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LIQUID WATER/ QM/MM/ ONIOM-XS 

 

Molecular dynamics (MD) simulations based on conventional QM/MM scheme 

and ONIOM-XS method have been performed to investigate the structural and 

dynamical properties of liquid water. The region of highest interest, i.e., a sphere 

which contains a central water molecule and its nearest-neighbor waters, was treated 

at the Hartree-Fock (HF) level of theory using DZP basis set, while the rest of the 

system was described by the flexible BJH-CF2 model. With regard to both the 

HF/MM and ONIOM-XS trajectories, the arrangement of hydrogen bonds (HBs) in 

liquid water is found to be rather flexible, in which the nearest-neighbors are either 

“loosely” or “tightly” bound to the central water molecule. Consequently, this leads to 

numerous water exchange mechanisms, with either “short-live” or “long-live” 

exchange periods, as well as to large fluctuations in the number of HBs, ranging from 

2 to 6, with the prevalent value of 4. By means of the ONIOM-XS simulation, it is 

observed that the structural arrangement of liquid water with respect to 4 HBs 

decreases significantly and that the distributions of 2- and 3-fold HB species become 

more  visible, i.e., compared to the HF/MM results. Overall, the observed  differences  
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CHAPTER I 

INTRODUCTION 

 

1.1 Literature reviews 

Water, the most abundant substance on earth, is known to play a central role in 

many areas of science, including physics, chemistry, biology and geology. In solid 

phase, each water molecule simply conducts four-hydrogen bonds with its 

neighboring water molecules, forming a well-defined tetrahedral structure. In liquid 

phase, however, the pattern of hydrogen bond structure and its dynamics properties 

are not fully understood. During the past decades, numerous experimental techniques 

and theoretical approaches have been employed to elucidate the properties of liquid 

water. However, significant differences among the experimental results, as well as 

between the experimental and theoretical observations, were often found, leading to 

strong debate in describing the properties of liquid water. 

In terms of experimental observations, several techniques such as X-ray 

diffraction (XD), neutron diffraction (ND), nuclear magnetic resonance (NMR) 

measurements, X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy 

(XES) and infrared spectroscopy (IR) have been applied to obtain detailed knowledge 

of liquid water. There are many experimental review articles that try to explain the 

arrangement of water molecules in liquid phase (Fu, Bienenstock, and Brennan, 2009; 

Ludwig, 2001; Nilsson et al., 2010; Weinhardt et al., 2010). As a matter of fact that 

the time scales for hydrogen bond forming and breaking of liquid water are extremely  



 

 

 

 

 

 

 

 

 2

fast, i.e., in femto to picosecond (Tokmakoff, 2007), it should be noted that there is no 

single experimental technique that can provide a complete set of structural and 

dynamical data of water. For example, X-ray and neutron scattering techniques are 

only useful in providing structural details, while the IR and Raman techniques are 

instead preferred in order to obtain dynamics information. Numerous X-ray and 

neutron scattering experiments have been carried out to investigate the structural 

properties of liquid water (Head-Gordon and Hura, 2002; Hura, Sorenson, Glaeser, 

and Head-Gordon, 2000; Okhulkov, Demianets, and Gorbaty, 1994; Soper, 2000; 

Soper, Bruni, and Ricci, 1997; Sorenson, Hura, Glaeser, and Head-Gordon, 2000), 

most of which reported the tetrahedral structure with coordination number near 4. 

Smith and coworkers made use of Raman spectroscopy to interpret the structure of 

liquid water, in which the results supported the fully tetrahedrally hydrogen bonded 

model (Head-Gordon and Johnson, 2006; Smith et al., 2005). Recently, the 

interpretation of the structure of water through a Compton scattering study (Hakala et 

al., 2006) supplied information that each water molecule contains about 3.9 hydrogen 

bonds.  

However, this standard picture of liquid water has been challenged by Wernet 

and co-workers (Wernet et al., 2004), who used XAS and XES techniques to 

investigate the structure of liquid water. Of particular interest, they reported that, at 

room temperature, 80% of water molecules in liquid phase form only two strong 

hydrogen bonds with one donor and one acceptor, consisting mainly of chain or ring 

structures, while the remaining 20% of water molecules being made up of tetrahedral-

like hydrogen bonded structures. These observations are in good accord with an early 

XAS study by Myneni and coworkers in 2002, who suggested a water coordination 
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number as small as 2.4 (Myneni et al., 2002). In addition, a more recent experiment 

by high resolution XES technique (Tokushima et al., 2008) reported that the liquid 

water consists of distorted structure and tetrahedral structure with ratio of 2:1. As a 

consequence, this is the starting point that sparks many researchers to re-check the 

structural properties of liquid water. In very recent discussion on the behavior of 

liquid water (Nilsson and Pettersson, 2011), it has been demonstrated that water is 

inhomogeneous with a fluctuating hydrogen-bond network around two types of 

structures, strongly tetrahedral and strongly hydrogen-bond distorted. In this respect, 

most water molecules favor a closer packing than tetrahedral, with strongly distorted 

hydrogen bonds. With regard to these observed discrepancies, some researchers (Holt, 

2008) claimed that the results may be affected by the specifics of each experimental 

technique. For example, X-ray and neutron scattering provide bulk structure 

measurements involving static averaging over small and large length scale structure in 

liquid water, whereas XAS investigate instantaneous, small length scale structure, 

which may not be persistent outcome.  

In terms of theoretical investigations, many attempts have been made to 

elucidate the properties of liquid water. In the first period, there are many research 

groups started from studying the properties of small water clusters, i.e., the first step 

in describing the properties of bulk water (Gregory and Clary, 1996; Maheshwary, 

Patel, Sathyamurthy, Kulkarni, and Gadre, 2001; Schutz, Rauhut, and Werner, 1998). 

Later, several water models have been proposed and employed in molecular dynamics 

(MD) and Monte Carlo (MC) simulations. In this respect, the potential functions that 

describe hydrogen bond interactions of liquid water have been developed varying 

from very simple assumptions based on atomic point charge and rigid bonds to more 
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sophisticated models that include molecular flexibility and polarization effects 

(Lopes, Roux, and MacKerell, 2009). Popular water models include extended simple 

point charge (SPC/E) (Berendsen, Grigera, and Straatsma, 1987), four-point 

transferable intermolecular potential (TIP4P) (Jorgensen, Chandrasekhar, Madura, 

Impey, and Klein, 1983), five-point transferable intermolecular potential (TIP5P) 

(Mahoney and Jorgensen, 2000), Reimers-Watts-Klein (RWK) model (Reimers, 

Watts, and Klein, 1982), as well as other polarizable empirical potentials (Bukowski, 

Szalewicz, Groenenboom, and van der Avoird, 2008; Caldwell, Dang, and Kollman, 

1990; Cieplak, Kollman, and Lybrand, 1990; Fanourgakis and Xantheas, 2008; 

Kozack and Jordan, 1992; Stern, Rittner, Berne, and Friesner, 2001; Svishchev, 

Kusalik, Wang, and Boyd, 1996). During the past decades, these water models have 

been widely used, providing good correlations with experimental data. Nevertheless, 

some serious problems, such as effects of many-body contributions, still exist since 

most of potential functions employed in the simulations are usually derived with 

respect to water dimer, i.e., based on pairwise-additive approximations. In addition, 

such potentials can not be used for describing bond-breaking and bond-forming 

behaviors.  

Nowadays, as a consequence of the rapid development in computer capacity 

and performance, these problems can be solved by performing quantum-mechanics-

based MD simulations, in which the force on each particle in the system can be 

computed directly from the first principle calculations (Stone, 2007). In terms of the 

Car-Parrinello (CP) MD technique (Car and Parrinello, 1985), the whole system is 

treated quantum mechanically using density functional theory (DFT), with common 

exchange correlation function BLYP and PBE. Recently, several CP-MD simulations 
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have been performed for systems of 32 and 64 water molecules (Grossman, 

Schwegler, Draeger, Gygi, and Galli, 2004; Izvekov and Voth, 2002; Kühne, Krack, 

and Parrinello, 2009; Lee and Tuckerman, 2006, 2007). With regard to the CP-MD 

results, however, it has been reported that some properties of liquid water are rather 

sensitive to the density functional models chosen. At ambient conditions, it has been 

demonstrated that the CP-MD technique is limited to study the structural properties of 

liquid water, i.e., due to the overestimation of water-water interactions (Lee and 

Tuckerman, 2006; Yoo, Zeng, and Xantheas, 2009). Consequently, some dynamics 

properties obtained from the CP-MD simulations, such as self-diffusion coefficients, 

showed significantly smaller value than that of experiments. Recently, it has been 

shown that liquid water simulated by the CP-MD technique under ambient condition 

is super-cooled or glassy (Lee and Tuckerman, 2007). 

Besides the CP-MD technique, an alternative approach is to apply a so-called 

combined quantum mechanics/molecular mechanics (QM/MM) technique. According 

to the QM/MM technique, the most important part of the system is treated by 

quantum mechanics, while the rest of the system is described by appropriate 

molecular mechanical (MM) potentials. Recently, a series of QM/MM MD 

simulations, namely HF/MM, B3LYP/MM and MP2/MM, have been performed for 

studying liquid water (Xenides, Randolf, and Rode, 2005, 2006). Comparing between 

the HF, B3LYP and MP2 methods employed in the QM/MM MD simulations, they 

found that the use of HF method with enlarged QM size can provide simulation 

results in good agreement with those obtained by the correlated MP2 calculations, 

while the B3LYP method predicted a too rigid water structure as well as too slow 

exchange rates. Regarding the analogous HF/MM simulation with enlarged QM size 
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(Tongraar and Rode, 2004; Xenides, Randolf, and Rode, 2005, 2006), the results 

clearly indicated an enormous flexibility of the HB network in liquid water, 

suggesting that each water molecule forms (on average) only 2.8 HBs. In this respect, 

the tetrahedral-coordinated water seems most accepted at the present time, but it is 

apparent that a mixture of a minority of higher (4-linked) and a majority of lower (2-

linked) hydrogen bond coordinated water in good accord with the experimental data 

(Leetmaa et al., 2008). 

According to the conventional QM/MM MD technique, however, only the 

exchanging particles are treated by a smoothing function when they are crossing the 

QM/MM boundary. In practice, this is not realistic since the immediate addition or 

deletion of a particle in the QM region due to the interchange also affects the forces 

acting on the remaining QM particles. Furthermore, the conventional QM/MM 

framework cannot clearly define the energy expression during the exchange process. 

