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สุกัญญา  เจริญขวัญ : การศึกษาความเขากันไดและสมบัติของพอลิเมอรผสมระหวาง 
พอลิเอทิลีนชนิดความหนาแนนสูงและพอลิเอทิลีนเทอเรพทาเลทที่ผานการใชงานแลว  
(A STUDY OF COMPATIBILIZATION AND PROPERTIES OF RECYCLED HIGH 
DENSITY POLYETHYLENE (HDPE)/POLYETHYLENE TEREPHTHALATE (PET) 
BLENDS) อาจารยที่ปรึกษา : ผูชวยศาสตราจารย ดร.กษมา  จารุกําจร, 94 หนา.

  
จุดประสงคของวิทยานิพนธนี้เพื่อศึกษาคุณสมบัติของพอลิเมอรผสมระหวางพอลิเอทิลีน

ชนิดความหนาแนนสูงและพอลิเอทิลีนเทอเลฟทาเลทที่ผานการใชงานแลวและวิเคราะหวาพอลิเมอร
ผสมสามารถถูกนําไปใชแทนไมเนื้อออนโดยการพิจารณาจากคุณสมบัติเชิงกล สัดสวนของการ
ผสม ชนิดและปริมาณของสารชวยใหเขากัน และชนิดของสารตัวเติมถูกใชเปนปจจัยหลักใน
การศึกษาเชิงเปรียบเทียบ พอลิเมอรผสมของพอลิเอทิลีนชนิดความหนาแนนสูงและพอลิเอทิลีนเทอ
เลฟทาเลทที่อัตราสวน 80/20, 60/40, 40/60, และ 20/80 %โดยน้ําหนัก โดยถูกเตรียมในเครื่องอัดรีด
ชนิดแกนคูหมุนในทิศทางเดียวกัน ช้ินทดสอบถูกเตรียมโดยใชเครื่องฉีด คุณสมบัติเชิงกล กระแส
วิทยา ความรอน สัณฐานวิทยา การดูดซึมน้ํา และความหนาแนนของพอลิเมอรผสมเปลี่ยนแปลง
ตามอัตราสวนขององคประกอบ 

ความเขากันไดของพอลิเมอรผสมนี้สามารถถูกปรับปรุงโดยการเติมสารชวยใหเขากันคือ 
โคพอลิเมอรของพอลิเอทิลีนและมาเลอิคแอนไฮดรายด และโคพอลิเมอรของพอลิเอทิลีนชนิดความ
หนาแนนสูงและไกลซิดิลเมทธาครีเลท ปริมาณสารชวยใหเขากันคือ 2, 4, 6, และ 8 สวนในรอย
สวนของพอลิเมอรผสม พอลิเมอรผสมที่ถูกปรับปรุงความเขากันไดมีขนาดเฟสกระจายเล็กกวา
พอลิเมอรผสมที่ไมไดถูกปรับปรุงความเขากันได การยึดติดระหวางเฟสตอเนื่องและเฟสกระจาย
เพิ่มขึ้นเมื่อมีการเติมสารชวยใหเขากันสงผลตอการปรับปรุงคุณสมบัติเชิงกลของพอลิเมอรผสม 
สารชวยใหเขากันไมเพียงแตเพิ่มคาความหนืดของพอลิเมอรผสมแตยังมีผลกระทบตอสภาพเปน
ผลึกพอลิเมอรผสมดวย นอกจากนี้พบวาโคพอลิเมอรของพอลิเอทิลีนชนิดความหนาแนนสูงและ
ไกลซิดิลเมทธาครีเลทมีประสิทธิภาพมากกวาโคพอลิเมอรของพอลิเอทิลีนและมาเลอิคแอน
ไฮดรายดเนื่องจากมีความวองไวปฏิกิริยาของหมูไกลซิดิลเมทธาครีเลทกับหมูที่ปลายของพอลิเอสเทอร
ที่สูงกวาปริมาณที่เหมาะสมของโคพอลิเมอรของพอลิเอทิลีนชนิดความหนาแนนสูงและไกลซิดิล
เมทธาครีเลทและโคพอลิเมอรของพอลิเอทิลีนและมาเลอิคแอนไฮดรายด สําหรับพอลิเมอรผสม
ของพอลิเอทิลีนชนิดความหนาแนนสูงและพอลิเอทิลีนเทอเลฟทาเลทที่อัตราสวนการผสม 20/80 
เปน 2 และ 6 สวนในรอยสวนของพอลิเมอรผสม ตามลําดับ 

