
Suranaree J. Sci. Technol. 15(2):149-158

THE PERFORMANCE OF UPDATING XML IN TRADI-
TIONAL DATABASES

Pensri Amornsinlaphachai* and Kwanjai Deejring
Received: Oct 4, 2007; Revised: Dec 3, 2007; Accepted: Dec 26, 2007

Abstract

Most researches in the XML area have concentrated on storing, querying and publishing XML, while
not many have paid attention to updating XML; thus the XML update area is not fully developed. This
work provides the overview of a solution for the update of XML documents via ORDB (Object-Rela-
tional Database) to advance the techniques in this area through preserving constraints, maintaining
performance in the presence of data redundancy, permitting joins of documents in updates and allowing
the updates of documents whose structure is known partially or whose structure is recursive. The main
contribution is to compare the performance of the solution and the existing ones. Thus experimental
study to evaluate the performance of XML update processing has been conducted. The experimental
results show that updating multiple XML documents storing non-redundant data yields a better
performance than updating a single XML document storing redundant data; an ORDB can take
advantage of this by caching data to a greater extent than a native XML database.

Keywords: XML updates, ORDB, traditional databases, XML constraints

Introduction

Computer Department, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Thailand
30000. Tel: 086-1003876; E-mail: kokkoy@hotmail.com

* Corresponding author

XML (eXtensible Markup Language) has become
an effective standard for representing semi-
structured data on the Web since it provides a
natural data structuring mechanism for hierarchi-
cal and recursive data; moreover it is flexible in
that it allows the authors to define their own tags
and structure for documents and can handle data
whose occurrence is optional. Many researchers
in the XML area have focused on storing, pub-
lishing, and querying XML documents. XML
consequently provides most of the features
normally expected for a database model. How-
ever, there is an omission in that most existing

work does not pay much attention to modifying
XML or does not mention it at all.

Nowadays, there are two dominant
approaches for managing XML repositories. The
first approach is to use native XML databases
to handle the data. The second approach maps
XML onto a traditional database (e.g., relational
database (RDB), object-relational database
(ORDB) and object-oriented database (OODB)).
Two possible reasons behind the immaturity of
the XML update area are as follows. Firstly,
XQuery has not provided update features
because the W3C Consortium wanted to release

150 The Performance of Updating XML in Traditional Databases

the standard of XQuery as soon as possible
(Chamberlin, 2003). Secondly, existing work is
focused on updating XML by employing a
native XML database. Thus a host of work such
as preserving constraints must be created from
scratch which can take a long time. Research in
the XML update area is not fully-fledged. Our
work has identified five main problems as
follows:

• The work published presently can update
XML documents but only without checking
constraints. Even commercial products cannot
guarantee the integrity in the database when
XML data is updated (Babcock, 2002).

• Normally, all XML data is kept in one
document; thus data redundancy may occur.
This can lead to data inconsistency and low
performance when updates are performed
(Arenas and Libkin, 2004).

• No XML update language supports joins
of XML documents (Obasanjo and Navathe,
2002; Lu et al., 2003).

• Regular path expressions are used to
query/update XML whose structure is unknown
or only partially known. Using regular path
expressions, especially a descendent path
expression (‘//’), can slow the process of
querying/updating data (Wang and Liu, 2003)
because the query engine must traverse all
possible paths in XML.

• In XQuery, there is no specific facility
to query data whose structure is recursive;
however the effect can be achieved by creating
a recursive user-defined function. Until now no
technique is proposed to translate this recursive
feature into Structured Query Language (SQL)
(Krishnamurthy et al., 2004; Prakash et al., 2006).
Our work presents a solution for the update
of XML documents via ORDB to solve these
problems and evaluates the performance of
XML update processing.

The rest of this paper is organized as
follows. The next section presents the goal of
our work, to devise a more effective solution
for updating XML data and solve the open
problems as mentioned previously. The follow-
ing section shows the results of experimental
study, including performance aspects. A conclu-
sion is provided in the final section.