To solve these problems, a more sophisticated QM/MM MD technique based on 

ONIOM-XS method (which will be abbreviated throughout this work as “ONIOM-XS 

MD”) has been proposed (Kerdcharoen and Morokuma, 2003). The ONIOM method, 

originally developed by Morokuma and co-workers (Svensson et al., 1996) can 

handle not only the QM + MM combinations (which is implemented in the 

conventional QM/MM scheme), but also the QM + QM combinations. In the present 

work, an interest is therefore to apply the ONIOM-XS technique for studying the 

hydrogen bond structure and dynamics of liquid water. The results obtained by the 

ONIOM-XS simulation can be expected to provide more reliable data of liquid water, 

i.e., compared to those obtained by the conventional QM/MM scheme, leading to 

further understanding the properties of this peculiar liquid in many areas of science. 
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1.2 Research objectives 

1. To apply a more sophisticated ONIOM-XS MD technique for studying the 

hydrogen bond structure and dynamics of liquid water. 

2. To compare the ONIOM-XS results with those obtained by the conventional 

QM/MM MD scheme, in order to validate the conventional QM/MM technique for 

the treatment of such hydrogen bond system. 

 

1.3 Scope and limitation of the study 

Conventional QM/MM and ONIOM-XS MD simulations will be performed to 

investigate the structural and dynamical properties of liquid water. By the QM/MM 

technique, the system consists of a “high-level” QM sphere which contains a central 

water molecule and its nearest-neighbor water molecules embedded inside a cube of 

“low-level” MM water molecules. For the QM treated-region, the QM size with a 

diameter of 8.8 Å was chosen, consisting of a central water molecule and about 10-14 

nearest-neighbor waters. All interactions inside the QM region are treated at Hartree-

Fock (HF) level of accuracy using DZP basis set. In the MM region, all interactions 

are described by means of a flexible BJH-CF2 model (Bopp, Jancsó, and Heinzinger, 

1983). The structural properties of water will be analyzed through a set of radial 

distribution functions (RDFs) and their corresponding integration numbers, together 

with detailed analyses on angular distribution functions (ADFs) and orientations of 

water molecules surrounding the central H2O. The dynamics details will be analyzed 

with respect to mean residence times (MRTs) of water molecules surrounding the 

central H2O, as well as to the water exchange processes at the central reference water. 

The results obtained by the conventional QM/MM and ONIOM-XS MD simulations 
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will be compared and discussed with respect to the previous simulation results, as 

well as to the available experimental data. 
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CHAPTER II 

THEORETICAL AND COMPUTATIONAL METHODS 

 

2.1 Quantum mechanics 

Nowadays, there are a number of quantum mechanical methods available for 

obtaining the observable chemical properties. The quantum mechanical methods 

(Szabo and Ostlund, 1989) are based on finding solutions with respect to Schrödinger 

equation on molecular orbital theory. According to quantum mechanics postulates, the 

systems are fully described by “wave function,” Ψ, which depends on the position of 

electrons and nuclei in the system. 

 

2.1.1 Schrödinger equation 

The objective of all ab initio electronic structure theories is the 

solution of the time-independent Schrödinger equation, which can be expressed in a 

time independent form as  

 

Ψ=Ψ EĤ ,     (2.1) 

 

where Ĥ  is the Hamiltonian operator, which corresponds to the kinetic energy, T̂ , 

and potential energy, V̂ , of the system, the Hamiltonian operator will be shown in 

atomic units.   
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VTH ˆˆˆ += ,     (2.2) 

where 
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Then, rewriting the equation (2.1) gives 
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where 2∇ is the Laplacian operator, written as 
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Here, h  is Planck’s constant divided by 2π. Ψ is an eigenfunction which characterizes 

the particle’s properties, and E is the eigenvalue of the particle with respect to the 

eigenfunction. 
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2.1.2 Born-Oppenheimer approximation 

  For N particle system, the Hamiltonian operator ( Ĥ ) takes into 

account five contributions to the total energy of a system, namely the kinetic energies 

of the electrons ( eT̂ ) and nuclei ( nT̂ ), the attraction of the electrons to the nuclei ( enV̂ ), 

and the inter-electronic ( eeV̂ ) and inter-nuclear ( nnV̂ ) repulsions, as shown in equations 

(2.7) and (2.8), 

 

nneeenne VVVTTH ˆˆˆˆˆˆ ++++= ,    (2.7) 
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1ˆ , (2.8) 

 

where i and j represent electrons, A and B represent nuclei, M is the mass of nucleus, 

Z is the atomic number, r and R are the distances between particles.  

The “Born-Oppenheimer approximation” can be used to further 

simplify the Schrödinger equation. This allows the equation to be separated into 

electronic and nuclear terms. Since the nuclei are much heavier than electrons, they 

move much more slowly. Therefore, one can consider the electrons in a molecule to 

move with respect to the field of fixed nuclei. By this approximation, the kinetic 

energy of the nuclei can be neglected and the last term in equation (2.8), the repulsion 

of nuclei, can be considered as a constant. The remaining terms in equation (2.8) are 

called the electronic Hamiltonian or Hamiltonian describing the motion of N electrons 

in the field of M point charges,  
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2.1.3 Independent electron approximation and Hartree products 

In practice, an exact solution to the Schrödinger equation is not 

possible for any molecular systems. In this respect, a number of simplifying 

assumptions and procedures do make an approximate solution possible for a large 

range of molecules. To simplify the treatment further, the next step is to assume that 

the electrons are non-interacting in which the appropriate functional form of the wave 

function for N electrons can be written as 

 

)(ˆˆ
1

ihH
N

i
elec ∑

=

= ,    (2.10) 

 

where )(ˆ ih is the one-electron Hamiltonian, defined by  
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where M is the total number of nuclei. 

Eigenfunctions of the one-electron Hamiltonian in equation (2.11) 

must satisfy the corresponding one-electron Schrödinger equation, as shown in 

equation (2.12). 
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)()()(ˆ ijjij xxih χεχ = ,    (2.12) 

 

where )( ij xχ is a set of spin orbital, i.e., the wave function for electron that describes 

both its spatial distribution and its spin, 
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Because Ĥ  is a sum of one-electron Hamiltonians, a wave function is 

a simple product of spin orbital wave functions for each electron, as shown in 

equation (2.14). 

 

)()()(),,,( 2121 NkjiN
HP xxxxxx χχχ LL =Ψ .   (2.14) 

 

A wave function of the form in equation (2.14) is called a ‘Hartree 

product’ and it is an eigenfunction of Ĥ  with eigenvalue, E, 

 

HPHP EH Ψ=Ψˆ ,     (2.15) 

 

where E is the sum of the spin orbital energies of each of the spin orbitals appearing 

in HPΨ , 
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kjiE εεε +++= L .     (2.16) 

 

2.1.4 The antisymmetry principle and Slater determinants  

According to equation (2.14), however, such a wave function is not 

acceptable because it does not allow the property of antisymmetry. The multi-electron 

wave function must take into consideration the fact that electrons are 

indistinguishable, and therefore, interchanging electron position assignments in a 

wave function cannot lead to a different wave function. The antisymmetrized wave 

functions can be obtained as follows. Considering a two-electron case occupying the 

spin orbitals iχ  and jχ , the electron-one and electron-two are put in iχ  and jχ , 

respectively, as shown in equation (2.17), 

 

)()(),( 212112 xxxx ji
HP χχ=Ψ .    (2.17) 

 

On the other hand, if the electron-one and electron-two are put in jχ  

and iχ , respectively, the Hartree product is shown in equation (2.18). 

 

)()(),( 122112 xxxx ji
HP χχ=Ψ .    (2.18) 

 

Each of these Hartree products clearly distinguishes between electrons. 

The wave function that satisfies the requirement of the antisymmetry principle can be 

achieved by taking appropriate linear combination of these two Hartree products as 
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[ ])()()()(2),( 2121
2/1

21 xxxxxx ijji χχχχ −=Ψ − .   (2.19) 

 

The factor 2/12−  is a normalization factor. The minus sign insures that 

),( 21 xxΨ  is antisymmetric with respect to the interchange of the coordinates of 

electrons one and two, 

 

),(),( 1221 xxxx Ψ−=Ψ .    (2.20) 

 

From equation (2.19), it is evident that the wave function vanishes if 

both electrons occupy the same spin orbital (i.e., if i=j). Thus, the antisymmetry 

requirement immediately leads to the usual statement of the Pauli Exclusion Principle 

in which no more than one electron can occupy the same spin orbital. The 

antisymmetric wave function of equation (2.19) can be rewritten as “Slater 

determinant,” 
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For N electron system, the generalization of equation (2.21) is written 

as 
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Here, the factor !/1 N  ensures that the wave function is normalized. 

The short-hand notation for a normalized Slater determinant only shows the diagonal 

elements of determinant, 

 

〉=Ψ )()()(),...,,( 2121 NkjiN xxxxxx χχχ L  .   (2.23) 

 

2.1.5 The Hartree-Fock approximation 

  In practice, many-electron Schrödinger equation cannot be solved 

exactly, even for a simple two electron system such as helium atom or hydrogen 

molecule. Therefore, some approximations are required for solving the Schrödinger 

equation. By the variation method, the simplest antisymmetry wave function, which 

describes the ground state of N electron system, is a diagonal Slater determinant, 

 

〉=〉Ψ )()()( 210 Nkji xxx χχχ L .   (2.24) 

 

According to the variation principle, the best sets of spin orbital correspond to the one 

that gives the lowest expectation value of energy. In this respect, the expectation 

value of the energy obtained by this wave function never lies below the exact energy 

of the ground state, which can be expressed in mathematical terms as 

 

000
ˆ ΨΨ≤ HE .    (2.25) 
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Consequently, the appropriate sets of spin orbital can be solved from 

the Hartree-Fock (HF) equation, 

 

)()()(ˆ
ii xxif εχχ = ,     (2.26) 

 

where f(i) is an effective one-electron operator, called the Fock operator, which can be 

written as  
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2 i
r
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A iA

A
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,   (2.27) 

 

where )(iHFν is the average potential or Hartree-Fock potential experienced by the ith 

electron due to the present of other electrons. The essence of the Hartree-Fock 

approximation is to replace the complicated many-electron problem by a one-electron 

problem in which the electron-electron repulsion is treated in an average way. Thus, 

the Hartree-Fock equation (2.26) is nonlinear and must be solved iteratively. The 

procedure for solving the Hartree-Fock equation is called the self-consistent-field 

(SCF) method. 

The idea of the SCF method is simple. By making an initial guess at 

spin orbitals, one can calculate the average field ( )(iHFν ) seen by each electron and 

then solve the eigenvalue equation (2.26) for a new set of spin orbitals. Using these 

new spin orbitals, one can obtain new fields and repeat the procedure until self-

consistency is reached.  
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2.1.6 Basis set 

A conceptually appealing model for the (trial) wave function of our 

molecular system can be constructed from molecular orbitals (MO). The molecular 

orbitals (ψ ) can be built from the atomic orbitals by using a so-called “Linear 

Combination of Atomic Orbitals to Molecular Orbitals (LCAO-MO)” method. This is 

one of the most important and widely used ideas in quantum chemistry. The LCAO-

MO can be expressed as  

 

∑
=

=
n

ii c
1μ

μμ φψ ,    (2.28) 

 

where icμ  are the molecular orbital expansion coefficients, and n is the number of 

atomic basis function. Here, the set of n function μφ  is called basis set. The icμ  can be 

calculated using various approaches, most of which are based on the linear variation 

methods. 