เสนใยแกวชนิดสั้นและแคลเซียมคารบอเนตถูกใชเปนสารตัวเติมที่ปริมาณ 10 สวนในรอย
สวนของพอลิเมอรผสมเพื่อเสริมแรงในพอลิเมอรผสม การเติมเสนใยแกวชนิดส้ันลงในพอลิเมอร
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ผสมปรับปรุงคุณสมบัติแรงดัด แรงอัด และแรงกระแทก อยางไรก็ตาม การเติมแคลเซียมคารบอเนต
ลงในพอลิเมอรผสมไมมีผลกระทบทางบวกตอคุณสมบัติเชิงกลของพอลิเมอรผสม ดวยเหตุนี้สาร
ชวยใหเขากันถูกผสมกับเสนใยแกวชนิดสั้นหรือแคลเซียมคารบอเนตเพื่อปรับปรุงคุณสมบัติของพอ
ลิเมอรคอมโพสิท 

พอลิเมอรคอมโพสิทระหวางพอลิเอทิลีนชนิดความหนาแนนสูง พอลิเอทิลีนเทอเลฟทาเลท
และเสนใยแกวชนิดสั้นไมสามารถใชแทนไมเนื้อออนไดโดยตรงเพราะคุณสมบัติเชิงกลบางอยางต่ํา
กวา จากการทดลองพบวาโมดูลัสของแรงดัดและแรงอัดของพอลิเมอรคอมโพสิทต่ํากวาของไม
เนื้อออน ความหนาแนนสูงกวาไมเนื้อออน ถึงแมวามีความตานทานแรงดัดและแรงอัดดีกวาของไม
เนื้อออนก็ตาม เมื่อไมพลาสติกถูกนํามาใชโดยเฉพาะการใชงานแบบรับน้ําหนัก การแอนตัวของ
พลาสติก คุณสมบัติการคืบควรจะถูกชดเชยโดยการพิจารณาพื้นที่หนาตัดใหใหญขึ้นหรือมีจุด
รองรับที่มีระยะสั้นมากขึ้น 
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GLASS FIBER, CALCIUM CARBONATE 

 

 This thesis aimed to study the properties of recycled HDPE and PET blends 

and analyze if the blends could replace the softwood from mechanical properties 

aspect. Blend compositions, compatibilizer types and contents, and filler types were 

used as main parameters in the comparative study. The blends of HDPE/PET at 

various compositions of 80/20, 60/40, 40/60, and 20/80 wt% were prepared in a  

co-rotating twin screw extruder. The specimens were molded using injection molding 

machine. Mechanical, rheological, thermal, morphological properties, water 

absorption, and density of the blends were varied by the composition ratio. 

 Compatibility of these blends could be improved by adding the compatibilizers: 

polyethylene grafted with maleic anhydride (PE-g-MA) and high density polyethylene 

grafted with glycidyl methacrylate (HDPE-g-GMA). The compatibilizer contents were 

2, 4, 6, and 8 phr. The compatibilized blends had a smaller size of dispersed phase than 

that of the uncompatibilized blends. The adhesion between matrix and dispersed phase 

was enhanced with addition of the compatibilizers leading to improve the mechanical 

properties of the blends. The compatibilizers not only increased in the melt viscosity 

but also affected on the crystallinity of the blends. Moreover, HDPE-g-GMA had been 
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found more effective than PE-g-MA due to its higher reactivity of GMA functionality 

with polyester terminal groups. The optimum content of HDPE-g-GMA and PE-g-MA 

for 20/80 HDPE/PET was 2 and 6 phr, respectively. 