Our Solution for Updating XML

XML updating has been relatively well-
researched in the area of native XML database,
whereas in the area of applying traditional data-
bases to manage XML, only one work (Tatarinov
et al., 2001) has presented an XML language
for updating XML data. This work employed a
RDB but only the syntax and semantics of the
language are presented. In our solution, the more
advanced technology of ORDB is exploited to
update XML documents.

The purpose of using a traditional data-
base, ORDB, in this research is different from
that of other work. The previous work uses OODB
(Zwol et al., 1999), RDB (Tatarinov et al., 2002;
Lv and Yan, 2006) and ORDB (Pardede et al.,
2006) as the database management systems
(DBMS) of XML documents to store and query
XML data, but our approach uses ORDB to
preserve constraints during updating and to
indicate the target-elements in XML documents
which should be updated. The updates are
performed on XML documents; thus it is not
necessary to maintain the order of elements
in ORDB and users can query data from XML
documents instead of ORDB. This reduces the
cost of data conversion, since nowadays, the
major expense of exchanging messages between
Web Services comes from converting data such
as between a database and XML format (Watson,
2005). The overview of our approach is illustrated
in Figure 1.

In the solution, Document Type Definitions
(DTDs) are used in our mapping since most XML
documents still stick to DTDs (Mignet et al.,
2003). Not only the XML structure but also XML
constraints are mapped to ORDB since a DTD
defines the constraints on the logical structure
of XML documents (Lu et al., 2005).

Non-redundant data is kept in separate
multiple XML documents so avoiding the
storage of redundant data in one single XML
document; then the separate documents are
linked together. To update XML data, an XML
update language, as an extension to XQuery, is
designed and this language is translated into SQL
to update XML data stored in ORDB. Then the
changes in ORDB are propagated to the XML

151Suranaree J. Sci. Technol. Vol. 15 No. 2; April - June 2008

documents.
With this solution, the problems mentioned

in the previous section can be solved as follows.
Firstly, the preservation of XML constraints
is handled by the ORDB engine. Secondly,
non-redundant data is stored in linked XML
documents; thus the problem of data inconsis-
tency and low performance caused by data
redundancy are solved. Thirdly, joins of XML
documents are converted to joins of tables in SQL.
Fourthly, fields or tables involved in regular path
expressions can be tackled in a short time by
the use of mapping data. Finally, a recursive
function is translated into SQL commands
equipped with a programming capability.

The detail of mapping XML to ORDB is
presented in Amornsinlaphachai et al., 2006a
whereas the detail of translating the XML
update language into SQL is proposed in
Amornsinlaphachai et al., 2006b. The techniques
of propagating the change from XML to ORDB
and the implementation for the solution can be
found in Amornsinlaphachai et al., 2005.

Results and Discussion

It is important to verify the method for updating
XML, developed in the previous section. This
was done through an experimental study in

which a diverse range of 17 update queries were
executed and the results carefully inspected to
check that they were as expected. In addition, to
gain an insight into the performance of the
update techniques, runs were repeated with
variable database size, cache state, degree of
redundancy and methods for linking XML
structures.

Experiment Platform and Methodology

In the experiments, three types of data-
bases are used. The first is X-Hive, a trial
version of a commercial native XML database
(nxd), used to keep redundant data of a single
XML document. The second is Oracle ORDB
employed to keep redundant data of a single
XML document (sxd). The third is Oracle ORDB
utilised to keep non-redundant data of linked
XML documents (lxd). The XML update
language for X-Hive is XUpdate (XMLDB, 2002).
All experiments are conducted on a 1.3 GHz
Pentium M machine with 768 MB main memory
and 20 GB disk running Windows XP. The
experiments are designed to evaluate the perfor-
mance for updating: (a) native XML database
storing redundant data, (b) ORDB storing redun-
dant XML data and (c) ORDB keeping non-
redundant XML data. Varying sizes of the data-
bases ranging from 5, 10, 20 to 40 MB are used.