The common types of basis function, or called atomic orbital, used in 

the electronic structure calculation are Slater Type Orbitals (STOs) (Slater, 1930) and 

Gaussian Type Orbitals (GTOs) (Boys, 1950). 

The formalism of the STOs can be presented as 
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where N is a normalization constant and ζ is an exponent. The r, θ, and φ are spherical 

coordinates, and lmY  is the angular momentum part. The n, l, and m are quantum 

numbers referring to principal, angular momentum and magnetic quantum number, 

respectively. The STOs screening constants are calculated for small model molecules 

using rigorous self-consistent field methods, and then being generated for use with 

actual molecules of interest. The accuracy of STOs can be improved by combining 

two or more STOs (i.e., with two different ζ values) into a single one-electron 

wavefunction (double ζ basis set). 

The STOs are usually applied for atomic and diatomic system, which 

high accuracy, such as in semi-empirical methods where all three- and four-center 

integrals are neglected and in density functional methods that do not include exact 

exchange and that the coulomb energy is calculated by fitting the density into a set of 

auxiliary functions. However, the STOs do not satisfy in two-electron integral 

problem. The feasible basis functions is GTOs, which are functions of the form 
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),,;,,,( ααφ −= ,    (2.30) 

 

where N is a normalization constant, and α is an exponent. The x, y, and z are 

Cartesian coordinates. The l, m, and n are now not quantum numbers but simply the 

integral exponents at Cartesian coordinates and r2 = x2 + y2 + z2. The advantage of 

GTOs is that the product of two Gaussians at different centers is equivalent to a single 

Gaussian function centered at a point between the two centers. Therefore, the two-

electron integral problem on three and four or more different atomic centers can be 
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reduced to integrals over two different centers. However, the GTO gives an inferior 

representation of the orbitals at the atomic nuclei, which can be considered at 1s-

orbital. A 1s-orbital of STO has a cusp at the atomic nucleus but a GTO does not, as 

shown in Figure 2.1. In this respect, the larger basis set must be used to achieve the 

accuracy comparable to that obtained from STOs. 

 

 

Figure 2.1 The Slater-type and Gaussian-type for 1s orbital. 

 

  The most important factor for creating the molecular orbital is a set of 

parameters applied to the basis function, called basis set. The smallest number of 

function possible for constructing the molecular orbital is called a minimum basis set. 

The improvement of the basis set can be made by replacing two basis functions into 

each basis function in the minimal basis set, called double zeta (DZ). The larger basis 

set is a triple zeta (TZ), where three basis functions are used to represent each of the 

minimal basis set. The compromise between the DZ and TZ basis sets is called a split 

Slater-type 1s orbital Gaussian-type 1s orbital 
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valence (SV) basis set, in which each valence atomic orbital is represented by two 

basis functions while each core orbital is represented by a single basis function. 

In 1969, Pople and coworkers (Hehre, Stewart, and Pople, 1969) 

designed the basis set by expanding the STO in terms of n primitive Gaussians, called 

STO-nG basis set. The primitive Gaussian has been derived for n = 2-6. However, the 

STO-3G basis set is a widely used minimal basis set, as shown in Figure 2.2. The 

STO-3G basis set partially represents the cusp of s-type orbital at the atomic nuclei. 

 

 

Figure 2.2 The STO-3G basis set representing the desired STO. 

 

In addition, Pople and coworkers have applied the split valence to 

obtain flexibility in the basis set, which can be designed as k-nlmG basis set. The first 

parameter (k) indicates the number of primitives used in the contracted core, while the 

two values (nl) refer to a split valence, and three values (nlm) refer to a triple split 

valence, such as 6-311G. For the triple split valence basis, the core orbitals are a 

contraction of six primitives and the valence splits into three functions, represented by 

three, one and one primitive GTOs, respectively. The Pople’s style basis sets may 

include diffuse and/or polarization functions. The diffuse function can be denoted as + 

STO-3G 1s basis function 
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or ++ before the G, in which the first + indicates one set of diffuse s- and p-function 

adding on heavy atoms and the second + refer to the inclusion of diffuse s-function 

for hydrogen atom. The polarization function can be put after the G, which separates 

designation for heavy and hydrogen atoms. For example, 6-31+G(d) basis set refers to 

a split valence with additional diffuse sp-functions and a single d-type polarization 

function only on heavy atoms. The largest standard Pople style basis set is 6-

311++G(3df,3pd). In addition, the polarization function can be replaced with * 

notation, for example, the 6-311G* basis set is identical to 6-311G(d) and 6-311G** 

basis set is identical to 6-311G(d,p). 

Since several GTOs are often grouped together, the contracted 

Gaussian function has been applied to Dunning-Huzinaga (DZ) basis set (Dunning, 

1970, 1971; Huzinaga, 1965). The DZ basis set can be made by a contraction such as 

the (9s5p) primitive GTOs to [4s, 2p]. The contraction scheme is 6,1,1,1 for s-

functions and 4,1 for the p-functions. In addition, the development of basis set by 

Dunning and coworkers for recovering the correlation energy of the valence electrons 

is known as the correlation consistent (cc) basis sets. The general formulation can be 

written as cc-pVnZ, where n = D for double zeta, T for triple zeta, Q for quadruple 

zeta, and so on. 

For the systems involving a large number of core electron elements, it 

is necessary to use a large number of basis functions for describing them. However, 

since the deep core electrons are not much important in a chemical sense, this leads to 

an approximation by replacing the core electrons with analytical functions, called an 

Effective Core Potential (ECP) or Pseudopotentials. In practice, such basis set is 
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reasonably accurate and efficient, representing the combined nuclear-electronic core 

to the remaining electrons. 

 

2.1.7 Electron correlation 

It is known that motions of electrons are correlated and they tend to 

repel each electron to give a lower energy. According to the HF method, each electron 

moves in the static electric field created by all of the other electrons in the system. On 

the other hand, the electron cannot see other electrons during the HF calculation. 

Thus, the significant deficiency of the HF method is that it fails to adequately treat the 

correlation between motions of electrons. The effects of electron correlation are 

usually neglected in the Hamiltonian in the previous section. This leads to limitation 

of the HF energy calculations. The difference between HF and exact (non-relativistic) 

energies is the correlation energy, 

 

ncorrelatioHFexact EEE += .    (2.31) 

 

In several cases, the neglect of electron correlation effects can lead to 

some anomaly of qualitative information. As a consequence, the Ψ and E cannot be 

used to correctly predict atomic properties without somewhere accounting for electron 

correlation. 

The electron correlation methods calculate the coefficient in front of 

the other determinants in different way, such as configuration interaction (CI) 

(Sherrill and Schaefer III, 1999), many-body perturbation (MP) (Møller and Plesset, 

1934), coupled cluster (CC) (Bartlett, 1989) and density functional theory (DFT). 



 

 

 

 

 

 

 

 

 30

2.2 Computational methods 

2.2.1 Introduction to molecular dynamics (MD) simulation 

The essential tools for theoretical study of large molecular system are 

molecular dynamics (MD) and Monte Carlo (MC) simulations. In particular for MD, 

this technique is widely used for studying properties of various molecular systems, 

providing details related to time dependent behavior of the system. The MD method 

was first introduced by Alder and Wainwright in the late 1950's (Alder and 

Wainwright, 1957, 1959) for studying the interactions of hard-sphere systems. The 

next major advancement was in 1964 when Rahman (Rahman, 1964) carried out the 

first simulation using a realistic potential for liquid argon. The first MD simulation of 

a realistic system was done by Rahman and Stillinger in their simulations of liquid 

water in 1974 (Stillinger and Rahman, 1974). Nowadays, MD technique has widely 

been applied for studying various molecular systems.  

The MD simulation technique is based on Newton’s second 

law, maF = , when F is the force on the particle, m is its mass, and a is its 

acceleration. With regard to the force on each atom, it is possible to determine the 

acceleration of each atom in the system. Integration of the equations of motion then 

yields a trajectory that describes the positions, velocities and accelerations of the 

particles as they vary with time. From this trajectory, the average values of properties 

can be determined. The method is deterministic, i.e., once the positions and velocities 

of each atom are known, the state of the system can be predicted at any time in the 

future or the past. The common scheme to perform MD simulations is summarized in 

Figure 2.3. 
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Figure 2.3 The scheme of molecular dynamics simulation. 
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The MD simulation starts with reading the initial configuration, 

velocities, accelerations and forces. The initial configuration can be obtained either 

from a random configuration or a lattice. The essential condition of the simulation is 

that there are no explicitly time-dependent or velocity-dependent forces that shall act 

on the system. In practice, the trajectories cannot be directly obtained from Newton’s 

equation of motion. Therefore, the time integration algorithm will be used to obtain 

the knowledge of positions, velocities and accelerations of two successive time steps. 

The energy of the system can be calculated through molecular mechanics (MM) or 

quantum mechanics (QM) method. The force on each atom in the system can be 

obtained from the derivative of the energy with respect to the change in the atom’s 

position. All particles in the system will be moved by their new forces to the new 

configurations. This process will be repeated until the system reaches its equilibrium. 

After that, the coordinates, velocities, accelerations, forces and so on of all particles 

will be collected for further structural and dynamical property calculations. In 

practice, only positions and velocities are usually stored since most important and 

interesting properties of the system can be obtained from these two quantities. 

 

2.2.2 Intermolecular potentials 

In general, the forces on each particle in MD simulation are usually 

derived from the potential energy function, V. The potential energy function is the 

total intermolecular interaction energy comprising all of pair, three-body, four-body, 

and so on up to N-body interactions,  
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With regard to equation (2.32), the upper terms are usually assumed to 

converge slowly and tend to have alternating signs (Kistenmacher, Popkie, and 

Clementi, 1974). Thus, only the summation of pair interaction has been used to 

describe the system’s interactions, known as pairwise additive approximations. The 

pair potential functions can be constructed from experimental data. However, the 

popular way in obtaining the pair potential functions is to construct with respect to ab 

initio calculations. 

 

2.2.3 Time integration algorithms 

The engine of MD simulation is its time integration algorithm. The 

time integration algorithms are based on finite difference methods, in which the MD 

trajectories can be generated with continuous potential models. The essential idea is 

that the integration is divided into many small steps, each separated by a fixed time 

interval .tδ  The total force on each particle at time t  can be calculated from the sum 

of interactions from other particles. Once the force is known, the accelerations of the 

particles can be determined, which are then combined with the positions and 

velocities at a time t  to calculate the positions and velocities at a time .tt δ+   

There are many algorithms for integrating the equations of motion 

using finite difference methods, most of which assume that the positions and 

dynamics properties (velocities, accelerations, etc.) can be approximated in Taylor 

series expansions, 
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( ) ( ) ( ) ( ) L++++=+ 32 )(
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2
1 ttcttbtatta δδδ             (2.35) 

( ) ( ) ( ) L++=+ ttctbttb δδ ,             (2.36) 

 

where v  is the velocity (the first derivative of the position with respect to time), a  is 

the acceleration (the second derivative), b is the third derivative, and so on. Two 

popular integration methods for MD calculations are Verlet (Verlet, 1967) and 

predictor-corrector algorithms (Gear, 1971).  

