
(d) W ;(T,10) = Wy o(—0, 7).
(e) Moyal’s formula: For f, f' g,q € L*(R"),

<Wf797Wf'79'>L2(R2”) = (£, f){9.9).

() If f,g € S(R™), then Wy, € S(R*). Here the Schwartz class is

S(R") = {f € C®(R") : ||fll () < 00, YN €NU{0}, a € A}
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where
[l ey = sup 1+ 1Z])Y [(D*f) ()]

and A\ is the set of multi-indices.

One can reconstruct the modulus of f and of its Fourier transform from the
Wigner distribution:
Proposition 2.52. If f, f € L'(R") N L2(R"), then
[ W@ = f@F. | W@ =@
In particular,

[ [ wigwazas =512
n Rn

2.8 The Symplectic Group

Throughout this section we shall be working with 2n x 2n matrices, which

we shall generally denote by capital calligraphic letters, and write in block form as
A= ,

where a, b, ¢ and d are n X n matrices.

2.8.1 Symplectic Linear Algebra

Recall that in Euclidean space, there is a natural symmetric, nondegenerate
bilinear form: the usual inner product. The orthogonal group O(n) is the group

of all matrices leaving this inner product invariant,

(aZ, ay) = (¥, Y)

for a € O(n) and #,y € R™.



42

In symplectic linear algebra, one starts with a skew-symmetric bilinear form,
the matrices leaving this form invariant are called symplectic matrices. We begin

with the matrix

which defines a skew-symmetric bilinear form, called the symplectic form, on R?"
by
7,9 = 2" Ty
for ¥, € R*". We observe that J* = -7 = J L.
The symplectic group Sp(n,R) is the group of all 2n x 2n invertible matrices

which, as operators on R?", preserve the symplectic form:
Sp(n,R) = {A € GL,,(R) : [AT, AY) = [Z,§] V& §ecR*”"}.

The following characterizes symplectic matrices:

a b
Proposition 2.53. For A = € GLy,(R), the following are equivalent:
c d
(a) A € Sp(n,R).
(b) AATA=T.
d*  =b*
(c) At =JAT =
- a*

(d) A* € Sp(n,R).
(e) a*c = c*a, b*d = d*b, and a*d — ¢*b = I,.
(f) ab* = ba*, cd* = dc*, and ad* — bc* = I,,.

Proof. We have

[AZ, Af] = (AD)" T (A)) = 77 A" T Ay
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for all Z, 57 € R?", so (a) and (b) are equivalent. (b) and (c) are clearly equivalent.
Taking the inverse transpose of (b) we get A 'JA*1 = 7, and replacing A by
A~1 we see that (b) is equivalent to (d). (e) is merely (b) written out in block

form, and (f) is (b) written out in block form with A replaced by A*. O

Proposition 2.54. The subsets

I, a _ I, O
N = a=a"p, N = a=a"p,
0 I, a I,
a O
L= ta € GL,(R)
0 a* !

of GLan(R) are subgroups of Sp(n,R). Moreover,

_ a b
NLN = € Sp(n,R) : deta #0
c d

Proof. The verification of the first assertion is straightforward, and therefore omit-

ted. If
I, 0 Y I f
€ N, €L, eEN
g I, nenl 0 I,
then
I, 0| ]e o I, f ¢ ef
g I, 0 et 0 I, ge gef +e 1
) a b
so if € Sp(n,R) and deta # 0, we take ¢ = a, f = a~'b, and g = ca™?,
c d

and must verify that
f=r, g=yg. d=gef+e " =cab+a"
But this follows easily from Proposition 2.53 (e,f). O

Proposition 2.55. Sp(n,R) is connected and generated by LUN U{J} and also

by LUNU{T}.
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2.8.2 The Metaplectic Representation
Next we introduce the Heisenberg group, defined by
H" = {(7,2) : U= (Z,§) e R, z € R}
with group operation

(@, 2) (7, 2) = (T+ 7,2+ 2 — =[5,7)). (2.11)

DO | —

Topologically H" is thus identified with R?"*!. It is often convenient to represent

H" as a matrix group. In fact, one easily checks that the map

1 gt z+39'7
(@, 7,2) eH"— | § I, 7 € GLpi2(R)
0 0 1

is an isomorphism of topological groups, thus the Heisenberg group H" is isomor-

phic to the closed subgroup of GL, {5(R) of the form

1 4% 2
H, = 0 I, #| T, 9eR",zeR,,
0 0 1

called the polarized Heisenberg group. One quickly verifies that
p(g’ Z) — p(f, 177 Z) — e2i7rz€i7r<f,17>Tng

defines a representation of H" on L?*(R"), called the Schridinger representation.
One can compose this representation with dilations by a scalar A\, to obtain a

representation p, defined by
oA(Z, Y, 2) = p(AT, ¥, Az).

Observe that the center of H" is Z = {(6, 2):z € R} and p(0, z) = e*™1d for any

z e R.
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In representation theory, one wants to decompose representations into sums
or direct integrals of basic building blocks, the irreducible representations. Repre-
sentations of the Heisenberg group are well understood, and show the importance

of the Schrodinger representation:

Theorem 2.56. (Stone-von Neumann) Let w be a unitary representation of H"
on a Hilbert space H, such that 7(0,0,2) = e*™*I;, for some X\ € R\{0}. Then
H = ?HQ where the Hy'’s are mutually orthogonal w-invariant subspaces of 'H,
and wl,, is unitarily equivalent to px. In particular, if m is irreducible then  is

equivalent to py.

By definition of the group operation in the Heisenberg group, the symplectic
group acts naturally on H™: each A € Sp(n,R), defines a continuous automorphism

T4 of H" by Tu(5, 2) — (AT, 2). Tn fact
T4 (@, 2)(T, ) = T (m Tt 2 — % 7, 17]) 3 <A(17+ 7).z o — % 7, @*])
_ <A17+ AT 2 4+ — % A7, Am) — (AT, 2) (AT, )
T (5,2) Ta (7, 7)

Composition of the Schrodinger representation with this automorphism defines a

new irreducible representation p4 of H" on L*(R"),
p.A<ll77 Z) = p(A177 Z) ((177 Z) S Hn) :

Observe that p4(0,z) = p(0,2) = *™Id for any z € R. Since p4 and p are
irreducible unitary representation of H™ on L?(R"™) which coincide on its center
Z, by Theorem 2.56, p4 and p must be equivalent. That is, there exists a (not

necessarily unique) unitary operator p(A) on L*(R") such that

p(AT, 2) = pa(¥,2) = u(A)p(T, 2)p(A) (2.12)



46
for all (¥, z) € H". For A, B € Sp(n,R), one obtains

N(AB)p(ﬁv Z>N<AB)_1 - PAB(Ua Z) - p(.ABU, Z) = ,OA<BT7, Z)
= p(A)p(BY, 2)u(A) " = u(A)ps (¥, 2)p(A)

= u(A)p(B)p(7, 2)u(B) (A

for all (¥, z) € H". Since p is irreducible and all operators are unitary, by Theorem
2.13, we obtain pu(AB) = Au(A)u(B) for some complex scalar [A\| = 1. One can
show that by proper choice of p, A € {£1}, so that pu(AB) = u(A)u(B). Because
of the factor 1, p is not a proper representation. However, for the subgroups we
are interested in, it will turn out to be a proper representation. g is called the
metaplectic representation of Sp(n,R).

By Proposition 2.55, Sp(n, R) is generated by matrices of three types. Ap-
plying Theorem 2.13, we can give an explicit formula of u(.A) for each type of

generator, up to the phase factor A\. For f € L*(R"), we have:

a

0
(i) given A = , where a € GL,,(R), we obtain

(W(A)p(Z, 7, 2)u(A) 1) (8) = (p(A(Z, ), 2)f) (5) = (plad,a* 1, 2) f) (5)
= linzgin(aFa” ') (TozEar-15£)(5)
_ (i gin(a 2inle-a2a” ) (5 _ o)
_ e2i7rz€i71'(:?:',37} €2i7r<a71§'75c',37)f(a<a71§_ f))
_ e ot of M2 T TED (D, f) (a1 — )
= 2™ ™0 |det o] 712 (EgDa1f)(a™'5 — )
= 2™ @) | et a|_1/2 (T:EgDo-1 f)(a™'5)
= e2i7rz€i7r(:i’,g‘> (DanEnga—lf)(g)

= (Dup(Z, Y, 2)Do-1 f)(5)
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for all (#,¥, z) € H". By Theorem 2.13, it follows that

u(A) = AD, (2.13)
for some A € C, |\ = 1.
I, 0O
(ii) Given A = , where ¢ € M,,(R) with ¢ = ¢*, we obtain
c I,

(1(A)p(Z, g, 2)u(A) T f) (5) = (p(AZ,9), 2)f) (8) = p(&, cT + 7§, 2) f(3)
_ €2i7rzei7r(a?,cf+ﬂ') (TEch—i-g’f) (5*)

—

_ p2imz ez‘n@,ca‘:’m’) 62z‘7r(§—a?,cx+g}} f( 3— )
_ €2i7rz€i7r<f,ﬂ> €i7r<c§',§'}62i7r<§—£7g’) (ch) (5’_ f)
_ €2i7rzei7r(f,gj> ei7r<c§’,§> (Echf)(g' _ :Z.’)
_ €2iwz6iﬂ(f,ﬂ> eiw(c?,s?’) (Tngch) (5‘)
— €2i7rzei7r(f,g’> (N_chEchf) (g")
- (Nfcp(:a 177 Z>ch)(§)
for all (Z,7,z) € H". By Theorem 2.13, it follows that
1(A) = AN_, (2.14)

for some A € C, |A\| = 1.

—

(iil) Since TyE_z = e 2= [Ty for all 7,5 € R", then we obtain
wDp(E, 7, 2)mT) " = p(T(Z,7), 2) = p(§, =T, 2) = ™™ P OTGE 5

— eQiﬂzeiﬂ(g',—f)e—27j7r<37,—5:’> E_ng' _ 62iwzeiw<§,f>f'T£ng'—l _ f’p(f’ ?j, Z)f_l
for all (#,¥, z) € H". By Theorem 2.13, it follows that

w(T) = AF (2.15)

for some A € C,|A| = 1. One can show that A can be chosen to be £1.



48

2.8.3 The Extended Metaplectic Representation

Since Sp(n,R) acts on H" by automorphisms, one can form the semi-direct

product of these two groups, Sp(n,R) x H" with the group law
(A, (¥, 2)) (A, (7, 2")) = (AA', (¥, 2)Ta(V, 2'))

The Schrodinger representation p of H® and the metaplectic representation p of
Sp(n,R) fit together to form a (double-valued since p is) unitary representation of
Sp(n,R) x H" which is denoted by p. and called the eztended metaplectic repre-

sentation:

Let us check that this really is a homomorphism (up to phase factor A € C, || = 1):
pe (A, (0, 2))pte (A, (7, 2")) = p(0, 2)u(A)p(¥, 2') (1(A) " 1u(A)) p(A)
— p(, 2)pall, (AL = p(5, 2)p( AT, 2 )u( AA)
= p(U,2)p(Ta(0", 2))u(AA") = p((V, 2)Tu(7", 2') ) u(AA)

= He (AA,a (Ua Z)TA(E)/7 Z,)) = He (-A’ ((177 Z)) (Ala (77,7 Z,))) :

e is irreducible since p is.



CHAPTER III

SUMS OF WAVELET REPRESENTATIONS

The important concept in the voice transform is admissibility: under what
condition can a vector be reconstructed from its voice transform. Admissibility
for the voice transform associated with the wavelet representation are now well
understood from the paper of Laugesen et al. (2002) and the monograph by
Fithr (2005). Since we will need to work with transforms associated with sums
of modulated wavelet representations, this chapter introduces such representation,
discusses admissibility and presents methods for constructing admissible vectors

as well as frames.

3.1 The Continuous Wavelet Transform

We begin by reviewing the usual continuous wavelet transform from the
group theoretic point of view. Details of this part can be found in the monograph

by Fiihr (2005).

3.1.1 The Voice Transform

Let (2, M,v) be a measure space, H a Hilbert space and ¢ : Q@ — H a

weakly measurable map. By this we mean that

w € Q= (f,p(w))y

is measurable for all f € H. Define the voice transform of f € H by

(Vo) (w) = {f, o(w))y,
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for w € Q2. Thus V, is a measurable function on Q. If the map Vg : f — V,f is a
multiple of a partial isometry of H into L*(Q2), that is, if there exists ¢s > 0 such

that
Vs fllz2@) = veoll fll (3.1)

for all f € H, then by the polarization identity

Vo, Vog) 120) = o (f> 9)n

for all f,g € H. It follows that

(f. gy, = <V¢f Vad) oy = — / (Vo) () (Vo) @) ()

1 [ War@)lad@hivo) = — [ (Vin(e) (60). 0 dn(o)

Cp

-/ < 0wl >,g>Hdv<w>

for all f,g € H and one obtains the Calderdn reproducing formula

2/ /3 / (Vo ) ()} dv(w) (3.2)

Co
as a weak integral in H. The mapping ¢ is called a resolution of the identity if
(3.2) holds.
Resolutions of the identity arise naturally from group representations. Let
G be a locally compact group with Haar measure v, for example a matrix group,
and 7 a representation of GG on a Hilbert space H. Fix ¢ € H and consider the
continuous map

¢: g m(g)

of GG into H. The voice transform associated with this representation is

(Vuf)(g) = (f,m(g))y

for f € H and condition (3.1) becomes

Ve Fllzz) = v/esll flin
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for all f € H, i.e.,
/G (g0l di) = e 111

for all f € H. If this identity holds, then v is called an admissible vector. The

group G is called admissible, if at least one admissible vector exists.

3.1.2 The Classical Wavelet Transform

The wavelet transform is an example of this voice transform associated
with a group representation. Here G = H x R™ is a subgroup of the affine group
Aff, (R) with H a closed subgroup of GL,,(R), and 7 the affine representation of

G on L*(R").

Definition 3.1. Given ¢ € L*(R™), the continuous wavelet transform Wy, induced

by ¥ and the group H is defined by

Wy f(h, ) = (f, m(h, Z)i)) 2gn) = | det h| /2 . F@(h=H(y — T))dy
for f € L*R"™) and (h,7) € G.

The adjective continuous refers to the continuity of the translation group,
consisting of all ¥ € R". The dilation group H, in contrast, is permitted to carry
the discrete topology.

Thus G is admissible if and only if there exist a function ¢ € L?*(R")

(admissible vector) and ¢, > 0 such that

Wy flle2e) = Vel fllL2@mm (3.3)

for all f € L*(R™), or equivalently

/ [ (B )0 oy (2B, ) = / (W), )Pl (h, &) = e [ 1£(5)Pd
G G Rn
(3.4)
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for all f € L?*(R™). The Calderén reproducing formula is thus by (2.8),

f=X / (W ) (h, @) (b, £ di(h, )

C¢ G
1 _, o 1 o
= [ [ Wen . ez et dp(ayas (3.5)

as a weak integral in L*(R"). Because G = H x R", we also call the group H
admissible if G is.

The following two theorems are by now well known. They characterize
admissible functions and give criteria for an affine group G = H x R" to be

admissible.

Theorem 3.2. (Laugesen et al., 2002) ¢» € L*(R") is admissible if and only if

there is ¢y, > 0 such that
[ 180 Pt = e, 3.6)
H

for a.e. 7 € R,

The fundamental result on admissibility of a group given by Laugesen et al.

(2002) involves the notation of the e-stabilizer. Given 7 € R and € > 0, the set
He={he H:|5h -] <&}

is called the e-stabilizer of 4. Thus, the set Hy = Hg ={h € H :9h =7} is
the stabilizer of 7. It is clear that H is a closed subset of H, that H, is a closed

subgroup of H, that Hy = N HZ, and that HS' C HS* when ¢; < es.
e>0 7 Y 2
Theorem 3.3. (Laugesen et al., 2002)
(a) If H is admissible, then A # | det| and the stabilizer of 7 is compact for a.e.
5 € Rn,

(b) If A # |det| and for a.e. 7 € R" there exists an & > 0 such that the

e-stabilizer of 7 is compact, then H is admissible.
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This theorem is quite useful for determining the admissibility of particular
groups H. For example it is clear that no compact group H can be admissible

since in this case A = |det | = 1.

3.2 Sums of Wavelet Representations

3.2.1 The Modulated Wavelet Transform

For the purpose of this thesis, we need to generalize the definition of wavelet
transform to include modulations. Fix a Borel function y : H — II, where II =
{z € C : |z| = 1} denotes the complex unit circle. Given h € GL,(R), we define
a modulated dilation DY by

Dy = x(h)Dy.
Since |x(h)| =1, then DY is still a unitary operator on L?(R"); in fact
D5 f 2y = IX(P)Dufll 2@y = XA Dwf (| p2ny = [1f 1| 22

for all f € L*(R™) and h € H.