 Short glass fiber and calcium carbonate were used as the fillers at 10 phr 

content to reinforce the blends. Incorporating the short glass fibers into the blends 

improved the flexural, compressive, and impact properties. However, adding calcium 

carbonate into the blends yielded no positive impact on the mechanical properties of 

the blends. As a result, the compatibilizers were mixed with short glass fiber or 

calcium carbonate to improve the prosperities of the composites. 

 HDPE/PET/short glass fiber composites could not directly substitute the soft 

wood because of some inferior mechanical properties. The experiments showed that 

their flexural and compressive modulus was lower than that of the soft wood; their 

densities were however higher than the soft wood, and their flexural and compressive 

strength were higher than those of soft wood. When plastic lumbers were utilized in as 

structural elements, the deformation and creep properties should be compensated such 

as by increasing moment of inertia of the cross sections or by reducing the span of the 

structural elements. 
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CHAPTER I 

INTRODUCTION 

 

1.1  General introduction  

 Nowadays, plastics are widely used as packaging, furniture, electronic parts, 

and housewares. This has caused an increasing concern regarding the environment and 

problem of plastic waste disposal. Alternative methods for handling plastic waste 

include burial, incineration, depolymerization, and recycling. Plastic recycling is a 

convenient way to solve the problem of the waste management (Awaja and Pavel, 

2005). There are three methods of the plastic recycling: mechanical recycling, 

feedstock recycling, and energy recovery. The mechanical recycling is easy and 

straight forward. However, separation of post-consumer mixed plastics into individual 

plastics is costly and complete sorting is impossible due to the variety of plastic 

wastes. The development of blending recycled plastic technologies is driven by 

practical use of unsortable mixtures, development of upgraded products for higher 

level application, blending the mixtures of recycled to improve product quality, and 

intentionally mixing recycled plastics to obtain new green products (Markham and 

Mangraj, 1997). High density polyethylene (HDPE) and poly(ethylene terephthalate) 

(PET) are the thermoplastics widely used as packaging (bottles, films, etc.) and 

contribute about 72% of total plastics used in rigid containers (Ernst and Youngs, 

1994).  These plastics are chosen to study their blend properties since they are major 

portion of the post-consumer household wastes. In addition, HDPE and PET are easy 
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to separate from the post-consumer household wastes. However, the blends of HDPE 

and PET are immiscible. The immiscible blends form a two-phase system with poor 

physical and mechanical properties due to weak adhesion at the interface. 

Compatibilization is generally needed to improve the adhesion and enhance the 

properties of the polymer blends. The compatibility of these heterogeneous blends can 

be improved by the addition of compatibilizers (Dimitrova, La Mantia, Pilati, Toselli, 

Valenza and Visco, 2000; Dagli and Kamdar, 1994).  

 During the 1990s, a number of technologies emerged to utilize recycled plastics 

in products design to replace dimensional wood lumber. One prime example of this 

application was recycled plastic lumber (RPL). The manufacture of RPL from post-

consumer was promising as it consumed large quantities of waste plastics 

(Climenhage, 2003). RPL is a wood-like product made from recycled plastic or 

recycled plastic mixed with other materials. RPL has many astonishing characteristics 

that wood lacks. It offers the advantages of being resistant to insects, rot, moisture, 

many chemicals, and low maintenance materials. It does not need chemical treatments 

to achieve or maintain their properties. In addition, it has cost effective, high quality, 

and environmentally performance. However, it has low modulus of elasticity and high 

levels of creep. Reinforcing materials e.g. glass fibers and wood fibers have been 

incorporated into the plastic lumber to increase the stiffness of the lumber. Foaming 

agents, UV stabilizers, and pigments are typically incorporated into the plastic to 

enhance the appearance or performance of the lumber product (Breslin, Senturk, and 

Berndt, 1998). 
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1.2  Research objectives 

 The main objectives of this study are as below: 

 (i)  To study the physical, mechanical, rheological, thermal, and 

morphological properties of recycled HDPE/PET blends at various compositions 

including density, heat distortion temperature, water absorption, tensile properties, 

flexural properties, impact strength, viscosity, melting temperature, crystallization 

temperature, crystallinity degree, and morphology.  