The Verlet algorithm is the most broadly used method for integrating 

the trajectories of motion in MD simulations. This algorithm uses the positions and 

accelerations at time t  and the positions from the previous step, )( ttr δ− , to 

calculate the new positions at time tt δ+ . We can write down the following 

equations between these quantities and the velocities at time t , 
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( ) ( ) ( ) ( ) 2

2
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The summation of these two equations gives 
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The velocities do not explicitly appear in the Verlet integration algorithm. However, 

these values can be calculated by dividing the difference in positions at time tt δ+  

and tt δ−  by tδ2 , 

 

( ) ( ) ( ) tttrttrtv δδδ 2/][ −−+= .            (2.40) 

 

However, the weakness of Verlet algorithm is that the calculation of 

the velocities cannot be obtained until the positions at the next step are known. Thus, 

it is not a self-starting algorithm. To overcome this point, some variants of the Verlet 

algorithm have been developed. For example, the leap-frog algorithm (Hockney, 

1970), which uses the following expansions, 
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By this scheme, the velocities )
2
1( ttv δ+  are firstly calculated from the velocities at 

time ),
2
1( tt δ− and the accelerations at time .t  The positions at time tt δ+  are then 

deduced from the velocities just calculated together with the positions at time t using 

equation (2.41). The velocities at time t  can be calculated from 
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The advantage of this algorithm is that the velocities are explicitly 

calculated. However, some disadvantages exist, such as they are not calculated at the 

same time as the positions. 

An even better implementation of the same basic algorithm is the 

velocity Verlet algorithm (Swope, Andersen, Berens, and Wilson, 1982), which gives 

positions, velocities and accelerations at the same time and does not compromise 

precision, 
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.           (2.45) 

Another integration method is Beeman’s algorithm (Beeman, 1976), 

which is related to the Verlet method, and can be expressed as 
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The Beeman’s algorithm uses a more accurate expression for the 

velocities and gives better energy conservation. However, the performance of this 

algorithm is more complicate, as well as more expensive. 
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For the predictor-corrector algorithm, this method has three basic 

steps. First, the new positions, velocities, accelerations and higher-order terms are 

predicted according to the Taylor expansion, as shown in equations (2.33)-(2.36). 

Second, the forces are then evaluated at the new positions to give the accelerations, 

)(a tt δ+ . These accelerations are compared with the accelerations predicted from the 

Taylor series expansion ( )(a C tt δ+ ). In this respect, the difference between the 

predicted and the calculated accelerations is an error signal, 

 

( ) ( ) ( )ttattatta pc δδδ +−+=+Δ .                          (2.48) 

 

Lastly, an error signal is used to correct positions and their derivatives. 

All the corrections are proportional to the error signal, the coefficient of 

proportionality being a magic number determined to maximize the stability of the 

algorithm, 

 

( ) ( ) ( )ttacttrttr pc δδδ +Δ++=+ 0            (2.49) 

( ) ( ) ( )ttacttvttv pc δδδ +Δ++=+ 1            (2.50) 

( ) ( ) ( )ttacttatta pc δδδ +Δ++=+ 2            (2.51) 

( ) ( ) ( )ttacttbttb pc δδδ +Δ++=+ 3 ,           (2.52) 

 

where the superscript p represents as predicted values, r and v stand for the complete 

set of positions and velocities, respectively, a represents the accelerations and b 

denotes all the third time derivatives of r.  
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2.2.4 Statistical mechanics 

In general, MD simulations generate information at the microscopic 

level, including atomic positions and velocities. The conversion of this microscopic 

information to macroscopic observables requires statistical mechanics. Detailed 

information with respect to statistical mechanics can be found in numerous excellent 

text books (David, 1987; McQuarrie, 1976; Wilde and Singh, 1998). 

In MD simulation, one often wishes to explore the macroscopic 

properties of a system through microscopic simulations. The connection between 

microscopic simulations and macroscopic properties is made via statistical mechanics, 

which provides the rigorous mathematical expressions that relate macroscopic 

properties to the distribution and motion of the atoms and molecules of the N-body 

system. In this respect, MD simulations provide the means to solve the equation of 

motion of the particles and evaluate these mathematical formulas. According to MD 

simulations, both thermodynamic and time dependent (kinetic) properties of the 

system can be obtained. 

The thermodynamic state of a system is usually defined by a small set 

of parameters, for example, the temperature (T), the pressure (P), and the number of 

particles (N). Other thermodynamic properties may be derived from the equations of 

state and other fundamental thermodynamic equations. The mechanical or 

microscopic state of a system is defined by the atomic positions (q), and momenta (p). 

These can also be considered as coordinates in a multidimensional space, called phase 

space. For a system of N particles, this space has 6N dimensions. A single point in 

phase space, denoted by Γ, describes the state of the system. The collection of points 

in phase space is known as an ensemble. 
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An ensemble is a collection of all possible systems which have 

different microscopic states, but have an identical macroscopic or thermodynamic 

state. There are many different ensembles with different characteristics. For example, 

microcanonical ensemble (NVE) in which the thermodynamic state are characterized 

by fixed number of atoms (N), fixed volume (V), and fixed energy (E). Canonical 

ensemble (NVT) refers to a collection of all systems whose thermodynamic state is 

characterized by fixed number of atoms (N), volume (V), and temperature (T). 

Isobaric-isothermal ensemble (NPT) is characterized by fixed number of atoms (N), 

pressure (P) and temperature (T). Grand canonical ensemble (μVT) is characterized by 

fixed chemical potential (μ), volume (V), and temperature (T). 

 

 

Figure 2.4 Comparison of macroscopic and microscopic systems. 
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An experiment is usually made on a macroscopic sample that contains 

an extremely large number of atoms or molecules sampling an enormous number of 

conformations, as shown in Figure 2.4. With regard to statistical mechanics, averages 

corresponding to experimental observables are defined in terms of ensemble averages; 

one justification for this is that there has been good agreement with experiment. An 

ensemble average is average taken over a large number of replicas of the system 

considered simultaneously, which can be expressed as 

 

∫∫= ),(),( NNNNNN
ensemble

rprpAdrdpA ρ ,          (2.53) 

 

where A(PN,rN) is the observable of interest and it is expressed as a function of the 

momenta, p, and the position, r, of the system. The integration is over all possible 

variables of r and p. The probability density of the ensemble is given by 
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where Ĥ  is the Hamiltonian, T is the temperature, Bk  is Boltzmann’s constant and Q 

is the partition function, 
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In practice, this integral is extremely difficult to calculate since it must calculate all 

possible states of the system. By means of statistical mechanics, the experimental 

observables are defined in terms of time averages of property A which can be 

measured throughout infinite time,  
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where τ is the simulation time, M is the number of time steps in the simulation and 

A(PN,rN) is the instantaneous value of A. 

The relationship between time averages and ensemble averages can be 

achieved using the Ergodic hypothesis, which states that the time averages equals the 

ensemble average, i.e., the estimation of time average can be obtained over an 

enormous number of replicas of the system considered simultaneously, 

 

ensembletime
AA = .            (2.57) 

 

2.2.5 The periodic box 

The periodic boundary condition is employed to solve the effects of 

surface, especially for the simulation of small system size where the interactions 

between particles and the wall could reflect in wrong system’s properties. 
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Figure 2.5 The periodic box in two dimensions. 

 

The periodic box concept is illustrated in Figure 2.5, showing a two 

dimensional of a small portion of the system (the central box with yellow 

background) and the copies (the others with white background). Each copy is 

identical at the atomic level, and each atom undergoes the same time development as 

its image in every other copy. As the black atom (top left, central cell) leaves the 

central cell, its images enter from an adjoining copy (shown by the vector 

displacements in the figure) to keep the density constant. There are no effects due to 

the walls because each atom in the central cell is under the influence of every other 

atom in the central cell and in all copy cells. 

Considering the black atom (top left in the central cell), the knowledge 

of force on this atom is required in order to understand its time development. First, we 
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sum the pair potential of the atom with every other atom. Then, differentiation of the 

potential with respect to the coordination of black atom gives the force on the particle.  

To calculate the interactions of this particular case, there is no great 

problem because the Lennard-Jones potential (L-J) is short range potential. However, 

to solve this problem, the minimum image criterion is introduced in which only the 

nearest images of distinguishable particles are taken into account. This operating 

condition is commonly used and greatly simplified for setting up simulation 

programs. In practice, most short range interactions usually fall off rapidly and can be 

neglected beyond the distance called the cut-off limit. In general, the cut-off limit 

should be no more than half of the box length (rc ≤ L/2).  

 

 

Figure 2.6 The discontinuity of energy curve when the potential is truncated. 

 

According to the use of cut-off limit, this reflects in the discontinuity 

in both the potential energy and the force after the cut-off value, as shown in Figure 

2.6. This problem can be solved by shifting the potential function by an amount Vc, 
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where rc is the cut-off distance and Vc corresponds to the value of the potential at the 

cut-off distance. In this respect, although the energy conservation can be improved by 

the shifted potential, the discontinuity in the force with the shifted potential still 

exists. At the cut-off distance, since the force will have a finite value, a suitable 

shifted potential would be of the form 
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However, the application of shifted potential is not easy for 

inhomogeneous systems containing many different types of atom. An alternative way 

is to eliminate discontinuities in the energy and force by using a switching function. 

The switched potential (VSF(r)) is related to the true potential (V(r)) as 

 

)()()( rSrVrV =′ .              (2.60) 

 

Some switching functions are applied to the entire range of the 

potential up to the cut-off point. In general, the switching function has a value of 1 at 

0 r =  and a value of 0 at c rr = , while the switching function values between two 
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cut-offs are varied. The example of a switching function applied to the Lennard-Jones 

potential is given in Figure 2.7. 

 

 

Figure 2.7 The effect of a switching function applied to the Lennard-Jones potential. 

 

2.2.6 Non-bonded neighbor lists 

The use of cut-off and minimum image convention is not actually 

reduce the time for calculating the non-bonded interactions, since the distance 

between every pair of atoms still have to be calculated in each simulation step. In 

practice, since most of atoms move within a time step of less than 0.2 Å, the local 

neighbors of a given atom remain almost the same for many time steps. In this regard, 

the non-bonded neighbor list as shown in Figure 2.8 is employed. The first non-

bonded neighbor list has been proposed by Verlet (Verlet, 1967). The Verlet neighbor 

list stores all atoms within the cut-off distance (rc) and atoms are slightly further away 

than the cut-off distance (rm). The neighbor list will frequently be updated throughout 
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the simulation. With regard to this point, the distance used to calculate each atom’s 

neighbors should be slightly larger than the actual cut-off distance in order to ensure 

that the atoms outside the cut-off will not move closer than the cut-off distance before 

the neighbor list is updated again. 