We define the modulated wavelet representation of G on L*(R") by
mX(h, %) = TzD}
for (h,Z) € G. Clearly, 7X(h, ¥) is a unitary operator, and
7X(h, Z) = TeD} = x(h)TzDy, = x(h)7(h, Z)

for (h,Z) € G. Observe that 7X is not a representation in the proper sense: it need
neither be continuous, nor a homomorphism. However, if x is a character of H,

then X will be a representation also.
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The Fourier transform again induces a modulated wavelet representation 6%
of G on L2(R") by
§X(h,T) = FonX(h,&) o F ' = Fox(h)w(h,¥) o F*
=x(h)Fom(h,@) o F = x(h)§(h,T)
for all (h,7) € G.

Given ¢ € L*(R"), the modulated wavelet transform induced by 1 and the

group H is defined just as the usual wavelet transform by

Wi (h, &) = (f, 7 (hy E)0) 1 g

for f € L*(R") and (h,7) € G. That is

ng(hv f) = X(h) < 77T(h7f)¢>L2(R") = X( )Wwf(haf>

and hence
2 T . — INL -
W32y = [ W) dvthid) = [ [EWor )] v
- / W () du(h, 7) = [Wef 2ae

for all f € L*(R") and (h,7) € G. This shows that 1 is admissible for the
modulated wavelet transform if and only if it is admissible for the classical wavelet
transform; hence Theorem 3.2 and Theorem 3.3 still apply.

Remark 3.1. The dilation group H need not be a subgroup of GL, (k). It
suffices that H be a locally compact group, with a continuous homomorphism ¢ :
H — Hj onto a matrix subgroup of GL, (k). Naturally, the wavelet representation

is of the form
T(p(h), 7)

and the wavelet transform

(Wof)(h, %) = (f, w(p(h), £)¢).
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for all f € L*(R") and h € H. Because stabilizers are required to be compact for
admissibility, ker(p) must be a compact subgroup of H. That is, H is a compact
extension of a matrix group.

All the results in this chapter remain valid in this generalized setting, and

we will make use of it in the third example of chapter I'V.

3.2.2 Sums of Modulated Wavelet Representations

Consider as usual an affine group G = H x R"™ with wavelet representation

mo of G on L*(R"). Let J be a finite or countably infinite index set, {H;},., a

family of mo-invariant closed subspaces of L*(R"), 7; the restrictions of my to H;

and x; : H — II Borel functions. For each j € J, consider the modulated wavelet

representation of G on H;;,
7 (, &) = x; (W) (h, 3)

for (h,Z) € G. As shown in the previous section, 7T;<j (h,Z) is a unitary operator

on L*(R") for all (h,Z) € G, and as x;(h) is scalar, then each space H; is also

ﬂ;(j -invariant.

Now set H = @ H;, and let

jed

™=’ (3.7)

jes !
denote the corresponding sum of modulated wavelet representation. For f € H,
let us denote by f; the component of f in H;, that is f; = P;f where P; is the

orthogonal projection of H onto H;; thus f = ) f; with the norm
jed

2 2
15 = D 11l -
JjeJ

By (3.7), we have

X (h, )y =Y w7 (h, By

jeJ
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for v € H and (h,Z) € G. The voice transform of G determined by 7 and ¢ € ‘H
is given by
W&;(f(ha f) = <f7 ﬂ-x(h7 f)¢>?—[ = <Z fia Z W;(j (hv j")w]>
ie]  jeJ ® H

. J
jeJ

=Y (fm (D)), =D W fi(h,T) (3.8)

jeJ j€J
for f € H and (h, %) € G, which, is a sum of modulated wavelet transforms: each
qufj is the modulated wavelet transform of G on H; determined by ;. We note
that at most countably many terms in the series (3.8) are nonzero, and that after

ordering the nonzero terms, the series converges pointwise.

3.2.3 Admissibility Conditions

Theorem 3.2 characterizes all admissible functions for the wavelet represen-
tation. In this section, we will extend this theorem to characterize all admissible
vectors ¢ for the sum of modulated wavelet representations. Suppose for the mo-
ment that ¢; € H; and ¢; € H; are admissible. That is W f;, Wifj f; € L*(G) for

all fi € H;, f; € H;. One easily verifies that

J

b= (WEBWEEY,, o = [ W0 W (b B,

defines a continuous sesquilinear form H; x H; — C, by linearity of the modulated

wavelet transform.

Lemma 3.4. Suppose, ; € H; and ¢; € H; are admissible. Then Re (f;, f;), =0

for all fi € H;, f; € H; if and only if (f;, f;), =0 for all f; € H;, f; € H,;.

Proof. Since —if; € H; for all f; € H; and (-, -), is sesquilinear, then

Re(—ifi, f;), = Re (= (ifi, f;),) = Im (ifi, f;),
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We thus obtain

(fis fi) = Re (fi, f5), +iIm (fi, f3), = Re (fi, f5), + iRe (=ifi, fj),
for all f; € H;, f; € H;, from which the assertion follows easily. m

The next proposition was proved in Fithr (2005) for voice transform asso-
ciated with general sums of representations. We present its proof for the sake of

completeness.
Proposition 3.5. Let ¢ € H. Then v is admissible for w* if and only if

(a) each v; is admissible for 7T;<j with common constant cy, = cy,

(b) (fis f5), =0 for all f; € H;, f; € H; and i # j.

Proof. Recall that v is admissible for the sum of representations 7X if and only if
there exists a constant ¢, > 0 such that
Wy = o I = e D0 15511,
jed
for all f € H.
Now suppose, 9 is admissible. Choose any j. Each f € H; is also an

element of H and W f = Wf;j f by (3.8). Then (a) gives

o 112y = o 17 = W aiey = W3 7]

2
L(@)

which shows that 1; is admissible for H; with constant c¢,. In particular, W;(j fi €

L*(G) for all f; € H;, j € J. Now for any f; € H; and f; € H; with ¢ # j, we
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have by (3.8),

W2+ 1)y = W5+ W25

. N 2 R
_ /G ‘Wj;f,;(h,f)Jer; (0, @) dv(h, @)

= [ s and + [ s sno|

—{—/G2Re (Wgﬁ(h@W) dv(h, )

dv(h, T)

Wy + W5

—|— 2Re(fi, fi),

=Gy | fi

2 Fesllfilly, +2Re (fis i),

while also by admissibility,

Wi+ I niy = collhiot S5l = e [

2 2
2 A,

which implies that Re (f;, f;), =
Conversely, suppose that (a) and (b) hold. Since f;, f; were arbitrary by

the Lemma 3.4, (f;, f;). = 0 for all f; € H,, f; € H;. That is, {Wg;fj} is a

jeJ

collection of orthogonal vectors in L?(G) for each f € H, and also

2
> ;Hw => el
@ JjeJ

2
H;, — Gy ||f||H < 0.
It follows that Y- W’ 7 f; converges in L*(G). By (3.8) this series converges point-
jeJ

wise to W;( f, so by uniqueness of limits, its L?(G)-limit is Wy f as well. Then,

HWd)ffH;(@ = Z le)p(jfj 20 ZC¢ I1£5 17
JjeJ jeJ

H; — Cv If ||31
which shows that ¢ is admissible. O

This admissibility condition can be made more explicit by considering the
action of G on the dual orbit space, as in Theorem 3.2. By the support of a Borel

of a Borel function f we mean any Borel set E such that {Z € R" : f(Z) # 0}
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differs from E by a null set. Since each H; is a 7T;<j -invariant subspace of L?(R"),
it is in particular invariant under translations. Since the Fourier transform takes
translation to modulation, we now assume that each H; is of the form H; =
{f e L*(R") : supp(]?) C Oj} >~ [*(0;), for H-invariant Borel subsets O; of R,

In fact, if f € 'H;, we have

(&) f = (F 069 (h,&) o F) f = F! (Xj(h)E,thf) eH

J

as th € L*(0;) by H-invariance, so that H,; is WX’ -invariant. Then the sum of
modulated wavelet transforms (3.8) becomes

Wf;f(h, ) Z<f17 (h r % Z<‘7:fj7fﬂ-xj A>F_1F¢j>L2(@j)

jedJ jeJ

_Z<f],5"3 7) > 1 (3.9)

jeJ

where 637 = F o’ o F~'. Thus, if we set H = jGEBJL2(Oj) L f= Z}fj € H and
je
X =@ 6;‘3, then
jeJ
WF(h @) = (F.6¥(h )0 .
We also let O = (J O;.
J€J
The next theorem generalizes Theorem 3.2 to sums of wavelet transforms.

Throughout, we may consider a function f € L*(0;) as a function defined on f&;,

by setting it to zero outside of O;.

Theorem 3.6. A vector v € H is admissible if and only if there is a constant

cy > 0 such that
[ TG () duh) = 6 (3.10
H
for a.e. Y€ O;N0O;, foralli,jeJ.

Proof. Applying Proposition 3.5 and Theorem 3.2, we obtain that v is admissible

if and only if
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a) [y |0 (Fh)|2dp(h) = ¢y, for ae. 7€ O; and all j € J
(b) (fi, f;). =0 for all f; € H,, f; € H; and i # j.

Since (a) is (3.10) with i = j one only needs to verify that (b) is equivalent to
(3.10) for @ # j provided that (a) holds.

Assume that (a) holds, that is Wf;j f; € L*(G) for all f; € H;. Then (f;, f;)«
exists and is continuous. By continuity, it suffices to show that (b) is equivalent
0 (3.10) on the dense subspaces K; = {fj €H,; : ]?] is bounded} of H;. For all

fi € ]CZ', fj € ]Cj, we obtain

b = (WEEWEE) = [ Wk 000V £ Dav(h. )
-/ <ﬁ,5;<i<h,f>wi><fj,5;‘j<h,f>¢j>dv<h,f>

- [ Femaace) | [ mmoamme] v
AR H/ 5 T%()dvldu(h 7)

shift ¥ to Yh

ot = [ | [ Bl e G|

| [ Bmlaeenl e (s Ggas | av(n

- [ | [ 2emmem e
G R™

~~

=64,

x| [ H@)x(h);(Fh)ew7d5 | |det ] dv (h, ).
Rn

-~

=07, (7)
Since f;, f; € L*(R™) N L®(R"), then ¢}, ) € LY(R") N L*(R") and each of the

inner integrals is an inverse Fourier transform, hence by Plancherel’s theorem and
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Fubini’s theorem, we obtain

(fis f). / ¢t (Z) ¢ (Z) |det h| dv(h / 5 ¢h f)dxdu(h)
- /H (4 00 2y () / (63 81 o)
- [ | a@eiGasinn)
-/ /@ N B u(Th) F5 (7)xs ()0 (Fh) a5 dp(h)

- [ @i /H BT (W)
Thus

(fi, f;), =0 VfieKfek;

s Fe5H /H ()BT (BT, (Th)du(h)dT = 0 Vi, € L2(0,n 0).

Oiﬁ(’)j

By choosing ﬁ and jA} characteristic functions of measurable sets, we obtain
(fi [i), =0 Vfie Ki, fj € K;
& / / Xi(h)z/ﬁ\iWh)xj(h)@/bz(?h)d,u(h)di =0 VA C O;N0; measurable
AJH

& [ OB EA0) =0 ae. 70,00,
H
which proves the theorem. O

The above Theorem yields the following well-known fact. Suppose, we are
given a finite or countable partition {O; }j ¢y of Rn consisting of H-invariant mea-
surable sets. Let H; = F~'(L*(O;)) be the corresponding 7-invariant subspaces

of L*(R™). For each j € J, let 1); € H; be admissible for H, that is

5u(7m)| du(h) = o,

H

for a.e. 7 € O;. Then ¢ := Y ¢; is admissible for L?(R™).

jeJ
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3.2.4 Construction of Admissible Vectors

We now generalize Theorem 3.3 to sums of modulated wavelet represen-
tations. It will turn out that the conditions of Theorem 3.3 remain valid. By
Proposition 3.5, any H which is admissible for such a sum of modulated wavelet
representations must satisfy (a) of Theorem 3.3 (Theorem 3.3 is formulated for
L*(R™), but remains valid for spaces F~! (L?*(0)) where O is H-invariant). We
thus need only generalize part (b) of that Theorem. In addition, we provide a
construction of admissible vectors whose projection onto each component space
H; is bandlimited, under mild assumptions on the dilation group H.

The following proofs are formulated for a countably infinite set J, but are

also valid for finite J. When convenient, we will identify J with N.

Definition 3.7. A Borel subset S Of@ is called a transversal for the action of H
on Rn if
(a) SH is co-null in Rr,

(b) ¥h =7 for4,74" € S and h € H implies that ¥ = 7.
The first property says that almost every orbit intersects the set S, while

the second property states that an orbit intersects the set S at most once. Such

transversals usually exists:

Proposition 3.8. (Fithr 2005 and Romero 2006) Let H be a closed subgroup of
GL,(R) with the property that almost all 5 € Rn possess compact e-stabilizers.
Then there exists a transversal S. Furthermore, the map S x H — Rn maps Borel

set to Borel set, and \(SN) =0 for all null sets N in H.

Remark 3.2. The construction in the proof of Romero (2006) gives a
transversal all of whose points have compact e-stabilizers; hence all ¥ € SH have

compact e-stabilizers.
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Theorem 3.9. Let H be a closed subgroup of GL,(R), and suppose
(a) A # |det],
(b) e-stabilizers are compact for a.e. 7 € O.

Then H is admissible for the sum of modulated wavelet representations.

Proof. We proceed by constructing an admissible vector v € H. The idea is to
construct a family of functions {@}je s of disjoint supports. This will ensure that
(3.10) holds for i # j.

Since e-stabilizers are compact for a.e. 7 € ]I/@, then by Proposition 3.8
there exists a transversal S for the action of H on R" all of whose points have
compact e-stabilizers. Then SN O is a transversal for the action of H on O, hence
we replace S by SN O. Pick a compact neighborhood V' of the identity e in H and
set T'= SV. Then T is a Borel subset of O by Proposition 3.8, and T has positive
measure, as H is 2"-countable.

Define a Borel function

o(7) = /H Lr(7h)dp(h)

for ¥ € O. Loosely speaking, this function measures how much of an orbit passes
through T', the measure being the Haar measure from H. We need to show that
this function is finite valued and has a positive lower bound.

Let ¥ € SH be arbitrary. Since S is a transversal, 7 lies in the orbit
of a unique 9, € S. That is, there exists h € H such that ¥ = ph and also

TNOk(F) =4V. Thus,

o(7) = /H Loy (Fh)du(h) = /H Loy (Gohh)dpu() = /H Lo (Goh)dpa(h).
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Note that by left-invariance of the Haar measure, o(Yh) = o(7) for all h € H, and

also

Yoh € YV < Yoh = v for some v € V
& FJohv™' =74, for some v € V
& hv ! € Hy, for some v €V

& h e Hy V. (3.11)

By assumption (b), the stabilizer Hs, is compact, hence
o) = [ Loy Guldih) = [ Lo h)dth) = (5 V) < o
Moreover, since V' C Hy, V', we also obtain
0 < u(V) < p(Hz V) = 0(7) < oo.

We have shown that 0 < (V) < a(7) for all ¥ € SH, and o is finite valued.
Next we move T along orbits to obtain a countable, disjoint collection of

sets. First, set
|det h|
h) = ——.
g(h) A
Since g : H — (0,00) is continuous, then g(V') is a compact subset of (0, c0).
Furthermore, since 1 € g(V), then g(V) C [a,b] for some 0 < a < 1 < b. In

addition, as ¢ is not constant by assumption, there exists hy € H such that

9(ho) < % (3.12)
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We now show that Thi* N Thy = () for m # n. In fact,

Thi NThy # 0 < FVhy NFVhy #0  for some 7, € S
& Yovhy' = Fovhy  for some v, v €V, Yy €S
& Yuhl " =7, for some v, D €V, Fy €S
S ohp "o € Hs, forsomewv,0 €V, €8

& vhi' € HyVhy forsomev eV, 7, €S

< Vhy' N H5,Vhi #0  for some 7 € S.

Now by assumption (b), Hy, is a compact subgroup, hence g(H,) = {1}. Using

the homomorphism property of g, we have

g(Vhg' 0 HzVhg) = g (Vhg™" 0 HzV)hg) = g(Vhg™" 0 Hz,V)g(hg)

C (9(V)g(hg ™) N g(V)) g(hg)  (la, blg(ho)™ " N, b]) g(ho)" =0

for m # n by (3.12). We conclude that Vhg* N Hs, Vhg = 0 for all 5 € S, m # n,
and hence

TRPOThE =0 (m #n). (3.13)

It follows that the function {1Thn} have a disjoint supports. We now modify
these functions to make (3.10) hold for i = j.
We partition N into a union of sequences {n,(j )} , 7 € J. Since
k=1

det A ‘
| A(thg?)’ = 0, then for each j we may replace the sequence

lim g(ho)m = lim

m—00

{ ,(j )} by an appropriate subsequence to obtain
k=1
— [ | det ho| det ho \ 1
Z <9
k=1
Here we have identified J with N.