Figure 1. Overview of the solution to updating XML documents

152 The Performance of Updating XML in Traditional Databases

The number of redundant records for the 5 MB
data size varies from 10, 20, 40 to 80 records,
while the number of redundant records for
the 10, 20, and 40 MB data sizes is two, four
and eight times respectively the number of
redundant records for the 5 MB data size. The
size of linked XML documents is smaller than a
single XML document since such documents do
not contain redundant records. In updating the
linked XML documents, each update command
affects 10 records. Thus the number of records
in a single document affected by a command
varies according to the proportion of redundant
records.

To study the effect of data caching on the
performance of updating XML, the experiments
are conducted in cold cache, warm cache and
hot cache. In cold cache, the database is restarted
for each individual update command. In
warm cache, the database is restarted for each
individual command as well; however before
running the command, five unrelated commands
will be run first. In hot cache, the same command
is run twice in succession and the performance
measured for the second run.

Another objective is to compare the
performance of update features. We designed
two sets of 44 update commands for two ORDBs.
Each set of commands consists of 14 replace, 14
delete and 16 insert commands covering the 17
features shown in Figure 2. For the native XML
database, 41 update commands, a subset of the
44 commands of ORDB, are used. The number of

commands for the native XML database is less
than for ORDB since XUpdate does not support
recursion (C17) and navigation by reference
traversal (C11). In the XML update commands,
some commands contain two features since some
features are simple or always appear along with
other features. The feature C11 appears along
with the feature C17, while the feature C2
(update without join) appears in the various
commands updating a particular document
without a join to other documents.

Each experiment is executed five times and
the longest and the shortest elapsed times are
ignored; thus only an average of three elapsed
times is reported.

Discussion of the Experimental Results

The graphs and tables, to evaluate the
performance of XML update processing accord-
ing to the purposes of the experimental study,
are produced as follows.

Performance with Different Data Redundancy
and Data Caching

Figure 3 contains four graphs, one for each
size of the database. Each graph plots average
elapsed time for replace, delete and insert opera-
tions against the number of redundant records
in the three possible cache states: cold, warm
and hot. In cold cache all required data is on the
disk, whereas in warm cache most of the required
data is in memory and in hot cache all required
data is in the memory.

Figure 2. The 17 update features for the experimental study

C1 Exact Match
C2 Update without join of documents
C3 Change selectivity
C4 Allow condition on text
C5 Support aggregation
C6 Support quantifiers
C7 Joins based on values
C8 Joins based on pointer
C9 Casting

C10 Join documents in update
C11 Navigation by reference traversal
C12 Handling missing elements
C13 Element ordering
C14 Using regular path expression
C15 Mix between data-centric and

 document-centric
C16 Hierarchical and sequence update
C17 Recursion and reference traversal

153Suranaree J. Sci. Technol. Vol. 15 No. 2; April - June 2008

The times for the operations individually
are available in Amornsinlaphachai, 2007.
Note that the update time in the graphs and the
tables excludes serialization time since, usually,
serialization can be performed only once after all
updates finish.

The commands C14 (regular path expres-
sion) and C17 (recursion) are excluded from the
average time of nxd since X-Hive does not
support C17 while the elapsed time of C14 run on
X-Hive is so long that it can affect the overall
performance of the systems. The command C3
(change selectivity) is also not included in the
average time of sxd because it takes a relatively
long elapsed time. The performance of each
command will be discussed in the next section.

From the graphs in Figure 3, in cold cache
sxd (single XML document database) has the
worst performance for every data size, whereas
nxd (native XML database) has the best perfor-
mance. However, when the data size is 40 MB
and there is considerable data redundancy, lxd
can outperform nxd. This is because lxd does

not contain redundant data; thus, although the
number of updated records will be constant for
every degree of redundancy, the data size will be
smaller when nxd has more redundant data.
Therefore the performance of lxd is better when
the degree of redundant data in nxd is greater.