 

 

Figure 2.8 The non-bonded neighbor list. 

 

2.2.7 Long-range interactions 

The neglect of interactions beyond the cut-off distance, especially for 

the strong interacting systems, may results in an incorrect description of molecular 

properties. One simple way to treat the long-range interactions is to use a large 

simulation cell, but this reflects in more time-consuming. There are many suitable 

methods for the treatment of long-range interactions. The first method is the Ewald 

summation method, which derived by Ewald in 1921 (Ewald, 1921). This method 

studies the energetic of ionic crystals, i.e., a particle interacts with all the other 
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particles in the simulation box and with all of their images in an infinite array of 

periodic cells. The charge-charge contribution to the potential energy of the Ewald 

summation method could be of the form 
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where the prime on the first summation indicates that the series does not include the 

interaction ji =  for 0n = , qi and qj are charges and n is a cubic lattice point. The 

Ewald summation method is the most correct way to accurately include all the effects 

of long-range forces in the computer simulation. However, this method is rather 

expensive to implement since the equation (2.61) converges extremely slowly. 

Another method for the treatment of long-range interactions is the 

reaction field method (Foulkes and Haydock, 1989). This method constructs the 

sphere around the molecule with a radius equal to the cut-off distance. By this 

scheme, all interactions within the sphere are calculated explicitly, while those outside 

of the sphere are modeled as a homogeneous medium of dielectric constant ( sε ). The 

electrostatic field due to the surrounding dielectric is given by 
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where jμ  are the dipoles of the neighboring molecules that are located within the cut-

off distance (rc) of the molecules i. The interaction between molecule i and the 

reaction field equals to iiE μ⋅ . 

 

2.3 Research methodology 

2.3.1 Conventional QM/MM MD scheme 

According to the conventional QM/MM MD technique, the system is 

partitioned into two parts, namely QM and MM regions. The QM region, i.e., a sphere 

which contains a set of particles of highest interest, is treated by quantum mechanics, 

while the rest of the system is described by classical MM potentials. The schematic 

details of QM/MM are shown in Figure 2.9. 

 

 

Figure 2.9 The QM/MM scheme. 
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The total energy (Etot) of the system can be obtained from the 

summation of three component parts, namely the interactions within the QM, in the 

MM and between the QM and MM regions, 

MMQMMMQMQMtotal EEHE −++〉ΨΨ〈= ˆ ,           (2.63) 

 

where 〉ΨΨ〈 QMQM Ĥ  refers to the interactions within the QM region, EMM is the 

interactions within the MM region and EQM-MM is the interactions between the QM 

and MM regions.  

During the QM/MM simulation, exchanges of water molecules 

between the QM and MM regions can occur frequently. With regard to this point, the 

force acting on each particle in the system is switched according to which region the 

water molecule is entering or leaving the QM region and is defined as 

 

MMmQMmi FrSFrSF ))(1()( −+= ,            (2.64) 

 

where FQM and FMM are quantum mechanical and molecular mechanical forces, 

respectively. Sm(r) is a smoothing function described by 
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where r1 and r0 are the distances characterizing the start and the end of the QM 

region, applied within an interval of 0.2 Å to ensure a continuous change of forces at 

the transition between the QM and MM regions. 

 

2.3.2 QM/MM MD based on ONIOM-XS method 

The conventional QM/MM technique is a very useful tool for studying 

various condensed-phase systems. However, some unsolved problems have been 

demonstrated. First, only the exchanging particles which crossings between QM and 

MM regions are treated by a smoothing function. With regards to this point, it is not 

realistic since immediate addition or deletion of a particle in the QM region due to the 

solvent exchange also affects the forces acting on the remaining particles in the QM 

region. Consequently, the conventional QM/MM simulation may provides numerical 

instability of forces whenever the solvent exchange process occurs in the system. 

Second, the conventional scheme cannot clearly define the appropriate energy 

expression when the solvent exchange process occurs during the simulation. 

To solve these problems, a more sophisticated QM/MM technique 

based on ONIOM-XS method has been proposed (Kerdcharoen and Morokuma, 

2003). The ONIOM (Own N-layered Integrated molecular Orbital and molecular 

Mechanics) method was originally proposed by Morokuma et al. (Svensson et al., 

1996). The extension of the ONIOM method for the treatment of condensed-phase 

system was firstly applied by Kerdcharoen and co-worker, called ONIOM-XS (XS = 

eXtension to Solvation)  

According to the QM/MM MD technique based on ONIOM-XS 

method, the system is comprised of a “high-level” QM sphere, i.e., a sphere which 
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contains a central reference molecule and its nearest-neighbors, and the remaining 

“low-level” MM bulk solvents. A thin switching shell located between the QM and 

MM regions is then introduced in order to smooth the transition of force due to the 

solvent exchange.  

 

 

 

Figure 2.10 QM/MM MD based on ONIOM-XS method. 

 

Given n1, l and n2 as number of particles in the QM sphere, the 

switching layer and the MM region, respectively, and N(= n1+l+n2) as the total 

number of particles, the potential energy of the system can be written in two ways 

based on the ONIOM extrapolation scheme (Svensson et al., 1996). If the switching 

layer is included into the high-level (QM) calculation, the energy expression is written 

as 

 

)()()();( 111 NElnElnENlnE MMMMQMONIOM ++−+=+ .  (2.66) 
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If the switching layer is considered as part of the low-level (MM) region, the energy 

expression is written as 

 

)()()();( 111 NEnEnENnE MMMMQMONIOM +−= .   (2.67) 

 

The potential energy of the entire system is taken as a hybrid between both energy 

terms (2.66) and (2.67), 
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where { }( )lrs  is an average over a set of switching functions for individual 

exchanging particle in the switching layer ( )ii xs , 
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The switching function in equation (3.69) can have any form. In the present study, a 

polynomial form is employed, 

 

( )
2
1

2
1

8
15

2
15

2
16

35

+⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −= iiiii xxxxs ,   (2.70) 

 



 

 

 

 

 

 

 

 

 53

where ( ) ( )( )010 / rrrrx ii −−= , 0r  and 1r  are the radius of inner and outer surfaces of 

the switching shell, respectively, and ir  is the distance between the center of mass of 

the exchanging particle and the center of the QM sphere. The switching function has 

an S-shape and converges to 0 and 1 at 0r  and 1r , respectively. The gradient of the 

energy can be written as  
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CHAPTER III 

RESEARCH PROCEDURES 

 

3.1 Selection of QM method, QM size and basis set  

With regard to the QM/MM technique, the selection of QM method, as well as 

the size of QM region and basis set, is very crucial in order to obtain reliable results. 

In practice, these important parameters must be optimized, compromising between the 

quality of the simulation results and the requirement of CPU time. In this work, the 

QM region was set with respect to a sphere which contains a central water molecule 

and about 10-14 nearest-neighbor waters, assuming to be large enough to study the 

hydrogen-bonded structure and dynamics of liquid water. This QM region will be 

treated at HF level of accuracy using DZP basis set. Figures 3.1 and 3.2 provide 

supporting data for the selection of HF method and DZP basis set. As can be seen in 

Figure 3.1, the correlated methods, even for the MP2, with medium-size basis set, 

such as DZP, are rather time-consuming and therefore are not feasible for the QM 

treatment of more than 8 water molecules, i.e., with respect to our available 

computational resources. As a consequence, the HF and DFT, such as B3LYP, 

methods seem to be the only possible choices, in conjunction with the use of medium-

size DZP basis set. However, the B3LYP method is not taken into consideration since 

it has been shown that this method tends to overestimate the water interactions (Lee 

and Tuckerman, 2007; Xenides, Randolf, and Rode, 2005). 
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In this work, although the effects of electron correlation could be expected to 

play some roles on the properties of liquid water, the use of the HF method with a 

sufficiently large QM size and basis set is considered to be reliable enough to achieve 

a sufficient level of accuracy in the QM/MM MD simulations. With regard to the 

selection of DZP basis set, it should be noted that the use of larger basis set can 

provide better results, but it’s also too time-consuming. As can be seen in Figure 3.2, 

it is apparent that the HF calculations with a relatively large basis set, like AUG-cc-

pVDZ, are extremely expensive, and thus, beyond our current computational 

feasibility.  

 

 

Figure 3.1 Requirements of CPU times for HF, B3LYP, MP2 and CCSD force 

calculations of (H2O)n, n=1,15 complexes using DZP basis set. All calculations were 

performed on CCRL cluster with Intel CoreTM2 Quad of CPU and 4GB of Ram. 
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Figure 3.2 Requirements of CPU times for HF force calculations of (H2O)n, n=1-15 

complexes using DZP and AUG-cc-pVDZ basis sets. All calculations were performed 

on CCRL cluster with Intel CoreTM2 Quad of CPU and 4GB of Ram. 

 

In the theory of intermolecular interactions, another important problem is 

Basis Set Superposition Error (BSSE), leading to overestimation of binding energies 

as well as to limit of the accuracy in the standard (finite basis) quantum chemical 

calculations. When the BSSE is suspected, a correction must be made in order to 

avoid false results, especially the global minima of stabilization energies and the 

corresponding molecular geometry due to the overestimation of their interaction 

energies. In this work, the geometry optimizations of (H2O)3 complex as shown in 

Figure 3.3, calculated at HF, B3LYP, MP2 and CCSD levels of accuracy using two 
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different basis sets, namely DZP and AUG-cc-pVDZ, have been carried out, and the 

results are summarized in Tables 3.1. 

According to the data in Tables 3.1, it is obvious that the use of correlated 

methods, such as MP2 and CCSD, with a relatively large AUG-cc-pVDZ basis set can 

provide reliable results with small BSSE values. In practice, however, the use of such 

correlated methods and basis set in the QM/MM MD simulations is very time-

consuming. In Table 3.1, the HF calculation using DZP basis set gives rather smaller 

BSSE value, when compared to those of the correlated methods. In addition, the HF 

stabilization energy is rather close to the CCSD results. Thus, the HF method and the 

medium-size DZP basis set employed in this work appear to be a promising condition. 

With regard to the B3LYP calculations, as can be seen in Table 3.1, the results with 

respect to the use of DZP basis set show significant overestimation of the stabilization 

energy of the (H2O)3 complex. These data clearly indicate the deficiency of the 

B3LYP method in describing the properties of liquid water. 

 

 

Figure 3.3 Geometry of (H2O)3 complex. 
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Table 3.1 Basis set superposition error of (H2O)3 complex, calculated at HF, B3LYP, 

MP2 and CCSD levels of accuracy using two different basis sets. 