Let {I;},-, be the collection of cubes [0,1)" + &y, &x € Z", and let T}, =
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. ()
T N Ij. Then set T,E]) = Tyhe* N O; for each j and k. By (3.13) we still have
TiNT =0 (3.14)

for ¢ # j or k # l. Now consider the functions 1; whose Fourier transforms are

defined on O; by
1 — ) 1/2
- {_ZA(}LO)_% 1 (')}
o T’
k=1
Then by (3.14) z/ﬁ\zz/b; = 0 for ¢ # j. Furthermore,

— R ()
NPT = — D Alhg)™ 1 ()| d7
/Oj (V)| /O o) ; (ho) 1T}§])(7)] gl

(4)

o0

1 _ () 1 \det h[) ’nk 1
—EA(h)”k)\ E —ATy) < 57—
pV) i = ) 2u(V)
which shows that each 1); is well defined as an element of Hj, asis ¢ = > ¢; € H.

jeJ
Furthermore, for all ¥y € SH N Oj, by Proposition 2.7,

J

i@(vhﬂzdu<h>::j/ p e

i A(ho)_”g) 1T,£j) (Vh)] du(h)

(4)

_ Z / Alho) ™ 10, (Th)dpu(h)

v
_ 7Z/Aho W, (Fhhy ™ Ydpu(h)
—VZ/MWW mégmmww

=6Lm<mww:1

¥ U Tx a(9)

/;1TUW0duUw:=1

Q

while for all ¢ # j and ¥ € O, N O; as QZZZ/D; =0,
[ 6B ) ) =0,
H
Hence v is admissible by Theorem 3.6. O]

We will call a vector f = Y f; € H bandlimited, if there exists M > 0

JjeJ
such that |7 < M for all ¥ € supp( fj) and all j € J. To obtain bandlimited

admissible functions, bounded transversals of the following form are required:
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Property A.
(a) e-stabilizers are compact for a.e. ¥ € O.

(b) Given M > 0, there exist m > 0 and a transversal S for the action of H on
‘H such that

m < |17l <M

forall y € S.

It is not difficult to show that if e-stabilizers are compact and H possesses
an expanding matrix, then property A holds. However, there exist groups H which

do not contain expanding matrices, but still have property A (see Romero, 2006).

Theorem 3.10. Let H be a closed subgroup of GL,(R), possessing property A.
Then for each M > 0 and r > 0, there exists a bandlimited admissible v with

Q//J; < M, and the support of each % contained in the ball B,(0),

o0

cy =1, (md‘

forall j € J.

Proof. We proceed by constructing a sequence {%} of admissible functions
jeJ

with disjoint supports. By assumption (b), H is not compact, hence we can pick a

precompact Borel subset V of H with (V) > 1/M?. By continuity of the action

of H on @L, there exist 0 < o < 3 such that
a < |9h] <8 (3.15)

for all 4 in the unit sphere S~ ! and h € V.
By assumption (b), there exist a transversal S; for the action of H on O

and my > 0, such that
my < ||l <r/B

for all ¥ € Sj.
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Now set 77 = SV, then by (3.15),
My :=amy <[] <7
for all ¥ € T7. Similarly, there exist a bounded transversal Sy and ms > 0 so that
my < |[7]] < My/8
for all ¥ € Sy. Setting T = SsV, then by (3.15),
M,y :=amy < ||7|| < My

for all ¥ € T,. Continuing inductively, we arrive at a family of bounded transversal
{S;};es and disjoint Borel subsets 7; = S;V of O, each contained in a ball of radius

no more than r(a/8)7~1, so that

for all j € J, where C' denotes the volume of a ball of radius 7.

For each j, let us define a Borel function
7,7) = [ 1 GH)duth)
for ¥ € O;. Then as in the proof of the proceeding theorem,
0 < (V) < 0y(9) < oo

for all j € J and ¥ € S;H N O;. Consider the function ¢; defined by

— 1
v = ——=1nn0;-

Vi
Then 1@1/#; =0 for 7 # j and

1
= sup < M,

b L <
Moo cem Vo, (3) — Vu(V)
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while also,

v

/A

= )| dv= | —=1r,F)d7 (7)dy
oy = o [ 47 = [ St 07 < s [ 100

NT) o (g)“"
Sao) M)

This shows that the functions v¢; € H; are well defined, and so is ¢ = > ¢; € H.

jeJ

Furthermore, for all ¥ € S;H N O;, we have
[ [ duiw 1, (7h)du(h)
(7 ‘ z =/ —— =1 (Yh)du(h) = —
wl’ u 05 (Yh) 1 a;(7)

while if "7 S SZH N SJH N Ol N Oj and ¢ 7é j, then

/H xi() BT xg () oy (T dpa() = 0.

The assertion follows from Theorem 3.6. ]

3.2.5 Modulated Wavelet Frames

In Heil and Walnut (1989) it was shown how to obtain frames for wavelet
representations in L*(R). This was later generalized by Bernier and Taylor (1996)
to L*(R™) in the case of open free H-orbits, and to the general case by Romero
(2006). A discrete subset P of H and a lattice I' in R™ were chosen to obtain

wavelet frames of the form
{m((k,@) )¢ : ke PueTl}.
The reason inverses 7 ((k, #)~') are chosen is that
T ((k,@0)") =7k, —k7'0) = T_j-14D1 = DTz
so that the frames vectors have the form

(D Tqtp)(7) = | det k|20 (ki + @)
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as with the discrete wavelet transform.
We now show how to obtain frames for sums of modulated wavelet trans-

forms, using the ideas of the above references as a starting point.

Definition 3.11. Let H be a closed subgroup of GL,(R). An N-tiling pair is a pair
(P, F) of subsets of H where P is a countable subset of H and F is a pre-compact

subset of H satisfying

(a) U Fk is co-null in H.

kepP

(b) N :=supcard{p € P : FkN Fp # 0} < oc.
keP
If N =1, it is called a tiling pair.

The first condition says that the translates { Fk}rep cover H measurably,
while the second conditions say that at each set F'k may intersect at most N — 1

other sets F'p.

Theorem 3.12. Let (P, F') be an N-tiling pair, and suppose
(a) H possesses property A
(b) card(Hy) < M a.e. 7€ O.

Then given any B € GL,(R) with corresponding lattice ' = B~'Z", there exists
v € 'H such that
{7 ((k,@) ")y : ke Puel}

s a frame for H with frame bounds 1 and MN.

Proof. Proceeding essentially as in the proof of Theorem 3.10 we obtain a family
{Tj}jeJ of disjoint Borel subsets of O of positive measure, T = S;V where V = F

all contained in the parallelpiped
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and satisfying

0 < \NT;) <Or/1 (3.16)

for some C >0 and 0 < k < 1.

By (3.16), we may define ¢ = > ¢; € H by

jeJ
1
Yy = ﬁlijoj

for j € J, where 3 = | det B|. Observe that the collection of function {eg} ;. with

- L oinqa -
ea(y) = —=e*™ (Y € R)

VB

is an orthonormal basis of L?(R). Thus for f € H, we have as @; is supported in

R,

(o (k@) ™) Y)re =3 (L (@) 7) w0)y,

J

= Z {fj, T—kflaDZfllbﬁH]

jed ied
—ZJ / et k72 F (0, ) (k)7 iy
=2 / [det k[*/? F,(7h)x; (k=15 (F)e 7775
=
—\/_/ |detk|1/QZJfJ (FE)x; (k=)0 (7) en(F)d7
- -—¢k() i

= /B (¢, €a) 12(R)

where ¢, € L?*(R) and exchange of sum and integral are justified as the functions

j?(&’k:){b;(&’) are integrable of disjoint and bounded support. (Here, all functions
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are extended to R in a natural way.) The latter property also gives

SO (U D) Ol = 8D (e oaay| = B0l acay

uel’ uel’

2
—ﬁ|detk’/ Zf] Yk)x;(k wj( 7)

JjeJ

—ﬁldetkI/ [Zf k) xi(k 1) (7 )] [Zﬁ(?k)xg'(k‘l)@ﬁ)] dy

ieJ jeJ

:gz |detk|/R

~ 2 |~ 2
Tiw)| )| a7

5% |detk|/ Fm)| [oe]
JjeJ

—ﬁZ/ 7/}] Yk~ )‘Qd’?
and hence,
S5 (ki) |—6ZZ/ L@ [GEen| e
keP wel keP jeJ

= Z/ f] Z]_T "}/k ] d’)/ Z/ f] [Z 1SjV(ka_1)] d
jeJ LkeP jed keP

-y / B [ ] d

jeJ LkeP

Observe that since the sets {Vk}rep cover H measurably,

5[] = S 1) = 3 1su3) > 15,09).

keP keP keP

where A = (J Vk is co-null in H. Hence by Proposition 3.8,
keP

2

B [k

kepP

for a.e. v € O,. Next suppose that ¥ € S;VEN S;VI. Then v = vk =

Yool for some unique ¥, € S;, and v,0 € V. Since card(Hs,) < M, say Hy, =
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{hl, hQ, ceey hM}, then
Fovk = Fovl < Fovkl ' = Fy & vkl € Hy,
skl o =k for somei € {1,2,..., M}

< vk = h;vl for somei € {1,2,..., M}
M
s kel Jnvi
i=1
Now by assumption at most N of the set in {V'I},_, overlap, so vk can be contained
in at most NN of the sets h; VI for each 7. It follows that vk is contained in at most
MN of the sets h;VI. Thus

53 [hE ] = X 1sm) < MN

keP keP

for a.e. ¥ € O;. Hence

12
115 =D || oS SN R () Y) ), )
jeJ 4 kEP @er
S 12 3 )
SMN D |5 i, = MV Ue
jedJ
The proof is thus complete. O]

We note here that R may be chosen to be any parallelpiped covering the
support of all functions ZZJ; and need not be centered at zero. For example, if
O is the first orthant in R", we may choose R = [0,1]" = o + [—3, 3]™ where

11 1

Yo = (5,5, ...,5). One can also obtain frames from a bandlimited admissible

function by using the integrated wavelets of Heinlein (2003).

Theorem 3.13. Suppose there exists a bandlimited admissible function @q for the
usual wavelet transform on L*(R™), with supp(pe) N B.(0) = 0 for some ¢ > 0.
Then given an N-tilling pair (P,V) and B € GL,(R) with corresponding lattice

I' = B~YZ", there exists v € ‘H such that

{7*((k,2) " )¢ : ke P,uel}
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s a frame for H with frame bounds 1 and N.

Proof. Let (P,V') be an N-tilling pair. For each o > 0, the function ¢, defined by
Pa(¥) =Po(ay) (YR

is also a admissible, and supp(p,) = a 'supp(@p) with the same constant c,,.
Thus after replacing ¢y by an appropriate ¢,, we may assume by compactness of

V that

while also supp(o)V N B,,(0) = @ for some m > 0. In particular, there exists
0 <m < M such that

m < |7 < M

for all 5 € supp(po)V.
Next define ; € H; by ©;(¥) = @o(a?/y)1o,, where a = M/m. Then each
; is admissible for 7T;-<j with constant c,,. Now let ¢; be defined by

2 1
T ﬁc%’o

for ¥ € O;, where § = |det B|. So each Q/b; is uniquely defined up to phase only.

¥;(F)

[ BEE duth)

Each @/b; is supported on aJsupp(g)V C R. Thus by choice of a, z/b;@/b; = 0 for

1 # j, and also

‘AQO) /1/6 dy = /(96¢0/V1|”h|d”()

Vil
o?yh)|” dy du(h
= e /V 1 / |Go(a?7h)|* d7 dpu(h)

= — det h dy du(h

s e [ B asaun
K

< — in H(P0HL2 Rn)

so that ¢ = ) 1; is defined in H.

jeJ
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Observe that

53 [ =30 / )2 duh)
keP keP Coo JV -1
- S(h)2d 3.17
Z/(V) W du(h). (3.17)

Now as {Vk}xrep covers H measurably and ¢; is admissible, for L*(0;),

=—/ 5 (Fh)[? Z/ G5 () dp(h) = 8
eo kep J (VR

keP

G|

for a.e. ¥ € O;. On the other hand, as at most N of the sets {Vk}rep overlap,

then by (3.17)
1

[ = =X [ s < g =

keP 0 kep

Computing as in the proof of Theorem 3.12, we obtain that

1B =D 1l 0, < DS I (k@) ™) ), 2 < N N il20,) = NI

jed keP uell JjeJ

This proves the theorem. ]



CHAPTER 1V
EQUIVALENCE OF THE METAPLECTIC
REPRESENTATION WITH A SUM OF

WAVELET REPRESENTATIONS

We now consider a class of subgroups of the symplectic group Sp(n,R)
which are semi-direct products of a vector group by a group of automorphisms,
and are isomorphic to affine groups. We show how the metaplectic representation of
such a group can be equivalent to a sum of wavelet representations, thus allowing
to apply the admissibility results from the previous chapter to the metaplectic
representation. A large part of this chapter is devoted to three groups of examples
illustrating these techniques.

The first group of examples employs simple one-parameter groups of dila-
tions, and illuminates a number of details of interest. For example, an admissible
group which only possesses admissible functions of slow decay at infinity is pre-
sented. Another example shows that the admissibility condition in Cordero et al.
(2006a) is more restrictive than the usual one.

The second group of examples shows that the dilation invariant subsets U;
used to decompose the metaplectic representation into subrepresentations need not
be a union of orthants, but in general take the form of hypercones.

The last example reconsiders the similitude group SIM(2) discussed in
Cordero et al. (2006a). We show how this group fits into the framework presented

in this thesis, and are able to construct metaplectic frames.
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We begin by reviewing the admissibility results for the extended metaplectic

representation of Cordero et al. (2006a).

4.1 Admissibility for the Extended Metaplectic Represen-

tation

Let D be a closed subgroup of Sp(n,R) and consider the extended meta-

plectic representation of L = D x H" on L*(R"),

:U/e(Au (57 t)) 3 p(g, t>M<~A>

for A € D, (z,t) = (Z,y,t) € H", where p is the Schrodinger representation of
H" and p the metaplectic representation of Sp(n,R), as presented in section 2.8.3.

The voice transform associated with ¢ € L2(R") is

(Vo/)(A, (Z.0) = (f (A, (Z,0)) 0) - (f € L*(R?). (4.1)

Note that the group L is not admissible. To see this, observe that the center of
H"™ can be identified with the closed normal subgroup Z = {(ls,, (0,t)) : t € R} of

D x H", and we have

pe(Lon, (0,1)) = p(0,t) (L) = e*™1d (4.2)

so that pe(lon, (0,t+k)) = pe(lon, (0,t)) for all t € [0,1) and k € Z. Since the
Haar measure on H" is the Lebesgue measure dZ'dt, then by (2.3) the Haar measure
on D x H" is of the form dv (A, (Z,t)) = J(A™')du(A)dZdt, where du denotes

the Haar measure on D. Hence for all f,¢ € L?*(R") we have

Hv¢f||%2(L) = /D/R2n /RKf’,ue (_A’ (5725)) ¢>’2dtd2J(A_l)dA
B /D/R Z/ (f, ke (A, (2,1) ¢)|? dt dZ T(A™) dA € {0, 00}

kez ¥ 0
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which shows that no ¢ is admissible. One therefore replaces L by the quotient
L=DxH"/Z =D xR*™.

Because of (4.2), p. factors to a representation of D x R?" also denoted pu. and

which again is uniquely defined up to a phase factor |A| = 1, by

and the voice transform associated with ¢ € L*(R") is now

(Vo)A 2) = ([, te(A, 2)9)
for A € D and 7 € R*™. A group K = D x R?" is thus admissible for p, if and
only if there exists ¢ € L*(R™) such that

VoS llZoey = coll FI? - for all f € L*(R™).

A characterization of admissibility in the flavour of Theorem 3.2 was derived
in Cordero et al. (2006a). The Fourier transform is replaced by the Wigner

distribution here.

Theorem 4.1. (Cordero et al., 2006a) Let K be a closed subgroup of Sp(n,R) x

R?*", and suppose that ¢ € L*(R™) satisfies
/ We(k™ - 2)| dv(k) < M (4.3)
K

for a.e. 7€ R*™, for some M > 0. Then ¢ is admissible for j. if and only if there

exists cg > 0 such that
/ Wy(k™' - 2)dv(k) = ¢4
K
for a.e. 7€ R®™™. Here,
k-Z2=(A,q) - -Z2=AZ+¢

denotes the affine action of K on R?".
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We note that there are a few shortcomings to this theorem. The Wigner
distribution is difficult to compute and work with, in particular for functions not
in the Schwartz class. The Wigner distribution usually takes both positive and
negative values, and thus the assumption (4.3) is required. However, one of our
examples will show that there exist admissible functions which do not satisfy con-
dition (4.3). We will also show by example that there exist admissible groups not
possessing admissible functions in the Schwartz class. Because of these difficul-
ties, the nontrivial examples presented in Cordero et al. (2006a, 2006b, 2010) all
work with groups K which are subgroups of Sp(n,R), so that pu. reduces to the
metaplectic representation p, and admissibility is proved in a different way: By
an ad-hoc method, it is shown that the metaplectic representation possesses sub-
representations which are equivalent to wavelet representations, and admissibility
conditions are derived from those of the wavelet representations. This chapter
will work this mechanism out in a systematic way, thus producing a class of sub-
groups of Sp(n,R) for which the metaplectic representation is equivalent to a sum

of wavelet representations.