For warm and hot caches, lxd has the best
performance in all cases while nxd has the worst
performance when the data size is smaller than
20 MB. When the data size is 20 and 40 MB, then
nxd can outperform sxd. This is because the
update time in sxd consists of SQL-time and
DOM-time (time for updating DOM of XML) and
when the data size is doubled, DOM-time is
increased about twice whereas the update time
of nxd is increased to a lesser extent. Also when
the data size is increased, there are more records
to be updated; thus it means that for ORDB with
sxd, there are more data to be preserved for the
rollback purpose, whereas we have not found
that nxd has a mechanism to preserve data for
the rollback purpose. The latter reason is also
the reason why the performance for sxd is

Figure 3. Average time of nxd, sxd, and lxd in cold, warm, and hot caches nxd: native XML database;
sxd: single XML document database; lxd: linked XML document database

154 The Performance of Updating XML in Traditional Databases

affected by redundant data more than that for
nxd, as can be seen clearly when the data size is
bigger than 5 MB.

The time in cold cache for lxd is about four
or five times that in warm cache and the time in
cold cache for sxd is double that in the warm
cache. By contrast, the times in cold and warm
caches for nxd are similar, showing that lxd and
sxd gain more benefit from caching data than
nxd. The difference in time between the cold and
warm caches for lxd is more than that for sxd.
This is because caching data has only a little
effect on DOM-time but a much greater effect on
SQL-time. For lxd the DOM-time is small when
compared to the SQL-time; thus when the cache
state is changed from cold to warm, most of the
difference in time is derived from the change in
SQL-time, causing significant difference in the
times for cold and warm caches. On the other
hand for sxd, the DOM-time is nearly equal to
the SQL-time in cold cache and the DOM-time is
changed only a little when the cache state is
changed from cold to warm. Thus the difference
in time between cold and warm caches in sxd is

less than in lxd.

The Performance of the Seventeen Update
Features

We present here only some important data,
which can be used as representative for the
performance against the update features. The
representative data consists of insert and delete
commands performed in hot cache with data
size 40 MB, which is the biggest size of data
tested. Only the results for 40 MB data size with
800 redundant records are presented since the
difference in performance between the update
features is similar for each size of redundant data.
In practice both cold and hot caches can be used
to capture actual performance. However in the
real world, applications are run more in warm
or hot cache than in cold cache; therefore we
choose one of these, hot cache, to show the
performance against each update feature. The
replace commands are not presented here since
nxd does not directly support replacing a
complex element: several update commands are
executed on simple elements instead of one

Table 1. Insert time of three databases in hot cache (40 MB, 800 redundant records)

 nxd sxd lxd

C17 - C12 4.95 C12 1.38
C5 3.75 C15 5.14 C17 1.41
C15 3.94 C4 5.15 C15 1.44
C4 4.19 C9 5.17 C4 1.47
C10 4.32 C6 5.19 C14 1.48
C3 4.33 C14 5.21 C9 1.51
C1 4.57 C132 5.32 C8 1.76
C12 4.65 C131 5.34 C1 1.81
C8 4.72 C8 5.42 C3 1.82
C131 4.75 C7 5.58 C6 1.82
C132 4.75 C10 5.59 C132 1.91
C7 4.85 C5 5.72 C131 1.92
C9 4.94 C3 5.84 C10 2.03
C6 5.62 C1 5.93 C7 2.06
C16 9.37 C16 9.26 C5 2.26
C14 85.32 C17 9.74 C16 3.34

AVG 4.91 AVG 5.91 AVG 1.84

 (a) (b) (c)