Basis set Uncorrected E Corrected E BSSE 

    (kcal.mol-1) 

DZP    

 HF -13.702 -13.396 -0.305 

 B3LYP -18.802 -18.308 -0.493 

 MP2 -17.206 -15.543 -1.663 

 CCSD -15.900 -14.327 -1.573 

AUG-cc-pVDZ    

 HF -11.142 -10.416 -0.726 

 B3LYP -14.083 -13.197 -0.886 

 MP2 -14.200 -13.908 -0.292 

  CCSD -13.775 -13.637 -0.139 

 

 

3.2 Simulation details 

For both the conventional QM/MM and ONIOM-XS MD simulations, all 

interactions within the QM region were evaluated by performing ab initio calculations 

at the Hartree-Fock (HF) level of accuracy using the DZP basis set. All QM 

calculations were carried out using the Gaussian03 program (Frisch et al., 2005). For 

the QM treated-region, a QM radius of 4.2 Å and a switching width of 0.2 Å were 

chosen, corresponding to the ONIOM-XS parameters 0r  and 1r  of 4.0 and 4.2 Å, 

respectively. In comparison to the conventional QM/MM scheme, these parameters 

correspond to the start and the end of the QM radius, i.e., a defined QM/MM 

boundary where the smoothing applies. This QM size is assumed to be large enough 

to include all molecules that are forming hydrogen bonds with the central H2O. In this 
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respect, it could be expected that the remaining interactions beyond the QM region are 

well accounted for by the MM potentials. As can be seen in the next section (Figure 

4.1), the smooth shape of the O-O radial distribution functions (RDFs) between 4.0 

and 4.2 Å clearly confirms that transition of water molecules between the QM and 

MM regions occurs smoothly. For the interactions within the MM and between the 

QM and MM regions, a flexible BJH-CF2 water model (Bopp, Jancsó, and 

Heinzinger, 1983), which describes intermolecular and intramolecular interactions, 

was employed. This flexible water model is employed in order to ensure a smooth 

transition when water molecules move from the QM region with its full flexibility to 

the MM region.  

Both the HF/MM and ONIOM-XS MD simulations were performed in a 

canonical ensemble at 298 K with periodic boundary conditions. The system’s 

temperature was kept constant using the Berendsen algorithm (Berendsen, Postma, 

van Gunsteren, DiNola, and Haak, 1984). A periodic box, with a box length of 18.15 

Å, contains 200 water molecules, corresponding to the experimental density of pure 

water. The reaction-field method (Adams, Adams, and Hills, 1979) was employed for 

the treatment of long-range interactions. The Newtonian equations of motions were 

treated by a general predictor-corrector algorithm. The time step size was set to 0.2 fs, 

which allows for the explicit movement of the hydrogen atoms of water molecules. In 

this work, the HF/MM and ONIOM-XS simulations were performed independently 

with the system’s re-equilibration for 30,000 time steps, followed by another 200,000 

(HF/MM) and 150,000 (ONIOM-XS) time steps to collect configurations every 10th 

step. 
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3.3 Determination of system’s properties  

3.3.1 Structural properties 

Detailed information on the structure of liquid water can be obtained 

by analyzing the MD trajectory files, i.e., in terms of a set of gO–O, gO–H and gH–H 

RDFs. The RDF, gαβ (r), is the set of site-site pair correlation functions, which 

describes how (on average) the atoms in the system are radically packed around each 

other. The RDF is useful in other ways. For example, it is something that can be 

deduced experimentally from X-ray or neutron diffraction studies, thus providing a 

direct comparison between experiments and simulations. The RDF can be expressed 

as 

 

( ) ( )βαβαβ ρπ rrrNrg Δ= 24/)( ,              (3.1) 

 

where Nαβ(r) is the average number of β sites located in the shell (r, r+Δr) centered on 

site α, and 
V
Nβ

βρ =  is the average number density of β sites in the system. 

The corresponding integration number of RDF is defined as 
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In addition, the information with respect to the angles formed between 

either oxygen or hydrogen atoms of the central water molecule and the atoms of the 

surrounding water molecules can be obtained from the angular distribution functions 
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(ADFs), such as O---O---O, O-H---O and O---H-O angles. Moreover, the coordination 

number distributions (CNDs) and the number of hydrogen-bond distributions 

surrounding the central H2O will also be presented. 

 

3.3.2 Dynamical properties 

The dynamics details of liquid water can be obtained by computing the 

velocity autocorrelation functions (VACFs), which can be expressed as 
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where Nτ is the number of “time origins”, N is the number of particles and ivr denotes 

the velocity of a given particle j. 

In this work, the normal-coordinate analysis developed by Bopp 

(Bopp, 1986) was used for obtaining the vibrational and librational frequencies of 

liquid water. Six scalar quantities Q2, Q1, Q3, Rx, Ry, and Rz are defined to describe the 

bending vibration, symmetric and asymmetric stretching vibrations, and rotations 

around the three principal axes of the water molecule, respectively. 

In addition, self-diffusion coefficients (D) and the mean residence 

times (MRTs) of water molecules will be calculated. The values of D for the central 

H2O and its neatest-neighbors were calculated from their center-of-mass VACFs 

using the Green-Kubo relation (Spohr, Palinkas, Heinzinger, Bopp, and Probst, 1988), 
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During the HF/MM and ONIOM-XS MD simulations, trajectories of 

each species in the system were monitored. In this work, the rate of water exchange 

processes at the central water molecule was determined through the MRT of its 

nearest-neighbor water molecules, which calculated using a “direct” method (Hofer, 

Tran, Schwenk, and Rode, 2004). Based on the direct method, the whole trajectories 

were inspected either the leaving or entering a coordination shell of ligands and the 

MRT can be expressed as  

 

( )
ex

sim

N
tCNMRT ×

=τ  ,    (3.5) 

 

where CN is the average number of ligand in the shell, tsim is the duration of the 

simulation and Nex equals the number of events. In this work, the parameters t* were 

set to 0.0 and 0.5 ps, which correspond to the lifetime of hydrogen bond and a suitable 

exchange of ligands in the immediate neighborhood of given molecule, respectively. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Structural properties 

The details with respect to the structure of liquid water can be visualized from 

a series of O-O, O-H, H-O and H-H RDFs, together with their corresponding 

integration numbers, as depicted in Figure 4.1. In this context, the first atom denotes 

the atoms of the central H2O and the second one refers to the atoms of the surrounding 

waters, respectively. To provide useful comparison, structural parameters of liquid 

water, as obtained by various QM/MM MD simulations and experiments, are 

summarized in Table 4.1. Regarding the O-O RDFs, as shown in Figure 4.1a, both 

HF/MM and ONIOM-XS simulations reveal a rather well-defined first peak with 

maxima centered at 2.84 and 2.82 Å, respectively. These observed O-O distances are 

in good agreement with the corresponding values of 2.82 and 2.83 Å derived by X-ray 

scattering (Okhulkov, Demianets, and Gorbaty, 1994) and neutron diffraction (Soper, 

1994) experiments, respectively. According to the experimental data in Table 4.1, the 

observed variations in the O-O distance could be ascribed to the use of different 

models and techniques in evaluating the collected (pre-fitted) data, which are both 

crucial factors affecting the results (Soper, 2000). Comparing the HF/MM and 

ONIOM-XS results, however, a significant difference is found in the O-O RDFs 

beyond 3.20 Å, in which the feature of the ONIOM-XS’s O-O RDF reveals a 

relatively more distinct first coordination shell. Of particular interest, this observed
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difference can be expected to reflect (more or less) in different structural and 

dynamical details of liquid water derived from these two simulation techniques. 

In Figure 4.1a, the O-O RDFs from both the HF/MM and ONIOM-XS 

simulations do not show distinct minima after the first peak, suggesting that a number 

of water molecules can be located between the inner and outer coordination shell and 

that these water molecules are rather labile, i.e., they can rapidly exchange between 

the two regions. Integrations of the first O-O peaks up to about 3.20 Å yield average 

values of 4.9 and 4.7 water molecules, respectively. In fact, these observed numbers 

should be considered as a rough estimate of the average coordination numbers, since 

the first O-O peaks are not clearly separated from the outer region. 
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Figure 4.1 a) O-O, b) O-H, c) H-O and d) H-H radial distribution functions and their 

corresponding integration numbers, as obtained by the HF/MM and ONIOM-XS MD 

simulations. 
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Table 4.1 Structural parameters of liquid water, as obtained by various QM/MM MD 

simulations and experiments.  

Method RO-O (Å) RO-H (Å) RH-H (Å) CN 

 Rmax Rmin Rmax Rmin Rmax Rmin  

HF/MM MD* 

ONIOM-XS MD* 

HF/MM MDa 

MP2/MM MDa 

B3LYP/MM MDa 

XSb 

XSc 

NDd 

NDe 

NDf 

NDg 

2.84 

2.82 

2.92 

2.87 

2.81 

2.82 

2.72 

2.78 

2.67 

2.83 

2.89 

3.20 

3.22 

3.41 

3.43 

3.31 

- 

- 

- 

- 

- 

- 

1.90 

1.91 

2.06 

1.93 

1.85 

- 

- 

1.79 

1.67 

1.79 

1.95 

2.46 

2.49 

2.53 

2.61 

2.42 

- 

- 

- 

- 

- 

- 

2.37 

2.35 

2.59 

2.44 

2.33 

- 

- 

- 

- 

- 

- 

2.98 

2.95 

3.24 

2.95 

2.89 

- 

- 

- 

- 

- 

- 

4.9 

4.7 

4.2 

4.7 

4.2 

- 

3.7 

- 

4.2 

4.2 

- 

 

* Present study  

a (Xenides, Randolf, and Rode, 2005)  

b (Okhulkov, Demianets, and Gorbaty, 1994) 

c (Hura, Sorenson, Glaeser, and Head-Gordon, 2000) 

d (Soper, 2000) 

e (Soper, Bruni, and Ricci, 1997) 

f (Soper, 1994) 

g (Jedlovsky, 1998) 
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Figure 4.2 shows the probability distributions of the coordination numbers, 

calculated within the O-O distance of 3.20 Å. According to both the HF/MM and 

ONIOM-XS simulations, the coordination numbers of 4 and 5 are dominating the first 

coordination shell. However, it is observed that, besides the most frequent 4- and 5-

coordinated species, other entities, such as 3-, 6- and 7-fold coordinated ones, are also 

found in considerable amounts. The HF/MM and ONIOM-XS results are consistent 

with the recent QM/MM studies, which reported that each water molecule can form 

various coordination numbers (Xenides, Randolf, and Rode, 2005, 2006), ranging 

from 3 to 6, with the prevalent value of 4. With respect to the O-O RDFs in Figure 

4.1a, the second O-O peaks are absent in both HF/MM and ONIOM-XS simulations, 

indicating that interactions of the central H2O with its surrounding water molecules 

lying beyond the first coordination shell are weak (i.e., less ordering). The diminution 

of the second O-O RDF has been reported experimentally as the system’s temperature 

or pressure increases (Okhulkov, Demianets, and Gorbaty, 1994). 
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Figure 4.2 Distributions of coordination numbers, calculated within first minimum of 

the HF/MM and ONIOM-XS MD’s O-O RDFs. 