4.2 Semi-Direct Product Subgroups of the Symplectic

Group

Every closed subgroup D of Gi,(R) defines an action on the vector space
Sym(n,R) of symmetric matrices by
a-m=a,(m)=(a"")'ma? (4.4)

fora € D, m € Sym(n,R). If M is a D-invariant subspace of Sym(n,R), then the

corresponding semi-direct product

K=DxM={(a,m) : a€ D,m e M}
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possesses the group law
(a,m)(d,m') = (ad’,m +a-m') = (ad’,;m + (a"*)'m'a™") (4.5)

for (a,m), (a/,m') € K.
This semi-direct product can be identified with a closed subgroup of
Sp(n,R). In fact, M and D are isomorphic and homeomorphic to the two closed

subgroups of Sp(n,R) of the form

I 0
N=<(N,, = meMy=M
m I
a 0
L=<L,:= a€D =D
0 (aT)_1

and LN, L1 = ./\/’(afl)Tma—l. Therefore, the action of D on M transfers to an

action of L on N by
Lo+ Ny = LlNinls" = Nig-ytmics = N
for all N, € N, L, € L. Since
N LNy Lor = Ny Ny Lo Loy = Nonsaoms Laar s

hence K can be represented by the closed subgroup

LXxN=<N,L,= ca€D,meM (4.6)

ma (aT)_l
of Sp(n,R) and it is easy to see that the map (a, m) — N,, L, is a homeomorphism.
In particular, using (2.13) and (2.14), K has a metaplectic representation given
by u(a,m) = N_,,D,, which is now a proper representation. Given a Borel map

X : D — 11, one can also define a modulated metaplectic representation uX by

X (a,m) = p*(NuLe) = Nopm Dy
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that is,
p¥(a,m) f(F) = e 5D det a| 2 x(a) f(a7'T) (4.7)

for f € L*(R") and # € R",
Equation (4.4) shows that the action of D on the vector space M
is linear. That is, each @ € D determines an element ¥, of GL(M) =

{T: M — M : T is linear and invertible} by
U,(m)=a-m
for m € M. Note that, for a,b € D, we obtain
(a) Wap(m) = (ab) -m =a-(b-m) =a- (Wy(m)) = Va(Ws(m)) = (VW) (m)
(b) UoWo-1(m) =V (m)=1-m=m

for all m € M. Hence V¥ is a homomorphism of D into GL(M).

Since M has finite dimension d, after fixing a basis for M, we may identify
M with R? and GL(M) with GLg(R). In the following we will often use the
vector notation m when we consider an element m of M as a vector in R™. Hence,
each U, € GL(M) may be identified with a matrix h, € GL4(R), and under this
identification

W, (m) = ham. (4.8)

Let us set H = range(V), that is

H :={h, € GL4y(R) : a € D}.

By (a) and (b), hohey = hew, and also a - m = hym. Note that ¥ is one-to-one
if and only if the action of D on M is effective, that is if the global stabilizer is
trivial. The map W is easily seen to be continuous because the action (4.4) is.
However, H need not be closed in GL4(R). In what follows, we will thus make two

assumptions
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(a) H = range(¥) is closed,
(b) ker ¥ is compact.

The second assumption is required because stabilizers for admissible wavelet rep-
resentations need to be compact.

We can thus consider the closed subgroup G of Aff;(R),
G:=H xR = {(hg,m) : h, € H,m € R"}
with the group operation
(ha, 1) (har,111) = (haar, 171+ o). (4.9)
The modulated wavelet representation 7% of G' on L*(R™) is given by
7% (ha, M) = T Dy

and the Fourier transform induces a modulated wavelet representation 6X of G' on

Lz(@) by
(0% (ha 1) )(7) = (E_n DY, ))) = | dethy| /2> x(a) f(Fha) ~ (4.10)

for (he,m) € G and f € L3(R9).
By (4.8) and (4.9) the map ¥ extends to a group homomorphism ¥ of K
onto G by

U(a,m) = (V(a),m) = (hg,n).

Thus, the modulated wavelet representations 77X and 6X of G can be considered
as representations of K as well. Obviously, if we consider 7X a representation of
G, then y : G — II. If we consider it a representation of K, then xy : K — II.
Furthermore, the Haar measure on K is given by

1

dl/(a,7 m) = md

MOLD (4.11)
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where ) is the Lebesgue measure on M = R? and y the left Haar measure on D.

In fact, let (a/,m’) € K be given. For all f € C.(K), as a-m = h,m,
dmd

/f a',m')(a,m)) dv(a,m) / faa,m—l—h/m)—m'u()

Rd |det hg|

dm du(a)
— 7 4 By
/ Rd f(ajm + m)|det h(l/ 1| |det ha|

|deth | dmi dp(a)
ham
/ @ |deth!

dmdu
/ Rdf |deth| /famdu(am)

which proves (4.11).

The following is a necessary condition for admissibility of the modulated

metaplectic representation:

Proposition 4.2. Suppose, D is admissible for the modulated metaplectic repre-

sentation. Then Ap # |detoV|.

Proof. Pick an admissible vector ¢ € L*(R™) with ¢, = 1 and set f = D;/2¢. Then

lollz = 1£1lz = IV fll5 = /K |, (@, m)@)|” dv(a,m)
2

dv(a,m)

2"2p(27)e ™MD |det a| ' X (@) p(a—7)dF

K
_ —n/2 10 o i (a1 (m/4)§,d 12 50 73) * dm dp(a)
-/ [ / 2 g(ag)e 7 detal' G777 T

// (a1 )@ m/TD) |det o] 2 (Drd) () dif ? |det hy| drii dp(a)

R4 Rn AD( )

_ yd i miia) Vo e | didp(a)

i [ [ 1] ot eta| " D] 2]

2

=it [ | [ ad) @ et ol @a 7] vt m)
— g / (Do u(a, m)o) ‘dj’;)'du(a,m)

=44 amﬂdetha’l/am
—4/K|<V¢D2¢><, )P s v, m).

Now if |det hy| = Ap(a) for all a € D, this becomes

161l = 47 [IVo Dot 7201y = 4" | D2ll; = 4" (|65
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which is impossible as ¢ # 0. O

4.3 Admissibility for the Modulated Metaplectic Repre-

sentation

We now look at scenarios where the modulated metaplectic representation
of K = D x M may be equivalent to sums of modulated wavelet representations.

For each ¥ € R", the map
m +— (mZ, T) (meM)

defines a bounded linear functional on M = R¢. By the Riesz’s theorem, there is

a unique vector ®(¥) € R such that

for all m € M. (Note that on the left, the brackets denote the inner product in R™,
while on the right, they denote the duality between R”, which really is an inner
product in R™ and R” are isomorphic.)

Note 3.1: Let us consider properties of the map ¢ : R" — R,
(1) ®(af) = a?*®(Z) for all £ € R", a scalar.
(2) In particular ®(—) = ®(Z) for all ¥ € R™. Thus ® is not one-to-one.

(3) Each component of the row vector ®(Z) is a polynomial of degree 2 in the

components of Z, and hence ® is a smooth function on R".

Note 3.2: For ¥ € R", m € M, and a € D, we have
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Thus

O(a™'7) = ®(D)h, (4.13)

for all a € D and ¥ € R™.

As we want the map ® to be locally invertible, we will from now on assume
that d = n. Suppose U is an open D-invariant subset of R” on which ® is injective
and has non-vanishing Jacobian determinant Jg(Z). By D-invariant we mean of

course that U is invariant under dilation
=8 —1 =
a-T=a €U

for a € D,¥ € U. D-invariance implies that L?(U) will be a pX-invariant closed
subspace of L?(R") as can be seen from (4.7). The remaining assumptions guaran-
tee that the restriction ®|,;, maps U homeomorphically onto an open subset O of
R7. For simplicity, write ® for ®|,;. Furthermore, by (4.13) O is H-invariant. It
follows from (4.10) that L2(0) is a 0X-invariant closed subspace of L2(R"). Since
U is open, (4.13) implies that the map ¥ : a — h, is one-to-one, so that K and
G are isomorphism groups. To see this, pick Zy € U and an open ball B.(0) such

that ¥y + B:(0) C U. Now suppose that h, = I,,. Then for all Z € B.(0), we have

by (4.13),

As a7'# = for all # € B.(0), then a ' = 7 for all ¥ € R", so that a = I,,.
Proposition 4.3. The map Q : L*(U) — L*(O) defined by
(@QNA) = [Jarr (D2 F(@71(7)) (4.14)

for f € L*(U) and 7 € O, is a linear and surjective isometry.
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Proof. Clearly the map @ is linear. By (4.14) we have
Q220 = /O QPP d7 = /O F@ () 1o (7)] 0
- / F@PdF = | 2aey

which shows that Qf € L*(O) and that @Q is an isometry. Finally, let g € L*(O)

and set
F(@) = |Ja(D)]?g(2(F))
for £ € U. Then
11z :/U\f(fi”)\zdfz/U\g(@(f))IQIJ@(f)!l/zdf:/Olg(’?)IQd'?: 1911220)

which shows that f € L*(U). Furthermore,

(@QNA) = oD F@7F)) = [Jar (D) Ja(@(3))[?(7) = 9(7)
for all ¥ € O. Thus @ is surjective. O

Proposition 4.4. The restrictions p*[2y and 6|20, are equivalent. In par-
ticular,

E_;=QN_,Q ! and DX =QDXQ™"

for allm € M and a € D, when these operators are restricted to the respective

mwvariant subspaces.

Proof. For simplicity, we use ® to denote the restriction ®|;.

Let m € M be given. By using (4.12), we obtain
(@N-nf)F) = o (D' (N-n F)(@7H(7))
= o ()12 it D) f(@7 (7))
= [ams (D2 e 2T f71 ()
= [Jar (P2 270D f(271()

= e 2IN(Q, )(7) = (E_aQf)(F)
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for f € L*(U) and 7 € O.

Next let a € D. Now (4.13) yields that
01071 (7) = 071 (5h,)
for all ¥ € O and then by the Chain rule
|deta ! Jp-1(F) = Jo-1(Fha)| det hy|. (4.15)
Thus
QDY) = | Ja-r (M) (DEF(@ ()
= X(@) [Jo=+ ()" [detal " fa™ @7(7))

= x(a) |Jo-1(F)]'* |det a| " f(@7! (Tha))

= x(a) |det ho|"* | To-1 (Fho)[V? (@7 (Tha))

= x(a) |det h,|'"* (Qf)(Fha) = (D}, QF)(7)
f € L*U) and 7 € O. It follows that
Qu¥(a,m)Q™" = QN_, DYQ™! = E_p Dy, = 6*(hq,m)
for (a,m) € K, which proves the proposition. O]

Now suppose that R” decomposes measurably into a collection {Uj}je ; of
D-invariant open subsets on each of which ® is injective and has non-vanishing
Jacobian determinant Jg(Z), ¥ € U;. Correspondingly, we have a decomposition

AR = & LA(U))
jeJ
into pX-invariant subspaces. We set O; = ®(U;), ®; = <I>|Uj and let Q; : L*(U;) —

L*(0;) denote the unitary operators of Proposition 4.4.
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Define a unitary operator @ : L*(R") — H = & L*(0;) by

jes
-2
that is for ¢ € L*(R"),
Qo = Z; Qj9;

where ¢; denotes the restriction of ¢ to Uj.

Correspondingly, let 5} denote the modulated wavelet representations of K
on L?(0;). Then pX| L2(U;) and J7 are equivalent for all j € J by Proposition 4.4,
05 = Qj MX'LQ(Uj) Q;l. Set

=@ o
JjedJ

Then 6% = QuXQ~*.

Proposition 4.5. The modulated metaplectic representation pX and the sum of

modulated wavelet representations 6% are equivalent representations of K.
Proof. Since each L*(Uj) is p}-invariant, we have

Q{am)Q™ =Q (Jﬂg} 2wy (“’m>) Q7' = 8 Q) 1M, (am)Q;

= & 0X(a,m) = 6X(a, m).

By Proposition 4.5, we have

Vof oy = [ N0 dvfa,m) = [ QL5 (a.m)@0) dvla,m)

2 2
= HWQ¢QfHL2(K) = HWQ¢9“L2(K)
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where g = Q) f. Since @) is a unitary operator, then

Vol o) = ol fllie@ny V€ L*(R™)
S WasQf 7o) = o 1Qf 2@y VS € LX(RY)

2 2
& [Waedll 12y = o 19/l 72@n) Vg € j@g] L*(0y)

That is, ¢ € L?(R") is admissible for the modulated metaplectic representation pX
of K if and only if Q)¢ is admissible for the sum of modulated wavelet representation
0X. By applying Theorem 3.6, we can now specify an admissibility condition for

the metaplectic representation of K = D x M:

Proposition 4.6. ¢ € L*(R") is admissible for piX if and only if there exists cg > 0

such that

/DXi(a)Qi¢i(7ha)Xj(a)Qjﬁbj('vha)dﬂ(a) = 0;,iCe (4.16)

for a.e. ¥ € ®(U;) N@(U;).

In many of the applications, the sets ®(U;) will all coincide, hence the sets
U; will be homeomorphic. We fix one of the sets Uj, and let F; : Uj, — U; be
given by

Fj:CI)._lo(D

; o> (4.17)
where ®; denotes the restriction of ® to U; for each j. By (4.15), we have for all

5 = @jo(f) and ¥ € Ujo,

v 05 (B (P, (D)ha))

1/2
| det a| ~* |det | 72 65 (a7 DT (D5,()))
B 1
Jo (F;(7 Y21 det a|/? det h,, 1/2
| Jo (F;

(Q67) (@3 (T)ha) = | Ty (P5(@)ha)

Jfbj_l ((I)jo (f))

¢; (a7 Fy(7)) .
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Then (4.16) can be written as

/DX@'(G)@ (a1 Fi(2))x;(a); (a ' F;(1))
X ! du
[T (FA(&)) Jo(F5 ()] |det af |det hq|

(a) = (Sz"jC¢ (418)
for a.e. & € Uj,.

We observe that Proposition 4.5 allows for constructing frames for the meta-
plectic representation: If {7 ((k, @))%}, cpger is a frame for the representation
0% of K as in Theorem 3.12 and 3.13, then the collection {x ((k,@)™") d}1cpaer
will be a frame for the metaplectic representation X of K, where ¢ = Q1.
4.4 Example 1: A Simple Dilation Group

Let us consider the n-dimensional subspace

M = {m(%) = diag(—w1, —Us, ..., —Up) : T = (U1, Uz, ...,u,)" € R"}
of diagonal matrices of Sym(n,R), and let D be the one-parameter group,

D={a(t):=A": teR}

generated by a diagonal fixed matrix A = diag(ay,as, ..., a,), ap > 0 for all k and

ar # 1 for at least one k. The action (4.4) of D on M is given by
[a(®)™]" m(@)a(t) ™" = A'm(@) A" = m(A*q) (4.19)

and is effective. By (4.6), the corresponding semi-direct product K = D x M can

be represented as the subgroup

K= k(t,u) = teRueR”
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of Sp(n,R), and the group law of K is
kt, d)k(t', @) =kt +t,d+ A*T).
By (4.11) the left Haar measure v on K is given by
dv(k(t, @) = (aiag - - - a,) *'dt di.
Let us compute the map ®. Since m(#) is a diagonal matrix, we have for
7= (21,29,....,2,)7 € R,
(m(0)Z,7) = — zn:ukxi -2 <ﬁ, %(xf,xg, o xi)T> (4.20)

so we obtain

The Jacobian of ® is
Jo(Z) = xqmg - - - .
Since Jg(Z) = 0 if and only if x; = 0 for some k, this leads to a splitting of R™

into 2™ orthants
Uo = {7 = (21,22, ... 22)" € R ¢ sgn(zy) = ay )

where o = (aq, ag, ..., @) is a multi-index with a4 € {—1,1} for all k. For each

T € U,, we have as a; > 0 for all &,

a(t) 'i = A'% = diag(ay, ag, ..., a,)' % = (alzy, abas, ..., alx,) " € U,
that is, each U, is D-invariant.

We can thus make use of the technique discussed in the previous section to
show that the metaplectic representation u of K is equivalent to a sum of wavelet
representations. In fact, by (4.20) u is of the form

plk(t, @) f(Z) = (Noma Dagy f)(F)

n
—im Y uk], t/2
=e k=1 (a1a2 ce CLn) / f(atlmla agJ:Qv sy a’;xn)
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for f € L*(R™) and 7 € R™.
Observe that the restrictions ®, of ¢ to U, map the sets U, homeomorphi-

cally onto the first orthant

O = {?: (1,72, -y Yn) € R Y >0 Vk‘}

of R". Tn fact, the inverse maps are given by

() = (1271, 02 /279, ooy 0/ 270), (g = sgn(ay)),

and the Jacobians of @1 at ¥ € O are

(&5} (6%) (0%

V2R V2% V27
By (4.19), K is isomorphic to the closed subgroup G = H x R™ of Aff,,(R"),

J@;l (7)

where

H={h(t) = A% : teR}.