155Suranaree J. Sci. Technol. Vol. 15 No. 2; April - June 2008

Table 2. Comparison of insert time and delete time

Cmd. nxd sxd lxd
Insert Delete Insert Delete Insert Delete

C1 4.57 4.53 5.93 5.91 1.81 1.84
C3 4.33 4.25 5.84 12.38 1.82 2.00
C4 4.19 4.07 5.15 5.19 1.47 1.44
C5 3.75 3.69 5.72 5.74 2.26 2.21
C6 5.62 5.53 5.19 5.20 1.82 1.81
C7 4.85 4.77 5.58 5.69 2.06 1.97
C8 4.72 4.68 5.42 5.59 1.76 1.74
C9 4.94 4.86 5.17 5.20 1.51 1.46
C10 4.32 4.26 5.59 5.59 2.03 2.03
C12 4.65 4.63 4.95 5.16 1.38 1.41
C131 4.75 - 5.34 - 1.92 -
C132 4.75 - 5.32 - 1.91 -
C14 85.32 85.44 5.21 5.21 1.48 1.42
C15 3.94 3.83 5.14 5.16 1.44 1.39
C16 9.37 9.28 9.26 9.47 3.34 3.36
C17 - - 9.74 9.75 1.41 1.41

AVG 4.91 4.86 5.91 6.07 1.84 1.82
STDEV 1.36 1.84 1.43 1.59 0.48 0.53
%RSD 27.78 30.34 24.22 26.19 26.20 29.12

 (a) (b) (c)

update command on the complex element.
The representative data is summarized in

Tables 1 and 2. Table 1 shows the performance
difference between the update features of insert
commands for the three types of database
nxd, sxd and lxd. The commands are given in
ascending order of elapsed time.

From Table 1(a), the command C14 testing
regular path expression (//) produces an unac-
ceptable performance. This indicates that nxd
has a weak point in handling a regular path
expression because all possible paths in XML
documents must be navigated. On the other
hand, from the Tables 1(b) and (c), sxd and lxd
can handle this type of command well since the
XML update language is translated into SQL;
thus the real path expression is not genuinely
involved in executing the update command.
Additionally the path in the regular path expres-
sion can be determined by using mapping
information; thus fields or tables involved in the

expression are solved in a short time.
Command C16 (hierarchical and sequence

update) comprises a sequence of update
commands; thus its elapsed time is longer than
for one single update command. If C14 and C16
are not taken into account, the command C6
testing a quantifier takes the longest elapsed time
because not only is the tree searched to match
the condition but also the grouping of data is
calculated. The elapsed times of the rest of the
commands are close to each other. In this group,
the command C9 takes the longest elapsed time
since the content of XML is text; thus it takes
time to cast the text type to a numeric type to
calculate the data.

For sxd from Table 1(b), the command C17
testing recursion takes the longest elapsed time
because in translating the XML update language,
we repeat the deletion and insertion of data from
and into the temp table. The elapsed time of the
command C16 is the second longest since C16

156 The Performance of Updating XML in Traditional Databases

performs a sequence of update operations; thus
more than one subcommand is executed.

The elapsed times of the rest of the com-
mands are close to each other. C5 takes a longer
time than C6 since, in our language translation, a
quantifier is translated into the count() function
along with the conditions of the quantifier; thus
before grouping and counting the data in each
group, the conditions can eliminate unwanted
data to decrease the size of data. The command
C8 testing joins based on pointers takes a shorter
time than C7 since C8 uses a foreign key and a
primary key to join data.

For lxd from Table 1(c), the sequence of
elapsed time of lxd is different from sxd since the
number and the structure of tables in sdx and lxd
are not the same. The lxd has more layers of
objects inside tables than sxd.

The command C16 takes the longest
elapsed time because C16 is a sequence of
update operations. The command C5 takes the
second longest elapsed time because C5 involves
three tables with the need to both group and
count data. The command C7 takes the third
longest elapsed time. Although C7 involves only
two tables, it does not use the key for joining
data. The command C10 takes the fourth longest
elapsed time because it involves four tables. The
elapsed times of the rest of the commands are
not much different. Similar to sxd, C7 takes a
longer time than C8 and C5 takes a longer time
than C6.