 

The characteristics of intermolecular hydrogen bonds (HBs) in liquid water 

can be analyzed through the O-H and H-O RDFs. According to Figures 4.1b and c, 

the first O-H and H-O peaks reflect the HBs between the central H2O and its 

neighboring water molecules, i.e., acting as acceptor and donor, respectively. 

Comparing between the HF/MM and ONIOM-XS simulations, further differences are 

recognizable, i.e., while the first O-H and H-O RDFs are not much different, the 

respective second O-H and H-O peaks obtained by the ONIOM-XS simulation are 

significantly less pronounced than those of the HF/MM results. For the ONIOM-XS 

simulation, integrations up to first minimum of the O-H and H-O RDFs yield average 

values of 2.07 and 1.09, compared to the corresponding values of 2.00 and 1.10 
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obtained by the HF/MM simulation. The HF/MM and ONIOM-XS results correspond 

to the expectation that on average over time about four HBs (actual values are 4.20 

and 4.25 for the HF/MM and ONIOM-XS simulations, respectively) are involved in 

the HB formation at the central reference water (i.e., two HBs are formed by the 

central water’s oxygen acting as acceptor, and another two HBs are formed by the 

central water’s hydrogen atoms acting as donors). However, since the O-H and H-O 

RDFs do not show distinct minima after the first shell, the numbers of HBs which are 

simultaneously formed during the simulations can be evaluated through the detailed 

analysis of the MD trajectories.  

In this work, the evaluations the numbers of HBs were carried out according to 

the following three geometrical criteria of the HB formation (Xenides, Randolf, and 

Rode, 2006), (1) the O-O distance is set with respect to the defined first O-O RDFs, 

i.e., 2.5 ≤ RO---O ≤ 3.2 Å, (2) the HB distance is limited by the first minimum of O-H 

and H-O RDFs, i.e., 1.5 ≤ RO---H  ≤ 2.5 Å and (3) the HB angle, ∠O---H-O, ≥ 100º. 

Based on these criteria, the distributions of the number of HBs forming around the 

central H2O, as obtained by the HF/MM and ONIOM-XS simulations, are plotted in 

Figure 4.3. 
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Figure 4.3 Distributions of number of HBs, calculated according to the three 

geometrical criteria of the H-bond formation. 

 

According to the HF/MM and ONIOM-XS simulations, the total average 

values of the simultaneously formed HBs were found to be 4.0 and 3.7, respectively. 

As can be seen in Figure 4.3, although the most frequent number of HBs in both 

HF/MM and ONIOM-XS simulations is 4, the distributions of 3 and 5 HBs appear to 

be in considerable amounts. The results obtained by both HF/MM and ONIOM-XS 

simulations clearly suggests that any accurate water model used in the interpretation 

of the spectroscopic or other experimental data should include the 3- and 5-

coordinated entities, which can simultaneously form along with the distorted 

tetrahedral structure. By means of the ONIOM-XS simulation, the distribution of 4 

HBs is found to decrease significantly, while the formation of 2- and 3-fold HB 
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species becomes more visible, i.e., compared to the HF/MM results. With regard to 

the ONIOM-XS’s trajectory file, examples of different HB species formed in liquid 

water are given in Figure 4.4. The results obtained by the ONIOM-XS simulation are 

in good accord with the recent experimental observations, which reported relatively 

large numbers of 2- and 3-fold HB clusters in liquid water (Myneni et al., 2002; 

Tokushima et al., 2008; Wernet et al., 2004). In Figure 4.1d, the characteristics of H-

H RDFs are somewhat useful, providing the detailed picture with respect to the 

distributions of hydrogen atoms of nearest-neighbor waters surrounding the hydrogen 

atoms of the central H2O. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 77

 

 
 

1.26 ps 1.404 ps 

  
2.780 ps 3.120 ps 

 
 

5.100 ps 6.140 ps 

  
7.170 ps 11.742 ps 

 

Figure 4.4 Some selected HB structures in liquid water at any simulation times, as 

observed in the ONIOM-XS simulation. 
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To further analyze the structural properties of liquid water, the probability 

distributions of the O---O---O angle, as well as of the O-H---O and O---H-O angles, 

are plotted in Figures 4.5 and 4.6, respectively. In both the HF/MM and ONIOM-XS 

simulations, the structure of the first coordination shell with respect to the tetrahedral 

arrangement is found to be a major distribution. However, this structure is rather far 

from a regular arrangement, by the pronounced broad peaks between 70-120º. 

Regarding the distributions of the graphs in Figure 4.5, the distortion from the ideally 

tetrahedral arrangement is more evidence in the case of the ONIOM-XS simulation. 

In spite of the distorted tetrahedral structure, however, both the HF/MM and ONIOM-

XS simulations reveal that the HBs between water molecules are relatively strong (cf. 

Figure 4.6), by the pronounced peak between 150-160º. In this respect, it could be 

demonstrated that the tetrahedral arrangement is apparently favored for liquid water, 

but such an arrangement can distort frequently, i.e., due to the observed large 

variation of the number of neighboring waters. As can be seen in Figure 4.5, the 

shoulder at 60º clearly indicates the arrangement of HB structures with more than four 

participating water molecules.  
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Figure 4.5 Distributions of O---O---O angles, calculated within first minimum of the 

HF/MM and ONIOM-XS MD’s O-O RDFs (i.e., within O---O distance of 3.2 Å).  

 

Figure 4.6 Distributions of a) O-H---O and b) O---H-O angles, calculated within first 

minimum of the HF/MM and ONIOM-XS MD’s H-O and O-H RDFs (i.e., within H--

-O and O---H distances of 2.5 Å).  
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4.2 Dynamical properties 

The dynamical properties of liquid water can be observed from time 

correlation functions. The time correlation function of the same properties is known 

as time autocorrelation function. The autocorrelation functions of the particle 

velocities (velocity autocorrelation functions, VACFs) and their spectra density are 

usually employed to describe the particle motions in the liquid. For water, since a 

flexible water model has been used, the dynamical properties of waters can be 

described in terms of hindered translational motions, librational (rotational) motions 

and vibrational motions, respectively. The scheme for a distorted water molecule has 

been proposed by Bopp (Bopp, 1986), which can be represented in Figure 4.7. 

 

 

Figure 4.7 Scheme of a distorted water molecule. V: instantaneous velocity; S: 

velocity of the center-of-mass; R: velocity component perpendicular to the molecular 

plane; P: velocity component in the molecular plane; U, W: projection of P on the 

normalized instantaneous O-H vector and on a unit vector perpendicular to it in the 

molecular plane. 
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Then, the following six quantities can be defined using capital letters to denote 

the projections of the hydrogen velocities onto the corresponding unit vectors, 

213
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.      (4.1) 

Where Rξ, Rη, and Rζ represent rotation around approximated x, y and z axis, 

respectively, while Q1, Q2, and Q3 correspond to the symmetric stretching, bending 

and asymmetric stretching motions of water molecule, respectively. 

 

4.2.1 Hindered translational motions 

For water, the hindered translations are studied by the center-of-mass 

VACFs of the water molecules. These functions can be evaluated from 
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where Sj is the velocity of center-of–mass of water. The VACFs and their Fourier 

transformations for water molecules in the first shell, as obtained by the conventional 

HF/MM and ONIOM-XS simulations, are shown in Figures 4.8 and 4.9, respectively. 

As can be seen in Figure 4.8, the VACFs obtained from both conventional HF/MM 

and ONIOM-XS simulations are quite similar. Regarding the VACFs in Figure 4.8, 

the Fourier transformation of VACFs exhibits two pronounced peaks, with a first 
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maximum at about 50 cm-1 (for both HF/MM and ONIOM-XS simulations) and a 

second maximum at around 230 (HF/MM) and 250 (ONIOM-XS) cm-1. These two 

pronounced peaks are identified as the hindered translational motions of the center-of-

mass parallel and perpendicular to their dipole vectors, respectively. In this respect, 

the ONIOM-XS simulation supplies information that the translation of water 

molecules in the direction perpendicular to their dipole moments is less favorable, i.e., 

such phenomenon is more apparent than the HF/MM simulation data.  
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Figure 4.8 Velocity autocorrelation functions of the center-of-mass of first-shell 

water system. 



 

 

 

 

 

 

 

 

 83

0 200 400 600

 HF/MM
 ONIOM-XS

In
te

ns
ity

Frequency (cm-1)

 

 

 

Figure 4.9 Fourier transforms of the translational motions of first-shell waters, 

calculated from the center-of-mass VACFs of waters. 

 

 

4.2.2 Librational motions 

For the librational (rotational) motions of waters, the three axis, η, ξ 

and ζ, were chosen to be identical to the three principal moments of inertia employed 

in the description of the rotations of the rigid molecule, as shown in Figure 4.10. 
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Figure 4.10 Definition of three librational motions; Rξ = W1-W2 (rotation around 

approximated x axis), Rη = R1+R2 (rotation around approximated y axis) and Rζ = R1-

R2 (rotation around approximated z axis).  

 

According to Figure 4.10, the three normalized autocorrelation 

functions can be calculated from 
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The VACFs and their corresponding Fourier transformations for the 

librational motions of first shell waters are shown in Figures 4.11 and 4.12, 

respectively. The results obtained by both conventional HF/MM and ONIOM-XS 

simulations are not much difference. Both HF/MM and ONIOM-XS results suggest 

that the VACFs around the approximated ζ axis decay faster than the motions around 

the approximated ξ and η and hence give the Fourier transformations peaks at the 

highest frequencies.  
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Figure 4.11 Velocity autocorrelation functions of water approximated instantaneous 

librational motions around the ξ, η and ζ axes, for the water system. 
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Figure 4.12 Fourier transforms of the librational motions of water molecules, 

calculated from the VACFs of water approximated around the ξ, η and ζ axes. 

 

 

 



 

 

 

 

 

 

 

 

 88

4.2.3 Vibrational motions 

The vibrational motions are described by the three quantities: Q1, Q2, 

and Q3, which correspond to the symmetric stretching, bending and asymmetric 

stretching motions of water molecule, respectively. The three normalized 

autocorrelation functions can be written as 
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where k = 1, 2, 3. 