As e-stabilizers are trivial and H is abelian, by Theorem 3.3, H is admissible if

and only if det A = ajas -+ -a, # 1, which we will assume from here on.

,,,,,

Let U = Ugu,i,..1) denote the first orthant. By (4.17) the maps F, =

®. ' o @[, are defined by
Fo(xy, 29, .y xy) = (0121, aa, ..., pyy).
Thus
|Jo (Fo(2)) | = |Ja(aqz1, o, ..., )| = 129+ - - Ty

for all « = (ay, ag, ..., ) and T = (21, Ta, ..., x,) € U. Then by (4.18), ¢ € L*(R™)

is admissible for p if and only if

/ﬁb (atlﬁlxla agﬂﬂm ey afﬁnmn)ﬁb (aﬁalxla agaﬂz, oo af@anﬂﬁn)
R

dt
— 5, 421
% (129 -+ xy,) (det A)? B ( )
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for almost every ¥ in the first orthant. Without loss of generality we may assume
that a; # 1, and by shift-invariance of the Lebesgue measure, the above simplifies

to

/QS (a’ﬁﬁla a362x27 S a%ﬁnfljn)(b (aia17 aé&2x27 e CL:LOénIn)
R

dt
= 4.22
% (- x,)(det A)t aCy (422)

for almost every (zs, ..., z,)T in the first orthant of R™!.
An admissible function to which Theorem 4.1 does not apply. We
let n =1 and a; = e. Hence,
et 0

K=< k(t,u) = ct,bu€eR
t ot

—ue e
By (4.22) and a change of variables, a function ¢ € L*(R) is admissible for yu if

and only if

J () G = G 0.1

In particular,
¢ =2 149+ V2 119
is admissible, with ¢4 = 1.
We now show that Theorem 4.1 can not be applied here. The Wigner

distribution of ¢ is

Wy(z,w) = /Rqﬁ (:L‘ + %) ¢ (:zc - g) e~ 2wy dy

that is
_ ) ) —2miwy
W¢<l’, w) =4 1[_47_2] T+ = 1[_47_2] r——=]e€ dy
& 2 2

+2\/§/ 1[74’72] <g; + y) 1[172] (l’ _ y) e—Qwiwydy
R

2 2
—1—2\/5/ 1[172] (:L’ -+ %) 1[,4,,2] (x — %) e*Qﬂiwydy
R

+2/ 1[172} <13 + g) 1[172] (I - g) €f2m'wydy.
R 2 2
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Note that
sz (o4 2) =1 ye[-8—22,—4-2]
1[_47_2] (LE’ —

1)y (:c—l—%) —leye[2— 21,4 2]

N

NS

)=1<:>ye[4+2x,8+2x]

1p 9 ($ - %) =leye[—4+42x, -2+ 2zl

Thus, for 1 < = < 3/2, we have
y Y\
1[_47_2} (l‘ + 5) 1[_47_2] (Z‘ = 5) =1& Yy S [2 - 2.%‘, —2 + 2%]

and, hence

—2+42x —2miwy

We(z,w) = 2/ e~ 2y — ¥ |
2

o 2mw

—2+2z 647Tz'w(93—1)
=2

_ p—4mi(e—1)

o2 2miw
2sin(drw(z — 1
_ 2sin(drw(zr —1)) 8(x — 1)sinc(4mw(z — 1))
TWw

where sinc z = ¥2Z,

Now the inverse matrix of k(t,u) is

and hence for 7= (z,w)T € R? with 1 < x < 3/2, we have
/ (W (k(t,u)™" - 2)| dv(k(t,u)) = / / W'z, e tuz + e 'w)| e > dudt
K

d dt d d
//|W¢exu Y //|W¢y, uy
3/2 g
}/ —/ |sinc(dru(y — 1))| dudy = oo
1

as the sinc-function is not integrable. It follows that Theorem 4.1 cannot be used

to prove admissibility of ¢.

A group which possesses no admissible function in the Schwartz

—1/(2r+1)

class. We let n = 2, choose r > 0 and a; > 0 and set ay = a, , so that
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as < 1 and det A = ajay > 1. If ¢ € L*(R?) is admissible, then by (4.22) in
particular,

2 t
——— =¢c43 >0
‘x2att o]

[ 1o (@)
R

for a.e. x5 > 0. Now suppose that ¢ is in Schwartz class, or more generally,
¢ € L*(R?) satisfies

f (# £0)

|6(2)] <

17

for some € > 0. Then for all x5 > 1, the condition (4.22) becomes

dt o0 dt o0 t ot dt
/Rleb(ai?aéxz)f—z/o !¢(ai,a§x2)\2—+/0 |6 (a5, a5tz | 222

xoatal xoatal To
oo 2 oo 2 —t(2r+1) ¢
S / 2t(]:—4i-€) dt + / —2t(r-{-\€4) 2(r+e) . =2 dt
0 aj T 0 ay T T2

M2 9] 1 [ee]
< e / mdt +/ a%stdt — 0 as To — OQ.
T2 0 a 0

1

Hence ¢ cannot be admissible.
The dilation group need not be connected. For ease of exposition we
choose n = 2; the case of general n proceeds similarly. The group D is modified

to include reflections along the coordinate axes,
D={a(tpq):=A"RS!|teR, p,ge{0,1} }

where A = [§ 2] with a,a2 > 0, a1,a0 # 1, R =['% and S = [§ 4]. This

group is not connected; the reflections divide D into four connectedness compo-

nents. Since
1T _ .
[a(t,p, )] m(@) alt,p,q)™" = m(A*q) (4.23)
then (4.23) still determines a linear action of D on M, and the group operation on

K=DxM is

k(t,p,q, W)kt p, ¢ @) =k(t+t, (p+p) mod 2, (q¢+¢) mod 2, + A*i')
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so that
H={h(t)=A"|teR}.
Thus, the map ¥ : D — H has kernel {a(0,p,q) : p,q € {0,1}} and
G = H x R? is a quotient of K.
By the presence of the reflections, none of the four quadrants is D-invariant,

so the considerations leading to (4.21) can not be applied. However, we can split

L*(R?) into a direct sum of four closed subspaces
L7;(R*) = {f € L*(R*) | Dpf = (-1)'f and Dgf=(-1)f}
for 4,5 € {0,1}. The projections of L?(IR?) onto these subspaces are given by

Pyj=~[Id+ (=1)'Dg + (~1YDs + (—1)"DgDs] .

o

Recall that the metaplectic representation of K is
p(k(t, p,q, %)) = N_pa)Dagt.p.q) = Nem@Da—+DrpDga.

We observe that the subspaces L?ﬁj(RZ) are p-invariant. In fact, as D is an abelian
group, it follows that

P Datp.a) = Da(t.pa)Lij
for all a(t,p,q) € D. On the other hand by (4.23), m(«) is invariant under the
action of R = a(0,1,0) , hence for all f € L*(R?) and 7 € R?,
(DRN—m(ﬁ)f> (f) _ eiw(m(ﬁ)R_lf,R_lf)f (Rflf)
= O (Dpf) (&) = (Nom@Drf) (@),
and similarly,
DsN_y@y = NomayDs.

We conclude that

Py i Nom@) = Nom@ P j
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as well. Tt follows that P;;u(k(t,p,q, 1)) = p(k(t,p,q,©@))P;;, hence L7 ;(R*) =
range(D; ;) is p-invariant.
Now each of these four subspaces can be identified with L*(U), U denoting

the first quadrant, via the unitary maps V;; : L7 ;(R?*) — L*(U) given by

Vi) (@) =2f(7)  (TeU)

for f € L? (]R2) Let us compute the corresponding representations p; ; = V; ; ,uVL_jl
of K on L*(U). For each f € L7 ;(R?) and Z € U we have
(ViiDattpaf) (&) = 2(Da- Do Dsa f) (£) = 2| det A["/* (Do Dsa f) (A'E)
= 2| det A|"2(=1)P(=1)/1f(A'F) = (=1)"H| det A|"/* (2f)(A'T)
= Xij(t,p,q) (Da—Vi;f) ()
where y; ; is the character on D given by x;;(t,p,q) = (—1)?7*7%. That is
‘/i,jD tpq)v Xi,j(tapa Q>DA*’5- (424)

Also,

(VigNem@ [) (Z) = 2 (Nom@ f) (£) = (Nom@(2f)) (&) = (Nom@ Vij) (D)

which shows that

-1
VigNem@Vij = Nem).
It follows that each MX” is a modulated metaplectic representation,

Xi,j

/szJ (t7p7 q, ﬁ) = V;,jN—m(ﬁ)D a(t,p,q) Vﬁ Xi,j(t7p7 Q)N—m(ﬁ)DA—ta

and that the metaplectic representation of K on L?(R?) is equivalent to the sum
of representations 69 ,ux” of K on @ L*(U). We now apply the results of section
i\j

4.2 to show that K is admissible for this sum of representations, and hence for the

metaplectic representation u, and obtain an admissibility condition.
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Let ¢ € L*(R?). The corresponding element in @ L*(U) is Z Vi ;P;j. Next
i =
let Q : L*(U) — L*(O) be as in Proposition 4.4, which shows that each 11’

is equivalent to a modulated wavelet representation (526]3 on L*(O), by 5X” =
Qu;7’Q". Then Q amplifies to a unitary map Q= ZE]?Q : %LQ(U) — %LQ((’))
between the sums of the four function spaces, and @ implements an equivalence
between the representation g = @ ux” and the sum of modulated wavelet repre-
sentations ¢ = % (52?34. Hence ¢ is adnnssible for /1 if and only if Q¢ = %Qlfi,j&j¢
is admissible for 4 if and only if

1

1
ZZ /RX” (t, 0, @) xka(t, p, @) [QVij Pijd)(YA*) [QVis Prso] (YA )dt

p=0 ¢=0

= C¢5i,k5j,l (425)

for a.e. v € O. (Clearly the Haar measure on D is given by > > dt.) The
pe{0,1} ge{0,1}
above can be summarized in the diagram

y split EB ,U‘sz(]ly) Ay @ qu(’;] adQ 5 — EB 535]”
,J v ,] 2y
| | l |
® P ® Vi Q=®Q
I*RY) “— @LL(RY) “— oI(U) —— &L*0)
,] 2,] 2Y)

Now recall that
(QF)(FA™) = | Jp (747)|* f (071 (747))

for f € L?*(U) and where ® = <I>’ , and that ®71(74%) = A'®~1(¥). Setting
U

7 = ®1(7) it follows from (4.25) that ¢ is admissible if and only if

Xij (0 Q) xea(t, 0, q) [VijPijol(A'Z) (Vi Prad] (ALT)

MH
MH
—

dt

X = y0; 10
x1x9 | det Al oLk
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a.e. &= (x1,29)" €U, fori,j5,k,1 € {0,1}. Because by (4.24) Ds-V;j = V; ;D s
and by definition of V; ;, this is equivalent to

dt

Y
x1xo | det Al Co0ik0sl

4y Y (=) (1)Ut /R [P @) (A'Z) [Prig](A'T)

p=0 ¢=0
Observe that the left-hand side vanishes when ¢ # k or j # [, as the integral is

independent of p and ¢, and thus the admissibility condition reduces to

2 dt
_— =
1120 | det A[F — 7°

16 [ [1Pyola)
R
a.e. T = (x1,29)7 € U, for 1,5 € {0,1}. As before, we may choose x; = 1; hence ¢

is admissible if and only if

16 |
R

a.e. 1o > 0, for 7,7 € {0,1}. By the change of variables y = a} this becomes

dt

T alal

2
[P;.i](ai, ay2>) =

2 dy
x Ina; yo+?

16 [ [Pjol(w.av)

a.e. © > 0, for 1,5 € {0,1}, where @ = Inay/Ina;. Using the definition of the

projections P, ;, this condition can be rewritten as

[ Jotwu + (1) 0ty (1t =) + (1) 0l —ay)| )

dy
z lnay y*t?2°

a.e. x > 0, for i, 7 € {0,1}, where we have set dpu,(y) = Expanding, we

obtain

/Ooo [ |6y, 2y®)|” + |6y, 2y + oy, zy™)|* + |¢(y,fvy“)}2] dyi(y)
+(=1) /Ooo 2Re | 6(y, 2y") o=y, 25%) + oy, —vy*) (—y, —2y") | dpia(y)
07 [ 2Re oty oy 3 =) + S(y) S~ | doas)
0 [ 2Re ol T ) + oy 9 ) | dia()
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a.e. © >0, for i,j € {0,1}. In short,
ap + (=1)'bp + (=1 e + (=1)d, = ¢, (3,5 € {0,1})

The solution of this system of four equations in four unknowns is a, = ¢4, b, =

¢ = d, = 0. Hence, ¢ is admissible if and only if

jguj[\¢(y,xyaﬂ2+¢¢(—y,xyaﬂ2+¢¢(y,—xyaﬂ2+¢¢p_y,_xya”2]___iﬁL___::C¢

x Inay yot?

for a.e. x > 0.

4.5 Example 2: The D-Invariant Subsets are Cones

In most of the examples, we have a decomposition of L*(R") into p-invariant
subspaces L?(U;), where each U; is an orthant or a union of orthants. In general,
since ®(af) = o*®(Z), ® maps cones to cones, and hence one expects the sets U
to have at least the form of cones. In this example, they will indeed turn out to
be not orthants, but cones.

Let n > 3 and consider the n-dimensional subspace of Sym(n,R),

—Uln_l - 1
M = < m(u,v) := cu€eR, TeR™
—l —u

Then fix a closed subgroup F' of the orthogonal group O(n — 1), and consider the

closed subgroup of GL,(R),

b 0
D= a(tb) =e" teER,bEF ; 2R F.

0 1

For each a(t,b) € D and m(u,v) € M, we have

(a(t, )" HIm(u, ¥)a(t, b)) = m(e*u, e*bv). (4.26)
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The corresponding semi-direct product K = D x M can be represented as the

subgroup of Sp(n,R) of Sp(n,R) of the form

a(t,b) 0
K = k(t,b,u,v) = tueRTeER"LbeFy,

m(u, 0)a(t,b) (a(tab)TYl

and the group law of K is
E(t,b,u, V)k(t' 0, u', 0") = k(t +t,bb,u+ e*u’, T + bt

Let us compute the map ®. For ¥ = (7, z,)T € R",

—

U 21, To

112
w1 7
<m(u7 U)f7 f> ="u ||f||2 - anngo = —2 < 75

so we obtain

The Jacobian of ® is
Jo (@) = (—2)" 7 (%] = 22) .

It follows that Je(Z) = 0 if and only if =, = 0 or |z,| = ||Z||. These two
hypersurfaces lead to a splitting of R™ into four open hypercones

Uy = {Z = (Zo,2z,)" €R" : 0 < ||Zo]| < zn}

Uy = {Z = (Zo,2,)" €R" : m, < — || To]| <0}

Us = {Z = (Zo,2,)" €R" : 0 <, < || T}

Uy, = {f: (fo,$n)T eR" . — HfQH <z, < O}

and for each © € U;, j =1, ...,4, we obtain

a(t,b) 7 = ¢ = cU;
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which shows that the U; are D-invariant subsets. Consequently, the metaplectic

representation of K is given by,

T -

pk(t,0,u,8) f(Z) = (Nom(uiy Doy f) (&) = e mlTlr20at a0 ent/2 ¢ (1T 7, el

1
for f € L*(R™) and & € R", and we have a decomposition L*(R") =
j=1

L*(U;)
into p-invariant subspaces.
The restrictions ®; of ® to U;, j = 1, ...,4 map the each set U; diffeomor-

phically onto the open hypercone

0= {72 (71, %) = (V15725 - ) €R™ 2 0 < [|0]| < 71}

in R” for all J=1,...,4. In fact, the inverse maps are given by

<1>;1<v>=(<—1>q o ,<—1>q8p<7>) o (=2ta+l pae {01}

where s,(7) = /71 + (—1)PI(7) and () = \/72 — ||F]|® for all ¥ € O. Further-

more, the Jacobians of CDJ.’l at 7 € O are

NN (_1>;D+q+1
S @

It is easier to express &y € R" ! in spherical coordinates, ¥, = ri where @ € S™~2

and r > 0. Then

1
O(7) = O(Zo, xp) = P(rd, x,) = <§(mi + rz),a:nmﬁT> )

Similarly, if ¥y = p< with & € S"72 and p > 0, then

[(Y) =1y, pR) = \/7% — %

Note that I(¥) and hence s,(7) are independent of . Thus,

PR
Sp(71,p)

07 9) = 07 (. = (0P 1)) )
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So if we choose U = Uy, then

1
1) = 1@ 2) = 203+ 7 - (2 = 22
for all ¥ € U and 7 = ®(Z), giving by (4.17),

Fy(@) = &7 (®(rid, 2,)) = &7 (l(xi N 7,2)7,,,:6an)

J j 5
rE,wk >T
- —1)7 ) —1)%s T, Ty
(( N wy T ()
and
o (Ey )] = o (=122 (s, (1, )
[ ] - [ Sp(T’, .’I:n)’ J2 y
— on—2 (T‘rn)2 2
- Sp (7’, J;”) (SIQ)(T, xn) Sp(’]”, xn))
where
) = | 5@ 11 1 (1 ) = |
2 2 ‘
r ifp=1
By (4.26),
10
H = { h(t,b) = e* teER, bEF
0 b

so that det (h(t,b)) = e*'* while det (a(t,b)) = e ™. Furthermore, the left Haar

measure v on D is given by
du(a(t,b)) = dtdb

where db is a left Haar measure of F.
Thus, if S is a transversal for the action of F on the sphere S"~2 in R,
then the set S = {(r,1) : @ € S" 2, 0 < r < 1} will be a transversal for the

action of D on U, as U is a cone and

rw etrbTw

a(t,b) ™ =

1 et
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Now we can determine the admissibility condition for the metaplectic representa-

tion p of K. By (4.18), ¢ € L*(R™) is admissible if and only if

[ Lo (U s o (FEEE apets,0)

dbdt
[Sp(T)Sc(T)]n/2 (1 —r2)ent
a.e. We S"%and 0 <r <1, where p,q,c,d € {0,1} and s,(r) = rP.