Table 2 compares the performance between
insert and delete commands for the three types
of database. From this table, there is not much
difference between the performance of insert
and delete commands except for C3 (change
selectivity) with sxd in Table 2(b). Here, the
delete command takes much more time than the
insert command because two conditions, ‘>=’
and ‘<=’, need to be satisfied in the scan of a
full-table. The deletion of the data requires the
DBMS to preserve the previous version of
the data for rollback purposes, an operation
performed for each target record found. For lxd,
there are no redundant records so the number of
operations is much fewer than in sxd.

From the values of the standard deviations

in Table 2, the performance difference between
most update features for nxd. sxd and lxd are not
significant. However the performance for lxd is,
on the whole, much better than for sxd and nxd;
indeed with lxd all features are handled better
than with nxd. A particularly weak point of nxd is
handling regular path expressions. In deletions
with sxd, the capability for handling change
selectivity is inadequate.

Conclusions

Meanwhile a standard for updating XML
documents has not been proposed. The existing
XML databases and XML update languages
have limitations in their capability for updating
data. In our technique, the technology of ORDB
is exploited to increase the capability of existing
XML update approaches in the aspect of
controlling constraints during updating XML
data, making it easier to join XML documents in
updating, allowing the updates of documents
whose structure is known partially or whose
structure is recursive, and improving the perfor-
mance of the updates by using regular path
expressions. With this approach, there is no need
to maintain the order of elements in ORDB and
the cost of converting ORDB data back to XML
format is eliminated since the change in ORDB
is propagated to XML already. Our approach
makes it possible to query XML data from XML
documents instead of just ORDB. For example,
using Kweelt (Sahuguet, 2001) which is an imple-
mentation of XQuery for querying XML docu-
ments directly, the result from querying is
returned in XML format without any conversion.
Although DOM has to be serialized back to an
XML document, serialization is performed only
once after all updates finish.

We have conducted the experimental study.
The experimental result shows that overall
updating non-redundant data outperforms
updating redundant data. Caching data affects
the performance of updating. The native XML
database has a weakness for handling regular
path expressions.

There are many interesting avenues
for further work in the XML update area since

157Suranaree J. Sci. Technol. Vol. 15 No. 2; April - June 2008

XML update is still in its infancy. The possible
extensions to our research include updating the
XML structure, transaction processing,
concurrency control, security for accessing
XML data and query optimisation through
using the results obtained as parameters for a
cost model.

References

Amornsinlaphachai, P. (2007). Updating semi-
structured data, [Ph.D. thesis]. School of
Computing, Engineering and Information
Science, Northumbria University, UK,
p. 314.

Amornsinlaphachai, P., Rossiter, N., and Ali, M.A.
(2005). Updating XML using object-rela-
tional database. Proceedings of British
National Conference; July 5-7, 2005;
Sunderland University, UK. Springer-
Verlag, Berlin, p. 155-160.

Amornsinlaphachai, P., Rossiter, N., and Ali, M.A.
(2006a). Storing linked XML documents
in object-relational DBMS. Journal of
Computing and Information Technology,
14(3):225-241.

Amornsinlaphachai, P., Rossiter, N., and Ali, M.A.
(2006b). Translating XML update language
into SQL. CIT, 14(2):81-100.

Arenas, M. and Libkin, L. (2004). A normal form
for XML documents. ACM Transactions
on Database Systems (TODS), 29(1):195-
232.

Babcock, C. (2002). Internet insight: XML users
consider nonstandard third-party software
to ease update process (appears in Ziff
Davis’ eWeek 11 Feb. 2002). Available from:
http://www.charlesbabcock.com/xquery.
htm. Accessed date: August 25, 2005.

Chamberlin, D. (2003). XQuery from the
Experts: A Guide to the W3C XML Query
Language. 1st ed. Addison-Wesley Profes-
sional, Boston, 484p.