 

The normalized VACFs and their Fourier transforms spectra of water 

in first shell, as obtained from the conventional HF/MM and ONIOM-XS simulations 

are shown in Figures 4.13 and 4.14, respectively. To compare with experimental data, 

all frequencies obtained by both HF/MM and ONIOM-XS simulations were 

multiplied by an appropriate scaling factor of 0.905 (Scott and Radom, 1996). The 

three intramolecular vibrational frequencies (Q1, Q2 and Q3) of liquid water, as 

obtained from various QM/MM MD simulations and experiments, are given in Table 

4.2. With regard to the HF/MM and ONIOM-XS simulations, all the bending and 

stretching vibrational frequencies are not much different, showing the peaks with 

recognizable shoulders, especially for the symmetric and asymmetric vibrational 

modes. These observed spectra clearly supply information that several kinds of HBs, 

with varying strengths, can simultaneously be formed in liquid water. According to 
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the data in Table 4.2, large variations of the calculated frequencies are found among 

the various QM/MM simulations. In this respect, it should be noted that these 

frequencies are highly sensitive to the computational methods, rather than to the 

structural parameters. As compared to the results obtained at similar HF level of 

accuracy, our HF/MM and ONIOM-XS results show good agreement with the recent 

HF/MM studies (Xenides, Randolf, and Rode, 2005, 2006).  
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Table 4.2 Vibrational frequencies (Q1, Q2 and Q3) of liquid water, as obtained by 

various MD simulations and experiments (numbers in parenthesis correspond to the 

shoulders). 

 Frequencies (cm-1)  Method 

Q1 Q2 Q3  

HF/MM MD* 

ONIOM-XS MD* 

HF/MM MDh 

MP2/MM MDi 

B3LYP/MM MDi 

Experimentj 

Experimentk 

Experimentl 

3624 (3588,3662) 

3606 (3650) 

3770 (3620,3680) 

3964 (3844) 

3580 (3460) 

3400 (3200) 

3410 (3280) 

3400 

1670 

1660 

1640 

1640 

1622 

- 

- 

1643.5 

3712 (3678,3730) 

3720 (3755) 

3775 (3615,3675) 

3964 (3847) 

3553 (3458) 

- 

- 

- 

 

*Present work 

h(Xenides, Randolf, and Rode, 2006) 

i(Xenides, Randolf, and Rode, 2005) 

j(Deàk, Rhea, Iwaki, and Dlott, 2000) 

k(Lock, Woutersen, and Bakker, 2001) 

l(Lock and Bakker, 2002) 
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Figure 4.13 Velocity autocorrelation functions for the three intramolecular vibrations 

of water, as obtained from the conventional HF/MM and ONIOM-XS MD 

simulations.  
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Figure 4.14 Fourier transforms of the hydrogen velocity autocorrelation functions 

(Q1, Q2 and Q3), as obtained from a) HF/MM and b) ONIOM-XS MD simulations. 

 

4.2.4 Self-diffusion coefficient (D)  

In addition to the detailed analyses on the hindered translational 

motions, the mobility of water molecules can be interpreted with respect to the self-

diffusion coefficient (D). Based on the HF/MM and ONIOM-XS simulations, the D 

values are estimated to be 3.23 x 10-5 and 2.73 x 10-5 cm2.s-1, respectively. As 

compared to the experimental value of 2.30 x 10-5 cm2.s-1(Kenneth, Douglass, and 

Hoch, 1972; Woolf, 1975), the D value resulting from the ONIOM-XS simulation is 

clearly in better agreement with the experimental observations. These data clearly 
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confirm once again the efficiency of the ONIOM-XS technique over the conventional 

QM/MM scheme in order to correctly describe the properties of liquid water.   

 

4.2.5 Water exchange processes 

In both the HF/MM and ONIOM-XS simulations, the nonzero first 

minimum of the O-O RDFs (Figure 4.1a) clearly suggests an easy exchange of water 

molecules between those in the first hydration shell of the central H2O and in the 

outer region. Such a phenomenon corresponds to the observed large variation of the 

HB formations in liquid water. The exchange processes of water molecules at each of 

the hydrogen and oxygen atoms of the central H2O can be visualized through the plots 

of the H---O and O---H distances against the simulation time, as depicted in Figures 

4.15 and 4.16 for the HF/MM and ONIOM-XS simulations, respectively. According 

to the detailed analyses on the HF/MM and ONIOM-XS trajectories, it is observed 

that nearest-neighbor waters can be either “loosely” or “tightly” bound to the central 

H2O, leading to several water exchange mechanisms, with either “short-lived” or 

“long-lived” exchange periods. In very recent discussion on the behavior of liquid 

water (Nilsson et al., 2010; Nilsson and Pettersson, 2011), it has been demonstrated 

that water is inhomogeneous with a fluctuating HB network around two types of 

structures, strongly tetrahedral and strongly HB distorted. In this respect, most water 

molecules favor a closer packing than tetrahedral, with strongly distorted HBs. In 

Figures 4.15d and 4.16d, the variations of the number of all nearest-neighbor waters 

and those that form hydrogen bonding to the central H2O, calculated within the O-O 

distance of 3.20 Å, are also plotted for comparison. These graphs correspond to the 

plots in Figures 4.2 and 4.3, showing that some of the nearest-neighbor waters are not 
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directly hydrogen bonded to the central H2O. Thus, this leads to an increment of the 

distribution of 2- and 3-fold HB clusters in liquid water (Figure 4.3, as compared to 

Figure 4.2). In this regard, as can be seen in Figure 4.3, the presence of 2- and 3-fold 

HB species becomes more visible in the ONIOM-XS simulation, i.e., compared to the 

HF/MM results.  

 

 

 



 

 

 

 

 

 

 

 

 95

 

Figure 4.15 Time dependence of a) H1---O, b) H2---O and c) O---H distances, 

together with d) number of water molecules surrounding the central H2O (i.e., 

calculated within O-O distance of 3.20 Å; Red line: number of all nearest-neighbor 

water molecules, Black line: number of only water molecules forming HBs), as 

obtained by the HF/MM MD simulation. 
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Figure 4.16 Time dependence of a) H1---O, b) H2---O and c) O---H distances, 

together with d) number of water molecules surrounding the central H2O (i.e., 

calculated within O-O distance of 3.20 Å; Red line: number of all nearest-neighbor 

water molecules, Black line: number of only water molecules forming HBs), as 

obtained by the ONIOM-XS MD simulation. 
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The lifetime of HBs and the water exchange processes at the central H2O was 

calculated via means residence times (MRT) of the neighboring waters. In this work, 

the MRT data were calculated using the direct method, as the product of the average 

number of nearest-neighbor waters located within the first minimum of the O-O RDFs 

with the duration of the simulation, divided by the number of exchange events. In this 

work, since the first peak of the O-O RDFs is not clearly separated from the outer 

region (Figure 4.1a), the O-O distance of 3.2 Å was selected, assuming it to be a 

rough estimate of the first minimum of the O-O RDFs. With respect to time 

parameters t* (i.e., the minimum duration of a ligand’s displacement from its original 

coordination shell to be accounted) of 0.0 and 0.5 ps, the calculated MRT values are 

summarized in Table 4.3. In general, the MRT data obtained using t* = 0.0 ps are used 

for an estimation of HB lifetimes, whereas the data obtained with t* = 0.5 ps are 

considered as a good estimate for sustainable water exchange processes (Hofer, Tran, 

Schwenk, and Rode, 2004). With respect to t* = 0.0 ps, both HF/MM and ONIOM-XS 

simulations reveal rather similar MRT data. However, for t* = 0.5 ps, the ONIOM-XS 

simulation reveals a relatively smaller MRT value, i.e., compared to the HF/MM data. 

Consequently, this leads to a different average number of attempts needed to achieve 

one sustainable exchange event ( 5.00.0 / exex NN ), being 11.2 and 9.3 for the HF/MM and 

ONIOM-XS simulations, respectively. Comparing the HF/MM and ONIOM-XS 

results, these observed differences clearly confirm the important treatment of the 

ONIOM-XS method in obtaining a more accurate description of this particular 

system. In this respect, the ONIOM-XS method could be expected to be highly 

effective for the situation where the number of particles that are crossing the QM/MM 

boundary is large, such as in the case of liquid water. According to the simulation data 
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in Table 4.3, the observed different MRT data can be ascribed to the performance of 

different QM methods, as well as to the use of different QM sizes and basis sets. For 

example, with regard to t* = 0.0 ps, the HF/MM, B3LYP/MM and MP2/MM 

simulations using a similar QM radius (i.e., 3.2 Å for HF/MM and B3LYP/MM, and 

3.4 Å for MP2/MM) predicted the MRT values of 0.21, 1.07 and 0.28, respectively 

(Xenides, Randolf, and Rode, 2005). In addition, the HF/MM simulations using QM 

radii of 3.2 and 5.6 Å yielded different MRT values of 0.21 and 0.33, respectively 

(Xenides, Randolf, and Rode, 2005, 2006). Therefore, it should be demonstrated that, 

in conjunction with the performance of the more accurate ONIOM-XS technique, the 

QM size and basis set must also be taken into account as the crucial factors in 

obtaining the correct description of the HBs in liquid water. 
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Table 4.3 Mean residence times ( *
2

t
OHτ ) of water molecules, calculated within first 

minimum of the HF/MM and ONIOM-XS’s O-O RDFs.  

Method                     CN     tsim (ps)    t* = 0.0 ps t* = 0.5 ps 

 0.0
exN  0.0

2OHτ  0.5
exN  5.0

2OHτ  

HF/MM MD*            4.9       40.0      

ONIOM-XS MD*     4.7       30.0  

HF/MM MDm           4.6       12.0 

HF/MM MDn            4.2       40.0  

MP2/MM MDo         4.6         5.0 

Experimentp 

944 

607 

292 

515 

- 

- 

0.21  

0.23  

0.20 

0.33  

0.28 

0.5 

84  

65  

31 

112  

- 

- 

2.33 

2.17 

1.80 

1.51 

2.45 

- 

 

*Present work 

m(Tongraar and Rode, 2004) 

n(Xenides, Randolf, and Rode, 2006) 

o(Xenides, Randolf, and Rode, 2005) 

p(Lock, Woutersen, and Bakker, 2001) 
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CHAPTER V 

CONCLUSION 

 

In this work, conventional HF/MM and ONIOM-XS MD simulations have 

been performed to investigate the structural and dynamical properties of HBs in liquid 

water. Based on both HF/MM and ONIOM-XS simulations, it is observed that the HB 

network in liquid water is highly flexible, in which each water molecule can form 

various HBs, ranging from 2 to 6, with the prevalent value of 4. In addition, the 

detailed analyses on the HF/MM and ONIOM-XS’s trajectories clearly show that 

nearest-neighbor waters can be either “loosely” or “tightly” bound to the central water 

molecule, leading to several water exchange mechanisms, with either “short-live” or 

“long-live” exchange periods. By means of the ONIOM-XS simulation, as compared 

to the HF/MM results, it is observed that the structural arrangement of liquid water 

with respect to 4 HBs decreases significantly and that the distributions of 2- and 3-

fold HB species becomes more visible. The results obtained by the ONIOM-XS 

simulation correspond well to the recent experimental observations, which reported 

considerable amounts of 2- and 3-fold HB clusters in liquid water. In this context, the 

observed differences between the HF/MM and ONIOM-XS simulations clearly 

indicate some deficiencies of the conventional QM/MM scheme, and thus, confirm 

the need for more accurate simulation techniques, like the ONIOM-XS, in describing 

the properties of such HBs system.  
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