= (Sc,p5d7q6¢ (427)

4.5.1 Admissibility in Case n = 3

In the particular case where n = 3 and F' is the rotation group SO(2), we

can specify this admissibility condition more precisely. We parameterize SO(2) as

cosf sind
F =X Ry= : 0 €[0,2m)
—sinf cosf
and give it Haar measure df. Hence D = R x SO(2). Express a vector Zy in the
polar coordinates, T = (%o, x3) = (re™, x3) with r > 0 and 0 < n < 27 and pick
the transversal

S={(r,1):0<r<1}

for the action of D on U = {(re?,x3) : r < x3} in these coordinates. Thus

¢ € L*(R?) is admissible for the metaplectic representation p of K = D x M if

and only if
t// o (S )
o (S i) e = bt

a.e. r € (0,1), where p,q,c,d € {0,1}. Switching to Cartesian coordinates,

7 = e'e”, this condition can be written

dy
|1° retn)/2(1 — r2)

= 0c,p0d,qCo

g o (=1 (r=eg,re 7))o (=1)* (r' 717 [I7]))

a.e. € (0,1).
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4.5.2 Classification in Case n = 3

Let n = 3 and fix («, 3), a # 0. Consider the one-parameter group of the

form

cos Bt sinft 0
Dag = q ap(t) = | —sinft cosft 0| :t€R
0 0 1
Each D, 3 is a subgroup of the group R x SO(2) considered in subsection 4.5.1.

The corresponding subgroups K, g = D, 3 X M can be represented as subgroups

of Sp(3,R)

Ga,s(t) 0
Kop = kag(t,u, @) = i :t,u€R, € R?
m(u, V)aap(t) (aast)")
We classify these groups up to isomorphism, and derive the admissibility
condition for the metaplectic representation. It turns out that the classification

of the isomorphic affine groups G, = Hap X R? is easier to accomplish. The

subgroup H of GL,(R) corresponding to D, s is the one-parameter group

1 0 0
Hop = hap(t) =€ | 0 cos Gt sinpt | ctER

0 —sinfBt cospft

and hence G, 3 = H, 5 x R? is of the form

hop(t)
Gap = o) teR, e R”

0 1
In general, we classify subgroups of the affine group Aff,,(R) of the form

etB 7

Gg = cteR, ¥ eR"
0 1



106

where B is a fixed non-skew symmetric n x n matrix. This classification may be
known, but we are not aware of any reference. Since the groups G are simply
connected Lie groups (using the argument presented in section 5.2), it suffices to

classify the corresponding Lie algebras gg.

Theorem 4.7. Two Lie algebras gz and gp are isomorphic if and only if B is

similar to a nonzero scalar multiple of B.

Proof. Observe that the Lie algebra gg of Gp (and similarly gj) is easily seen to

be of the form

sB ¥
g5 = :seR, eR” 3,
0 O

and thus decomposes into the direct sum of vector spaces gg = Vi & Vx where

(
B 0
Vi=<sM : seR, M= ~R
0 0
\
0 %
Vy =< Xz = . reR"” ZRn,
0 0

\

and the only nontrivial Lie brackets are determined by [M, Xz = Xpz.
Now if B = aSBS~!, where a # 0 and S is an invertible matrix, then the

Lie algebras g5 and gp are isomorphic. In fact define a vector space isomorphism

T:gp— g5 by
1 -~
T(M) =—-M and T(Xf) = ng
a
then
1 -~ 1 1
[T'(M), T(Xz)] = 5M7Xsf:| = aXBSf = —Xusps—1sz = XsBz
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Conversely, let T': gg — g5 be a Lie algebra isomorphism. In light of the

vector space decomposition Vy; & Vy, and the fact that T" maps the nilradical Vy

onto the nilradical Vg, we may represent 7' by a matrix

a 0
7 S
where a # 0, ¥ € R" and S € GL,(R). That is
T(M) = aM + Xy and

T(Xz) = Xsz
Thus

[T(M), T(Xz)] =

= [aM%—Xm ngz] = [GM,XSf] = X, psz
On the other hand

T ([M, Xz]) = T(Xpz) = XsBaz-

Since T is a Lie algebra isomorphism, then SBZ = aBSZT for all # € R”, which
shows that

B = 1535—1
a

and proves the theorem.

O
Note that each h, s(t) is of the form ePas" where
2 0 0
Bap=10 2a p
0 -0 2«
Since B, g is similar to a multiple of B 5 if and only if ‘g} = g (for a # 0,
& # 0), we thus have shown:

Proposition 4.8. G, 3 and G4 5 are isomorphic if and only if ‘§| =

e
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Next we discuss admissibility condition of the groups K,z = Gap5. By
Proposition 4.8, we may assume that @« = 1 and # > 0. Recall that U =

{(re® x3) : 0 <r < w3, 0 €[0,2m)}. One quickly verifies that
S={(re”, 1) : r€(0,1),0 € [0,2m)}

is a transversal for the action of D; g on U. As it is enough to verify the admis-
sibility condition for elements # in the transversal, then by (4.16), ¢ € L*(R?) is

admissible for p if and only if

ret

sp(r)

Lo (e, cayes )o (<10

Se(r)
dt
[8p(7)8c(r)]"/271(1 — r2)edt Oc,p0d,qCy

ei(Q-&-ﬁt)’ (—1)q6t8p(7”))

X

a.e. 7 € (0,1) and 0 € [0, 27) where s,(r) = r? and p, ¢, c,d € {0, 1}.

4.6 Example 3: The Two-Fold Covering of the SIM(2)

Group
cosf  sind
Let n =2 and Ry = . Consider the subspace
—sinf cosf |
—Ur —U2
M =< m(d) == D= (ug,up)’ € R?
—U2 (51

of Sym(2,R), and the group
D= {a(t,0) :==t""*R_g)p : t >0,0€[0,4m)}

of dilations and rotations in the plane. Since every invertible symmetric 2 x 2
matrix whose column vectors are orthogonal is of form m(w), then D acts on M
by

[a(t,0)""]" m(@)a(t,0) " = m(tR_y@) (4.28)



109

with global stabilizer D, = {a(1,0),a(1,27)}. Thus, the corresponding semi-direct

product K = D x M can be represented as the subgroup

til/QR_g/g 0 )
K = k(t,0,u) = ct>0,u€ R 6e[0,4m)
t_1/2m(ﬁ)R,9/2 t1/2R79/2

of Sp(2,R) with the group law
k(t,0,0)k(t', 0, d) = k(tt', (0 +6') mod 47, @ + tR_pu').

Cordero et al. (2006a) showed that K/D, is isomorphic to the group of
similitudes STM (2), and that the restriction of the symplectic representation of K
to the subspace of even functions in L*(R?) factors to a representation of K/D,
which is equivalent to the wavelet representation of STM(2). In addition, admis-
sibility conditions for the metaplectic representation of a class of subgroups of the
form SO(2) x G of Sp(2,R) were derived. A simple reparametrization shows that
these groups are actually all identical to K, and we show now how the admissibility
condition in Cordero et al. (2006a) arises from a sum of wavelet representations.
This will allow us to introduce metaplectic frames as well.

By (4.28), the group H is of the form
H={h(t0):=tR_y :t>0, §€[0,2r) }

and hence,

G=HxR*={ g(t,0,u) := ct>0,0¢c[0,27), @ €R?

with the group law
g(t,0,d,)g(t', 8, d") = g(tt', (0 + 0") mod 27,4 + tR_yu").

which is the similitude group STM(2).
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We note that the map ¥ : a € D — h, € H is not an isomorphism, but its
kernel is D,. It follows that H = D/D,, and similarly, as D, is naturally embedded
in K as the normal subgroup K, = {k(1,0,0),k(1,27,0)}, that G = K/K,.

The metaplectic representation of K is given by

1% U{?(t, 9, ﬁ)] = N_m(g)Dt_l/zDR_ (429)

0/2

that is,

(e [k(t,0.0)] f) (&) = T OFDL2 (12 Ry 07) (4.30)

for f € L*(R?), # € R? and k(t,0,4) € K.

Observe that
1
(m(0)%,T) = —uy(2? — 23) — 2ugw Ty = —2 <ﬁ, 3 (23 — 23, 2w1x2)>

and hence,

Now ® maps the two half planes {# € R* : z; > 0} and {F € R? : z; < 0}
homeomorphically onto a dense open subset of R%. However, none of these half
planes is rotation invariant, thus the process discussed in the previous examples
can not be employed. One way to bypass this obstacle would be to omit rotations

and consider the closed subgroup
Ki=R"xM={k(0a) : t>0, 7€R*}.

As each of the two half planes is invariant under scalar dilation, an admissible
function g for K; may be obtained as shown in the previous examples. Since K
is an extension of K; by the compact group SO(2), g will also be admissible for
K. However, this construction does not yield all of the admissible functions. We
therefore choose to proceed differently, by decomposing p into a sum of subrepre-

sentations.
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For convenience, express elements of R? in polar form, & = re', 0 < n < 2,

and elements of R? as 5 = qe*?, 0 < ¢ < 2. Then split L*(R?) as

L2(R2) = L2 (RQ) ©® Lgdd(RQ)a

even

the closed subspaces of a.e. even, respectively odd functions. One notes from
(4.30) that both of these subspaces are p-invariant, hence p splits into a sum of
subrepresentations w1 @, along these subspaces. Observe that the map V' : f — f

given by f(re™) = e f (re™) maps L2;,(R?) isometrically onto L2, (R?), and

even

carries ji, to a representation uy of L2, (R?) by

(12 (K(£,6,0) £) (re™) = (Vao (51,6, 2)VLF) (re)
= ¢ (N D12 D,V f ) (re®)
— i gim(m(@re’ rein) (Dt71/2D379/2V71f> (7‘6“7)
— pingim(m(@ret,rein) 11/2 (V_lf) (t”%“?‘%
/ eigem<m(ﬂ)rei’7,rein>t1/2f <t1/2rei”_%>
= (4N @ DiraDry ,f ) (re) (4.31)

for f € L?,.,(R?*). Thus, the metaplectic representation p of K on L*(R?) is

even

equivalent to the sum gy @ ps of representations on L2, (R?) @ L2, (R?).

Note that in polar coordinates,
. 7’2 .
(%) = @ (re) = (—62“7) : (4.32)

Furthermore, ® maps the half plane U = {re” : r >0, 0 <7 < 7} bijectively

onto O = H/@\{O} Observe that
Jo (%) = Jo(re") = r* = ||Z]|?
and when ® is restricted to U, then

L (7) = B (ge'?) = \/2ge
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and also
1 1 1

2¢ 251l

Joor(7) = Jar(0e”) = gy =

Now L2, (R?) can be identified with L*(U) in a natural way via the map f(Z) —

even

V2f(Z) for & € U. Composing this map with the unitary operator @ of Proposition

4.3, we obtain a new unitary operator @ : L? . (R?*) — L?(O) by

even

(QF)F) = V2 [Jor (DI"? f (271(7))

or equivalently,

W\ 1 ip/2 2 2
@tae) =2 F (V2e) - (FeLi®)  (139)

whose inverse is

2

(Qﬂz@ (re™) = %zﬁ (%e””) (QZ € L2((’))> . (4.34)

It is easy to see that the assertion of Proposition 4.4 still holds for this operator

(), and in particular,
QDR-Q/QQ-l SC DR,Q'

Thus w1 @ s is equivalent to a sum & = d; B d, of modulated wavelet representations

on L*(O) @ L*(0O), where by (4.29), (4.31) and Proposition 4.4,
0,(t,0,@) = E_¢D;Dg_, and  &(t,0,d) = e?E_yD,Dg_,.

This sequence of equivalences can be represented as a diagram

i split ey Id@adV [y @ pis adQ®adQ 5 ® 0y
! | ! !
1 Lgven(R2) LgveTL(RZ)
L2(R?) =2 eV, QL 12(0) @ LX(0)

@Lgdd(Rz) EBLgven (RQ)
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Since D acts transitively on O we may pick the singleton consisting of
Yo = qe? with ¢ = 1 and ¢ = 0 as transversal. By Theorem 3.6, ¢ = ¢; ® ¢ €

L2 (RQ) @ L2

even even

(R?) is admissible for py @ puy if and only if

/D (Q6)(FR_gt) du(t.0) =y (j=1.2)

and

/D(Qﬁﬁl)(%R—et) e0/2(Qpo) (Yo R_gt) du(t,0) = 0.

Normalising the Haar measure on D to du(t,0) = Zfﬁf,
o , dtdd _
QOGRS T = (=12 (1.3)
and
0o pan y | _ dt df
| [ @eGnat) Qe Gt oy =0 (439
o Jo

We observe that the inner integral in (4.36) can be written as

21 21
/0 (Qe1)(FoL—ot) €/2(Qb2)(ToRgt) d9—/0 (Qo1)(ToR-gt) €/2(Q¢2) (Y, R_gt) db

and thus vanishes, hence the admissibility condition reduces to (4.35). Employing

(4.33), it becomes

e

Replacing ¢y by V1, it follows that ¢ = ¢ & ¢ € L2, (R?) & L2,,(R?) is

2 dtdf

¢;(V2te”’?) ;=c¢ (1=12). (4.37)

admissible for g if and only if (4.37) holds. Switching over to Cartesian coordinates,

this admissibility condition is equivalent to

6,(@)* ., .
- —di=cs (j=1,2).
T Jre |7 ¢

That is ¢ € L?*(R?) is admissible if and only if its even and odd parts are orthogonal

2dx )
> el

vectors of equal length in the space L?(R? Using symmetry and the fact
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that ¢1(%) = [6(Z) + ¢(—7)] /2 and ¢o(Z) = [p(F) — d(—7T)] /2, one easily shows
that this condition is equivalent to the admissibility conditions derived in Cordero

et al. (2006a),

%/ﬂ@wdf:cqﬁ and Mdi’:o.

11 re [
Note that here we have normalized the Haar measure of SO(2) to one; this is why

the constant in front of the first integral differs from that in Cordero et al. (2006a).

4.6.1 Metaplectic Frames

Having established an equivalence of the metaplectic representation of K
with a sum of wavelet representations, we can now make use of the rich theory
wavelet frames to introduce frames for the metaplectic representation. As an il-
lustration, we construct a Parseval frame along the lines of the proof of Theorem
3.12.

Since the global stabilizer D, of K is not trivial, but we want to obtain a
tight frame, we begin with the group G = H x R". Fix an even positive integer
p > 8, set

2
F:{h(t,&)eH: <t<2,0<9<—W}

p

N | —

and

p:{h<4d,277;l)eH . deZ, lezp}.

Then (P, F) is a tiling for H. We again choose the singleton S = {#,} as transver-

sal, and let

| 2
Ty = SF = {3,h(t,0) : h(t,0) e V} = {te‘w L5 <t<2,0<6< —W}
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and

T = SR_2F { R_ah(t,0) h(t,@)eF}

2 4
:{tele' <t< 2—7T (9<—7T}.

p p
Observe that T} U T is contained in the unit square R = [0, 1] x [—1, 0] by choice

l\DI»—\

of p. Now set
U1(qe™) = 15,(ge),  a(qe®) = €%/?11, (ge™).