Krishnamurthy, R., Chakaravarthy, V.T., Kaushik,
R., and Naughton, J.F. (2004). Recursive
XML schema, recursive XML queries, and
relational storage: XML-to-SQL query
translation. Proceedings of the 20th Inter-

national Conference on Data Engineering,
ICDE 2004; March 30- April 2, 2004;
Boston, MA, USA, p. 42-53.

Lu, L., Liu, M., and Wang, G. (2003). A declarative
XML-RL update language. Proceedings of
22nd International Conference on Concep-
tual Modeling (ER 2003); October 13-16,
2003; Chicago, Ill, USA, Springer-Verlag,
Berlin, p. 506-519.

Lu, S., Sun, Y., Atay, M., and Fotouhi, F. (2005).
On the consistency of XML DTDs. Data
& Knowledge Engineering, 52:231-247.

Lv, T. and Yan, P. (2006). Mapping DTDs to rela-
tional schema with semantic constraints.
Information and Software Technology,
48:245-252.

Mignet, L., Barbosa, D., and Veltri, P. (2003).
The XML web: a first study. The 12th

International World Wide Web Conference
(WWW2003); May 20-24, 2003; Budapest,
Hungary, p. 500-510.

Obasanjo, D. and Navathe, S.B. (2002). A
proposal for an XML data definition and
manipulation language. Proceedings of
VLDB 2002 Workshop EEXTT and CAiSE
2002 Workshop DTWeb on Efficiency and
Effectiveness of XML Tools and Tech-
niques and Data Integration over the Web-
Revised Papers; August 20-23, 2003; Hong
Kong China, p. 1-21.

Pardede, E., Rahayu, J.W., and Taniar, D. (2006).
Object-relational complex structures for
XML storage. Information and Software
Technology, 48:370-384.

Prakash, S., Bhowmick, S.S., and Madria, S.
(2006). Efficient recursive XML query
processing using relational database
systems. Data & Knowledge Engineering,
58(3):207-242.

Sahuguet, A. (2001). Kweelt: more than just “yet
another framework to query XML!”
Proceedings of 2001 Association for
Computing Machinery (ACM) Special
Interest Group on Management of Data
(SIGMOD) Conference; May 21-24, 2001;
Santa Barbara, CA., p. 602.

Tatarinov, I., Ives, Z., Halevy, A.Y., and Daniel,
S.W. (2001). Updating XML. Proceedings

158 The Performance of Updating XML in Traditional Databases

of 2001 Association for Computing
Machinery (ACM) Special Interest group
on Management of Data (SIGMOD)
Conference; May 21-24, 2001; Santa
Barbara, CA., USA, p. 413-424.

Tatarinov, I., Viglas, S.D., Beyer, K., Shanmuga-
sundaram, J., Shekita, E., and Zhang, C.
(2002). Storing and querying ordered XML
using a relational database system.
Proceedings of the 2002 ACM SIGMOD
International Conference on Management
of Data; June 3-6, 2002; Madison, WI, USA,
p. 204-215.

Wang, G. and Liu, M. (2003). Query processing
and optimization for regular path expres-
sions. Proceedings of Advanced Informa-
tion Systems Engineering, 15th Interna-
tional Conference; June 16-20, 2003;
Klagenfurt, Austria, p. 30-45.

Watson, P. (2005). Databases in grid applications:
locality and distribution. Proceedings of
the Database: Enterprise, Skills and
Innovation. 22nd British National Confer-
ence on Databases, BNCOD 22; July 5-7,
2005; Sunderland, UK, Springer-Verlag,
Berlin, p. 1-16.

XMLDB. (2002). XUpdate. Available from: http:/
/www.xmldb.org/xupdate/xupdate-wd.
html. Accessed date: April 19, 2004.

Zwol, R.V., Apers, P.M.G., and Wilschut, A.N.
(1999). Modeling and querying
semistructured data with MOA. Proceed-
ings of Workshop on Query Processing
for Semistructured Data and Non-standard
Data Formats; October 31, 1999; Jerusa-
lem, Israel, p. 1-5.