These two functions are defined as in the proof of Theorem 3.12, except that 'Q/D\Q

has a phase factor ¢*?/? which does not affect the proof of Theorem 3.12. By the

—1
{5<g<4d,%l,a) ) (¢1+¢2) :dEZ,ZEZp,ﬁEZQ}

is a Parseval frame for the sum of modulated wavelet representations of G = H xR?

theorem

on L*(0) & L*(0).
Since the map ¥ : K — G has kernel D,, for each g (4%%”,17) € G,
there exist two elements in K with W <k: (4d, %rl,ﬁ >> =g <4d, %”,ﬁ ), namely

k (4d 2’”, _’> and k <4d 2m + 2—’” ﬁ); we choose first one. Hence

-1
{5<k (4{277;[,@) ) (¢1+w2) : dez,zezp,mW}

is a frame for the sum of modulated wavelet representations  of K = D x M on
L*(O) & L*(0). Next we transfer this frame back to a frame of L?(R?) for the

modulated metaplectic representation. The elements in the two copies of L2, (R?)

corresponding to ;[;; (j = 1,2) are by (4.33),

ulre™ = (@) () = 7 s + L Jre”)
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and
i -1 7 em i
otrem) = (@) r07) = " [15, 15
where
4 . 2
Slz{tew : 1<t<2,0<9<f}, 52:{75619 : 1<t<2,5<9<—w}
p p p

Replacing ¢ by V~1¢,, we obtain

o (re™) = % [152 ¥ 1(—52)] (re”) € Loaa(R?).

Thus, if we let ¢ = ¢1 + @9, then the collection

2 —1
{gd,l,ﬁ 1=,u<l€ <4d,il,ﬁ> )gb : dEZ,ZEZP,ﬁ€Z2}
p

will be a Parseval frame for L?(R?). Now as

-1
p P P

it follows from (4.30) that

d im(m(—47R oy ©)T,7)

Gara (Z) = 274e 3OS (Q*dR_l,@ ,
p

and a detailed computation shows that these functions are of the form

(m(Rom U)%,T)

o _ —im4—d 2l 5 o
Gara () = 27D e ’ 1] [155%0) T lgon g0 = 1552’”] (%)
where

Sl(zﬂ) — {te—ie eR? : 24 <t <20 w <0< w}

for o, 5 € {0,1}.



CHAPTER V
EXTENSIONS OF THE HEISENBERG

GROUP BY DILATIONS

In this chapter, we extend the Heisenberg group by a one-parameter group
of matrix dilations. We then classify these extensions up to isomorphism and show
that they can be represented as subgroups of the symplectic group of the form

discussed in this thesis.

5.1 The Groups G, B,

Recall from chapter II that the Heisenberg group H" can be represented in

matrix form as the polarized Heisenberg group

N

S

81

=1
<y

m

=
“3

N

m

=

h<f72772>h(f/7377z,) Zh(f+x,y+y,z+z'+ff’)

Now fix nonnegative real numbers r and s, and an exponential n X n matrix
A = eP, with at least one of 7, s, A not the identity. Next let D denote the closed

subgroup of G L,,2(R) consisting of block-diagonal matrices of the form

D = {d(t) := diag(r', A",s") : t e R}.
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We assume that A is not an orthogonal matrix in case r = s = 1; this is equivalent
to B being not skew-symmetric and guarantees that the map ¢ — d(t) is one-to-

one. The group D acts on the Heisenberg group H"™ by conjugation,
d(t) h(Z, 7, 2)d(t)" = h(stALZ r'(AT) "ty rts Tt 2); (5.1)
and this action gives rise to a semi-direct product
D xH" ={(d(t),h(Z,7,2)) : d(t) € D, h(Z,7,z) € H"}

with the group operation
(d(t), h(Z, 7, 2)) (d(t), h(Z, 7, 2))
= (d(t+t),h(Z+ s AT, G+ r"(A") Y, 2+ s + s AT
As the action (5.1) is by conjugation, this semi-direct product can be presented in

matrix form as

D% H" = Hyaq:= {h(#,4,2)d(t) : h(Z.§.2) € H", d(t) € D},

that is,
rt gT At stz
Hoas=<h(t,Z,9,2):=| 0 A si7 L yeER" t,zeR
0 0 st

=h(t+t, 7+ s AT G+ r (AT, 2+ rts T+ st AT,
5.2 Classification of the Group G, s,

In order to classify the groups H, 45, we choose a simpler parametrization,

replacing 7 A' with ¢, s'# with ¥ and s’z with z. Furthermore, to distinguish
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between these parametrizations, we rename these groups to G, 4 s,

rt gt oz
Gras=19t,Z,y,2)=| 0 A 7 L, yeR" t,zeR
0 0 &

g(t, 2,7, 2) gt 2,7, 2) = gt +t',s" T+ A7 (AN G+t s 2+t + 7).

It will be simpler to write the dilations in exponential form and relabel the groups

yet again,
eat g‘T 2
Ga,B,c = 0 &Pt 7 | : TyeR t,zeR
0 0 e

where a,c € R, B € M,,(R) and B is not skew-symmetric in case a = ¢ = 0, with

group law

=gt +t, eV T+ BT, P VT4 e e 2+ e + T 7). (5.2)

The groups G g, are simply connected. In fact being semi-direct products, they
are topological products D x H". Now H" carries the topolgy of R?"*!  and is thus
simply connected. Since products of simply connected spaces are again simply
connected, it suffices to show that D is homeomorphic to R.

Clearly, t +— d(t) is continuous. We need to show that its inverse is also
continuous. If a # 0, then ¢ — e is a homeomorphism of R into (0,00). Thus, if
d(t,) — d(to), then e®" — e and hence t,, — tg. A similarly argument applies if
¢ # 0. It is left to consider the case a = ¢ = 0. Then by assumption, B is not skew-

Bt

symmetric and hence the map t — e”" is one-to-one, as can be seen, for example,

from the Jordan normal form of eP!. Suppose first that, e#» — I. Then for
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sufficiently large n, ||e?' —I|| < 1 and hence log(eP'") exists, and el°a(¢”") = ¢Btn,

Bt is one-to-one, we conclude that log(e®™) = Bt,. Since

But as the map t +— e
the log function is continuous in a neighborhood of the identity, it follows that
Bt,, = log(eP™) — log(I) = 0, and hence, as B # 0, t,, — 0. In general, suppose
d(t,) — d(ty). Then eBt — P so that ePtn—0) — [ By the above, it follows
that t,, — tg — 0 or equivalently, ¢, — to. This shows that the inverse of ¢ — d(t)
is also continuous and hence D is homeomorphic to R, so that G, . is simply
connected.

Because the groups G g, are simply connected, it is enough to classify their
Lie algebras g, p.c.

We now show that g, . is the set of matrices of the form

sa Yyl oz
0 sB 7 | :8,zeR, Z,yeR" ;. (5.3)
0 0 sc

et iyl tz

sa Yl oz
YO0)=| 0 sB 7
0 0 sc

so that the set (5.3) is a subset of g, p.. Conversely, let v : (—¢,¢) — G p. be

any differentiable curve with v(0) = I,,15. As the map ¢ — d(t) is one-to-one, we
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with 71,7 : (—g,6) — R and 79,73 : (—¢,6) — R™ and ~;(0) = 0 for all 1.

Computing the derivative at 0 we obtain by chain rule,

1(0)a 3(0)"  %(0)

which is an element of the set (5.3).

Now g, 5. has a decomposition as a direct sum of vector spaces
908 =Vu®Vx DV &V

where
a 0 0
Vu=<sM :seR, M=|0 B 0 ~ R

0 0 c
\
( )
0 00
Vi=<Xz=|00 72| : TeR" ) ~R"
0 00
\ J
0 7 0
W=<Y;=10 0 0| : yeR" ) ~R"
0 0 0
) _
0 0 =z
Ve=<Z.=10 0 0 czeR P ~R
000
\ L
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and the nontrivial Lie algebra brackets are

(M, Xz] = X(B-cn)a; [M,Y5] = Yia_pr)g,
(5.4)

(M, Z.] = Za—c)- Yy, Xz = Zjrz.

Y

The Lie algebras g = g, 5, are all solvable: In fact, we have

g =[ga CVxaV,aV,
=g g | CVxaV,e Vs VxaV,a Vs =V,

g> = [9°.0%] € [Vz,Vz] ={0}.

The classification now involves several steps. Throughout, I will denote the n x n

identity matrix I,,.

Proposition 5.1. If any of the following conditions hold, then g; 5 and g4 5. are

1somorphic Lie algebras.

1. a=a, ¢=c and B is similar to B, say B = SBS™" for some S € GL,(R).

2. (a,B,¢) =ala+k,B+kl,c+ k) for some scalars a # 0, k.

3. (a,B,¢) = (c,BT,a).

Proof. Throughout, we let M = diag(a, B, ¢). Furthermore, elements of the sub-
spaces Vy, Vy and Vy of ;. 5,z Will still be denoted by Xz, Yy and Z,, respectively.
1. Suppose that @ = a, ¢ = ¢ and B = SBS~!. Define a vector space

isomorphism 7" : g, 5. — 94 B¢ by

T(M)= M, T(Xz) = Xsz, T(Yy) = Yis-1)rg T(Z,) =2,.
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A straightforward computation shows that T preserves Lie brackets,

[T(M),T(Xz)] = [M, Xsz] = X(p-ensz = X(sps—1-cnsi = Xs(B—cl)z
= T(X(p-enz) = T([M, Xz])
[T(M), T(Yy)] = [M,Y(s-1yrg] = Yiar_grys-1yrg = Yiar-(ss-1r)s-1rg
= Yis-1yr(r-sryy = T(Yar—sr)y) = T([M,Yy])
[T(M),T(Z.)] = [M,Z.] = Z-2. = Zia-e)» = T(Z(a-e).) = T([M, Z.])

[T(Yy), T(X#)] = [Yis1yrgxs] = Zyrs1sz = Zgrz = T(Zgrs) = T([Vy, Xal ).

2. Next suppose that (a, B, &) = a(a+k, B+ kI, c+ k) with a # 0. Define

a vector space isomorphism 1" : go . — 85 52 Dy

T(M)=—M, T(Xz)=Xz T)=Y; T(Z.)=2..

3. Finally, suppose that (a, B,&) = (¢, BT, a). Define a vector space iso-

morphism 7" : go.5c — 8; gz bY
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Then T preserves Lie brackets, as

[T(Yy), T(Xz)] = X5 Ys] = Zer
This proves the proposition. O

Proposition 5.2. Suppose B is a block-diagonal matriz, B = diag(By, ..., B;). Let
B denote the matriz obtained from B by replacing the i-th block B; with pI — BT,

where p=a+c. Then g, 5. and g, B, are isomorphic.

Proof. By the first part of the previous proposition, we may assume that the block

to be modified is the first block,

By 0 - p[m—B%F 0
B = and B =

0 B2 0 BQ

Let R® = R™ @ R"™™ be the corresponding decomposition of R"™. Define a vector

space isomorphism 7" : g, Bc — 9, 5. DY
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where M = diag(a, B, c), and Z, i, € R™, Zy, > € R*™. Then

[T(M), T(X(@1,20))] = [M, ~Yiz0) + X)) = [M, ~Ya 0] + [M, X0z)]
= _Yv(aIfBT)(:E'l,O) + X(de)(o,gzz) = =Y(B1#1—c#1,0) T X(0,Bagr—ci)
= T(X(B17,—ci1,Baia—cis) = T(Xp@,z0)—c@nas) = T([M, X(z,2)] )
[T(M), T(Ygu,)] = [M, X0y + Yiog] = [M, Xg0)] + [M, Yoz)
= X@-en@0) T Yar-57)05) = X(en-875.0) T Y(0.050-B75)
= T(Yag—BTg1.05-575) = T Vagig-pruan) = T([M Yigug] )

[T(M)v T(Zz)} = [Ma Zz] = Z(a—c)z = T<Z(a—c)z) = T( [Ma Zz] )

= T<Z(§1,272)T(51,9?2)) in T( [}/(??1,372)7 X(fh@)} )
This shows that T" preserves the Lie brackets and proves the proposition. O

By Proposition 5.1, we may normalize the algebras g, p. so that ¢ = 0,
a € {0,1} and B is in real Jordan normal form. Then p = a, and Proposition
5.2 allows us to assume that Re()\) > £ for each eigenvalue A of B. Denote the

normalized Lie algebras by g, 5. The Lie brackets (5.4) are thus of the form

[MJ Xf] = XBfa [MJ }/ﬂ] = }/(pffBT)ng [MJ Zz} = Zp27 D/?j7 Xf] - Zng:Z"' (55)

Let us investigate the structure of g, p for various values of p and types of B.
Begin with the case p = 1. It is easy to see from (5.5) that each Lie algebra
g = g1,p has trivial center. In addition, the nilradical is h = Vx @& Vy @ V. To see

this, note that g itself is not nilpotent:

g1 = [g,9] 2 span {XB:E, Yi_pryy : T,y € Rn}
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and continuing inductively,
g5 = [9793‘71] 2 span {XBjsb‘a Y’(IfBT)jg‘ SRCRTAS Rn}

for all j. Now if B is not nilpotent then obviously, {Xpgiz : ¥ € R"} # {0} for
all 7. On the other hand, if B is nilpotent, then I/ — B” is not nilpotent, so that
{Yi_pryiz : ¥ €R"} #{0} for all j. Thus, g; # {0} for all j. In addition, b is a

maximal ideal in g, and this ideal is nilpotent, as

by = [ha [7] =V
o = [f% [31] = [haVZ] = {O}

Thus, b is the nilradical of g.

Next consider the case p = 0. Clearly, g = go p has center Vz. We split
B into its nilpotent and invertible parts By and B; respectively, and by a change
of basis we may assume that B has form B = diag(By, B1). Now whenever B is
not nilpotent, we may further normalize to det(B;) = 1; after this normalization,
the eigenvalues of B still have non-negative real parts. Furthermore arguing as in
case p = 1, one sees that {Xp,z : @ € R"} # {0} for all j, so that g has nilradical
Vx ®Vy ®Vz. On the other hand, if B itself is a nilpotent matrix of degree k > 1,
then g p is a nilpotent Lie algebra of nilpotency k + 1 > 2. For suppose, B* =0

while B*~! # 0. Then
g1 = [g, 9] = span { Xpz, Ypry, Z, : T, €R", z € R}
and by induction,
g; = [9,9;-1) = span { Xpiz, Vipryig, Z. : 7,5 € R", 2 € R} # {0}

for all j < k. Observe that as B¥ = 0, then g, = {Z. : z € R} = V. It follows

that

Ok41 = [gvgk] = [97 VZ] = {0}
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There is one additional exceptional case, namely (a, B, c¢) = (k, kI, k). Here,
we normalize to & = 1 and denote this normalized Lie algebra by g ;. It has center
Vi & Vy.

It follows that two Lie algebras g; 5 and g, can only be isomorphic if
p = p. Furthermore, g, 5 and go s can only be isomorphic if B and B have

identical degrees of nilpotency. In fact, we have:

Theorem 5.3. Two normalized Lie algebras g, 5 and g, p are isomorphic if and

only if B and B are similar.

Proof. The sufficiency implication is an immediate consequence of Proposition 5.1.
To prove necessity, let T' be a Lie algebra isomorphism mapping g, 5 onto g, 3.
Using the vector space decomposition of these Lie algebras g, g = Var®Vx O Vy BV

and g, 5 = Vir ® Vy @ Vi @ V, we may represent T by the matrix

11 ai2 aiz aiq
Q21 Q22 G23 A24

31 Aazz G33 A34

Qg1 Qg2 A43 QA4q4q

with each a;; corresponding to a linear mapping between Euclidean spaces. (Here
we write elements of the Lie algebras as column vectors.)
First suppose that p = 1. As T maps nilradical to nilradical, and the center

V7 of the nilradical to the center \~/Z of the nilradical, it follows that T" has matrix

a1 0 0 0

a1 Qg a0

(5.6)

as; asy asz 0

Q41 Q42 Q43 A44

with ayy # 0, agq # 0 by invertibility of 7. Next suppose that p = 0 and B, hence

B, is not nilpotent. (The case p = 0 and B nilpotent will be treated later.) Then
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T maps nilradical to nilradical, and the center V; of gy p to the center Vy of 805
hence again has matrix representation (5.6).
In both cases, as T maps the ideal V; onto the ideal V. it determines a Lie

algebra isomorphism T between the quotient algebras,

Ty @ t:=g9,5/Vy — t:= gpyg/ffz. (5.7)

Observe that € (and similarly £) is isomorphic as a vector space to Va; @ Vyx @ Vy

and has nontrivial Lie brackets
(M, Xz = Xz, [M,Yy] =Y,y

hence Ty has matrix representation

a1 0 0
Q21 QAg22 A3
a31 dz2 G33

with ay; # 0. That is,

Note that

[To(M), Ty(Xz)] = To([M, Xz]) = To(Xpz) = Xani + Yagbz

[To(M), To(Yy)] = To(IM, Y5) = To(Yipr-57)7) = Xagsoi-57)7 + Yasspr-57)7

while also

+Y

a11(pI—BT)aze@

[T0<M)7 To(Xaz)} =X

a11Bage®@

a11Baasy + Ya11(pI—BT)a3sﬂ'
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Comparing coefficients, we see that Ty preserves Lie brackets if and only if

B 0 (g Qg3 (g Qg3 B 0
apy B = . (5.8)
0 p[ - BT Q32 Q33 32 Q33 0 p[ - BT

Now the matrix
a1 0 0

O 29 (23 (59)

0 as ass

still represents an isomorphism of vector spaces and satisfies system (5.8), hence
we may assume the Tj is of this simplified form.
Next we determine the value of ay;. If p = 1, then by (5.6) and as T

preserves Lie brackets,
g2, = T(Zz) =T ([M, Zz]) = [T(M), T(Zz)] = [GHM, Za44z] = anasus.,

and it follows that a;; = 1. On the other hand if p = 0, using the fact that the
matrix [Zz Zj;] is invertible by (5.9), equation (5.8) shows that ai;diag(B, —B7T)
and diag(B, —BT) are similar, hence so are their invertible parts a;;diag(B;, —BT)
and diag(By, —BT). However, the determinants of the invertible parts have been
normalized to one, it thus follows that a;; = 1 as well.

Recall that we assume throughout that B and B are in real Jordan normal
form, and we are now ready to show that they have identical Jordan blocks. Con-
sider the adjoint action of M, adys : € — € given by ady (V) = [M, V] for V € ¢.
Since

ady (Xz) = Xz, and ady (Yy) = Yipr—myg,
then Vx and Vi are both adj;-invariant subspaces, and the restriction of ad,; to
Vx @& Vy ~ R" & R” can be represented by the matrix

B 0

0 pl— BT
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Since each eigenvalue A\, of B has real part equal or greater than p/2, it follows
that the collection of eigenvalues and Jordan blocks of ad,; is obtained from that
of B as follows. A Jordan block J; of B corresponding to some eigenvalue \; (for
ease of notation, we consider a complex conjugate pair of eigenvalues as a single
eigenvalue here) gives rise first to an identical Jordan block on Vx belonging to
the very same eigenvalue \; = \; of adys so that Re(\,) = p/2, and secondly
to a Jordan block on Vi derived from pI — JI and belonging to the eigenvalue
A\; =P — Ak, so that Re(\;) < p/2. As we have identified Vy and V4 each with
R™ in the obvious way, these two Jordan blocks operate on the same subspace of
R™. A similar statement holds for ad ;.

Now since Ty maps V = Vx @ V4 onto V=Vyx® f/y, maps M to M and

preserves Lie brackets, we have
adM = TO|V e} adM e} (T0|V)_1'

Thus, ady; and ady, have identical eigenvalues and identical Jordan blocks.

The above description shows that there is a one-to-one correspondence be-
tween the Jordan blocks of B belonging to eigenvalues Re(\) > p/2 and those
of ady; belonging to eigenvalues Re(\) > p/2, the latter blocks operating on Vy
only. As B and ad ;7 have the same property, B and B must have identical Jordan
blocks for this range of eigenvalues. On the other hand, as each Jordan block of
B belonging to an eigenvalue Re(\) = p/2 determines a pair of identical Jordan
blocks of ad,;, one acting on Vx and the other on Vy, and a similar statement is
true for B and ad 17> there is also a one-to-one correspondence between the Jordan
blocks of B and B belonging to an eigenvalue Re(\) = p/2. This shows that B
and B are similar matrices.

It is left to discuss the case where p = 0 and B, B are both nilpotent of

degree k, so that gop and g, 5 are both of nilpotency k + 1. As B and B are
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nilpotent, all their eigenvalues are zero, so it suffices to verify that they both have
Jordan blocks of identical sizes. Again, T" maps center to center and thus factors
as in (5.7). Note that ¢ and & are both of nilpotency k only. In fact, considering

the lower central series
Ej = [E, Ej—l] = [M7 Ej—l] = Spal {Xij, Y(BT)J'g SERTES Rn} (5-10)

where & = £, we see that £; # {0} for j < k, and by nilpotency of B, ¢, = {0}. For
each 1 < r < k, let n, (respectively 7,) denote the number of Jordan blocks of B,
hence of — BT, (respectively B and —BT) which are nilpotent of degree r. Since a
Jordan block of nilpotency r has size r as well, (5.10) shows that a Jordan block of
B of nilpotency r will result in two component subspaces of €; of dimension r — j
each, provided that r > j. Counting the dimensions of the component subspaces

of each £; we obtain

k k

dim(k) =1+2) rn, dim(g) =1+2) rit,
r=1 r=1
k \ k
dim(t;) =2 ) (r=j)n. dim(g) =2 Y (r—j)i,
r=j5+1 r=j+1

where 1 < j < k—1. Now as £; and %j are isomorphic Lie algebras, it follows that
n, = n, for all 1 < r < k, and hence B and B have Jordan blocks of identical

sizes. Thus, the proof of the theorem is complete. O]

5.3 The Metaplectic Representations of the Groups G, .

We now show that the groups G, . and hence H, 4,, are isomorphic to
subgroups of the symplectic group Sp(n + 1,R). With applications in mind, we

normalize only mildly by assuming that ¢ = 0, and setting p = a. We thus consider
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groups
S T
Gop=Rgt, %, 7,2):=| 0 Bt 7| : L,yeR" t,zeR
0O 0 1

with p € R and B € M, (R) fixed, so that the group law is
g(t.7,G,2)9(t, 7,7, 2) = gt + ', &+ 7T, "V G+ M 2 4 Y 4 ).
Consider the n + 1 dimensional subspace of Sym(n + 1,R),

—z =it
M =< m(z,©) = reR", zeR
-z 0

and the closed subgroup of GL,,.1(R),
e—Pt/2 0
D,p=qa(ty) = cteR, yeR"
= _BTt - _BT
—3€ pt/2, ty ePt/2¢ t
The group law in D, g is
a(t,fa(t',7) = a(t + 1, " G+ ). (5.11)
Now M is invariant under the D, g-action, in fact
(a(t, ) ™) mz, @) alt, §) " = m(ez + 57, P7) (5.12)
for m(z,%) € M and a(t,y) € D, . We thus obtain a semi-direct product
K=K,p={k(t,7,7,2) : t,z€eR, z,57€R"}

which can be represented as a closed subgroup of Sp(n + 1,R) by

a(t, ) 0
Kpp = k(t,7,¥,2) = ctzeR, T yeR”



133
and by (5.11) and (5.12) possesses the group law
k(t,Z,7,2) k(' ,2,7,2) =kt +1,% + P77, BG4 ey 2+ Pty 4 g ).

Note that this is the same group law as in G, g. In fact, since D, p acts effectively
on M, then by the discussion in chapter IV, K, g is isomorphic to an affine group

H, p x R""! where by (5.12),
pB = h(t,7) = . JER", teR
and hence

H,p xR =

: h(t, ) € Hyp, (z,7)F € R™™

which is precisely the group G, 5.
We now discuss admissibility of K, p for the metaplectic representation,

which is given by

Now as
er'/? 0 s ePt/2g
a(t, )" (s, W) = =
(5.13)
and
1
m\z,r)(s,w),(s,w = —8°z — 280 & = — 2,7, = s, 25w )
2)(s, @), (s, @ 2= 250" F = 2( [2,7], 5[5, 2590 5.14

it follows that

_ 671'71*(32z+25u7T:i"')e(lfn)pt/4et7'(B)t/2 f(ept/257€fpt/2 <§g+ eBTtu—)-‘>)



134

for f € L*(R™™!) and (s,w) € R"*!. Next we compute the map ® : R*™! — R+,

Equation (5.14) shows that
N P R
O (s, W) = 5(8 ,28wW")
and its Jacobian is computed as
Jo(s, W) = ", (5.15)

We note that Jg(s, ) = 0 if and only if s = 0. This leads to a splitting of R™*!
into two open half spaces

U =R = {(s,@) e R : s <0}

Uy =R = {(s,@) e R : s> 0}
which by (5.13) are both D,, g-invariant.

The restrictions ®; of ® to U;, j = 1,2 map the sets U; homeomorphically

onto the open half space
O+::{(w,7)€@ : w>0}.

of R7*1 and the inverse maps are given by

;') = (Cpvas, CTY

for all (w,7) € O4. Furthermore, by (5.15), the Jacobians of ®; ' at (w,7) € O,

are
1 (—1)(n+0i

e (07 (w,F)  (2w)tre

Jq)].—l(w ,7)

Now as the sets U; are D), p-invariant, it follows that the two complementary

closed subspaces L*(U;) of L*(R™) are both p-invariant. Thus, by the discussion
in section 4.2, the metaplectic representation of K, p is equivalent to the sum

§ = 61 @ 0y of wavelet representations of G, = K,p on L*(Oy) & L*(O.),
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where 9; denotes the wavelet representation of K; g on the corresponding copy of
L*(0,). We therefore can make use of the admissibility results for the wavelet
representation.

The H, g-orbit of a point (w,¥) € Oy is

ert g
(wa;y’)h(tﬂj) = (w7’7) = (eptw, ngr + "76Bt) .
0 eBt

Now when p = 0, then the H, g-stabilizers of a point (w,7) € O, is of the form

—

Hyp(w,¥) = {a(ta’lj) €Hyp : § = % 1 - eBt}}

and is not compact so that the group is not admissible. We thus will assume that
p # 0 in what follows. For p # 0 the stabilizers are easily see to be trivial.

Now we determine what function ¢ are admissible for the metaplectic rep-
resentation. One way would be use (4.18) directly. In order make the connection
with the wavelet representation clear once more, we will use (4.16) instead. We

may choose the singleton consisting of (w,¥) = (1,0) as transversal, whose orbit is
Ong = {(e",57) : FER™ t R} =0,.

Since Oy is a free, open orbit, H, p is admissible by the results of Bernier and
Taylor (1996). (Alternatively, one can verify that A # |det| and e-stabilizers are

compact.) One easily verifies that the left Haar measure on H, g is
dp(h(t, ) = e dt .

By Proposition 3.6, a vector ¢ = 1, + 19 € L*(O,) ® L*(O,) is admissible for 4,

if and only if there is a constant ¢, > 0 such that

/ /@/’i(@pt,?JT)@ﬁj(@pt’?jT)@_p"tdtdg:51‘73‘%- (5.16)
n JR
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Next, we determine the corresponding admissibility condition for the meta-
plectic representation p. By Proposition 4.3, the unitary maps Q; : L*(U;) —

L*(0,), j = 1,2 are defined by

. 1 i (17"
(Q;95)(w,7) = M—nﬂw@ <(—1) Vow, TJ) :

for ¢; = ¢y, € L*(U;) and (w,7) € O4. Thus for ¢ € L*(R"),

2T 1 J pt (=17
(@), 7") = Gammrm? (<—1> Vaer, ?)

By (5.16) and Proposition 4.6, ¢ € L*(R™) is admissible for g if and only if

Nl S ST eT™Mdtdy
/n/ ( Vaert, Toor )9 (=1)7v2et, NorT (26Pt)(n+1)/2_(5i’jc¢’

Setting Z = (1, 7y)” where x; = v/2ePt, &, = ¢/, this can be simplified to

<

2n+1
dx = 5i7]’0¢. (517)

|p|z"t?

. o0 (-1y9)

Note that this admissibility condition does not depend on the choice of dilation

matrix B !

5.4 Connection with Known Groups

In order to relate the groups G; g with some of the groups already discussed

in the literature, we reparametrize all groups involved by changing the variable ¥

BTy

to e” *y. (This means we revert back from the groups G 4 s to the groups H, 45.)

Thus,

e~ Pt/2 0
D=D,p=<alty) = cyeR"teR
pt/2y ept/2€—BTt

with group law

a(t,§) a(t',§) = a(t + ', 5+ ePED4y),
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Since the D-action now is
(a(t, 7)) m(z,2) at,§) " = m(e"z + TPz, P17), (5.18)
it follows that the group law on K = K, g = D, g X M is now parametrized as

k(t,z,i, 2) k(t, &' i, 2) = k(t +1, %+ P2 i + eWI=BNLg o ety 4 i’ ePta)
(5.19)

and the metaplectic representation of K thus turns out to be parametrized by

N(k(t7 f? ?j, Z))f(57 U_j) = [N—m(z,f)Da(t,ﬁ)f](Sv 117)

— 671'7r(32z+2$u7TaE')e(lfn)pt/életr(B)t/QJc(61)25/287 efpt/ZeBTt (§g+ u—)»)> )

for f € L*(R™"!) and (s, w) € R™.
Furthermore, we have

t g*TeBt
H,p =1 h(t,y) = cyeR" teR

0 eBt

and the group operation on the affine group

ept g*TeBt =
Gpp=H,p xR = g(t,Z,9,2):=| 0 Bt z| : T, 9€R"t,2€R
0 0 1

follows the law (5.19).

The H, g-orbit of the transversal (w,7) = (1,0) becomes
0(1’0) = {(ept,y_TeBt) : :lje Rn,t S R}
and the left Haar measure of H, p is now parametrized to

du(h(t, i) = etrB=rt 4t dg. (5.20)
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By Proposition 3.6, a vector ¥ = 1) + 1y € L*(O4) & L*(O,) is admissible for §

if and only if there is a constant ¢, > 0 such that

/ / i(ert, ?jTeBt)wj(ept, ngeBt)e("(B)’p”)t dt dy = 9; jcy. (5.21)
n JR

A change of variables leads back to admissibility condition (5.16) and hence to

(5.17).

We now show that some of the groups discussed in the recent literature fall
into the class of the groups G, g. First choose p = 2 and B = I,,. Thus the dilation

group is

Hyp, =

n

h(t,y) = cyeR"teR

which by (5.20) has Haar measure du(h(t,y)) = e ™ dt dy. Furthermore

e?t et 2
Gor, = 9(t,Z,9,2):= | 0 eI, | : LYER t,zeR
0 0 1

with group operation

2t 1 t—»T—»/).

g(t, 2,9, 2)g(t", T, 7, 2) = gt +t', T+ e'a’ 4+ 'y, 2 + ¥ + 'y &

Now we switch from the polarized Heisenberg group to the Heisenberg group by

changing z to u = 2z — 7 Z. The group law is now
g(t,Z. g, u)g(t', 7,7 ) = gt + ', T+ ', G+ 'Y u+ M + €' [(Z,9), (T, 7)),
and we have obtained the group H? of Cordero et al. (2010).

Next we choose p =1 and B = I,,, to obtain the group

Hip, =< hit,y) = cyeR"teR
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whose Haar measure by (5.20) is du(h(t, y)) = dt dy. The group law on

el glel =z
Gl I, — g(taf7 :'j> Z) = 0 etln T f??je Rnataz eR
0 0 1

1s
9(t, 2,7, 2)9(t", 7,7, 2) = gt +t',F+ 'a/, G+ €'F, 2+ 2 + G T).
This is the group (T'DS),, of King (2009).

Finally, we choose p = 1 and B = diag(+, 2,..., %=1 1). The group G p =

“eey n

Hy p x R™"! is the group (C'DS),, of Czaja and King (preprint).

We observe that the admissibility conditions given by the authors of these

last three examples coincide with (5.17).



CHAPTER VI

CONCLUSION

The results of this thesis fall into three parts.

In the first part, finite and countably infinite sums of modulated wavelet
representations were introduced. Theorem 3.6 gives a characterization for a vector
to be admissible for the sum of wavelet representations. Theorem 3.9 shows that
a subgroup of the affine group is admissible for a sum of wavelet representations
if and only if it is admissible for the usual wavelet representation, and its proof
presents a concrete way on how to obtain an admissible vector. Theorem 3.10 then
shows how to construct a bandlimited admissible vector, provided that the dilation
group possesses an expanding matrix. This condition also allows the construction
of frames as outlined in Theorems 3.12 and 3.13.

The second part considered subgroups of Sp(n, R) which arise as semidirect
products K = D x M and are isomorphic to or compact extension of subgroups
G = H x R"™ of the affine group. By examples, it was shown that in many cases,
the metaplectic representation of D x M decomposes into a finite sum of subrepre-
sentations, each of which is equivalent to a modulated wavelet representation of GG,
and hence of K. The admissibility results on sums of wavelet representations can
thus be used to obtain concrete conditions for a function to be admissible for the
metaplectic representation, and even to construct metaplectic frames. It was also
shown that the concept of admissibility for the metaplectic representation given in
Cordero et al. (2006a) is more narrow than the usual one. Finally, these techniques

clarify the relationship between the metaplectic and wavelet representations of the
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group SIM(2) derived ad-hoc in Cordero et al. (2006a), and show how frames
can be introduced to the metaplectic representations of STM(2) and its two-fold
covering.

In the third part, a one-parameter matrix group of dilations on the Heisen-
berg group H" was introduced, generalizing previous results for H' in Schulz and
Taylor (1999). In Theorem 5.3, the extensions of H" by such one-parameter groups
were classified up to isomorphism using Lie-algebra techniques. It was shown that
these extensions are subgroups of Sp(n,R) as discussed in part 2, and hence ad-
missibility conditions for the metaplectic representation could be derived. It the
was shown that the groups T'DS in Cordero et al. (2006a), (T'DS),, in King (2009)
and (C'DS),, in Czaja and King (Preprint) are special cases of this construction.

While Proposition 3.8 gives a necessary condition for subgroups D x M of
Sp(n,R) to be admissible, there is no sufficiency result yet which mirrors part 2
of Theorem 3.9 and provides conditions sufficient for admissibility of the meta-
plectic representations. The difficulty here is that in general, no analogue of the
Plancherel Theorem is available. Work towards this goal, together with algorithms

for constructing admissible functions, could be the direction of future research.
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