 (ii)  To study the effect of compatibilizer types and contents on the physical, 

thermal, rheological, mechanical, and morphological properties of recycled 

HDPE/PET blends. 

 (iii)  To study the effect of fillers on the physical, thermal, rheological, 

mechanical, and morphological properties of recycled HDPE/PET blends. 

 (iv)  To study the possibility of making the plastic lumber from the recycled 

HDPE/PET blends. 

 

1.3  Scope and limitation of the study 

 In this study, the blends of HDPE and PET were investigated. HDPE obtained 

from drinking water bottles and PET obtained from drinking water and soft drink 

bottles. The blends of HDPE/PET at various compositions of 80/20, 60/40, 40/60, and 

20/80 wt% were prepared in a co-rotating intermeshing twin screw extruder. 

Polyethylene grafted with maleic anhydride (PE-g-MA) and high density polyethylene 

grafted with glycidyl methacrylate (HDPE-g-GMA) were used as compatibilizers in 

the blends. The compatibilizer contents were 2, 4, 6, and 8 phr. The test specimens 

were prepared by injection molding. The testing properties were density, water 
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absorption, tensile properties, flexural properties, compressive properties, impact 

strength, rheological properties, thermal properties, and morphological properties. In 

addition, shot glass fiber (SGF) and calcium carbonate (CaCO3) were use as fillers in 

these blends. The filler content was fixed at 10 phr. The density and mechanical 

properties of HDPE/PET blends were investigated and compared with properties of a 

soft wood. 
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CHAPTER II 

LITERLATURE REVIEW  

 

 The main idea of this study is to obtain post-consumed materials with enhanced 

mechanical properties and at the same time to give them new uses. However, the 

development of new multiphase blend materials is dependent primarily on the 

controlling of interfacial chemistry and microstructures. There are several material 

parameters that could influence morphology: viscosity ratio, composition, elasticity, 

shear stress, and interfacial modification. The morphology can be improved by 

controlling these parameters to obtain an increase the mechanical properties. 

Immiscible polymer blends have large interfacial tension, poor interfacial adhesion, 

and poor mechanical properties. To enhance these properties, it is necessary to 

improve adhesion between two phases in the blend (Avila, and Duarte, 2003). The 

challenge is to develop processes or techniques that allow to control of both the 

morphology and interfaces of phase-separated blends. Such processes or techniques 

are called compatibilization. Polymer blends with intentionally modified morphology 

and interfaces are called compatibilized blends. HDPE and PET contain a major 

portion of post-consumer waste and are recycled to reduce the waste especially 

packaging. Blending of these polymers is an alternative method to reduce the waste. 

However, HDPE and PET are immiscible (Torres, Robin, and Boutevin, 2001). 

Several studies on the compatibilization of both of virgin and recycled HDPE/PET 

blends have been reported. 
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2.1 The study of compatibilization of virgin HDPE/PET blends 

 During the past decade, several researchers had studied blends of PET and 

HDPE. Dagli and Kamdar (1994) investigated the effects of component addition 

protocol on the reactive compatibilization of HDPE/PET blend in a co-rotating 

intermeshing twin screw extruder. The blend compositions of 80 wt% HDPE and 20 

wt% PET with varying amounts (2.5-10 phr) of the functionalized polymers were 

used. The ethylene-glycidyl methacrylate copolymer (E-GMA) was found to be very 

effective in compatibilization this blend by forming a compatibilizer in-situ. The 

changing of the sequence of component addition could have an effect on 

compatibilization. It was related with the residence time, component viscosity and 

distribution of functionalized polymer. The best properties were achieved when the 

reactive polymer was mixed initially with the nonpolar component of the blend that 

the E-GMA was blended first with HDPE and then with PET. The satisfactory results 

were also obtained when all components were blended together in the extruder. The 

initial closer contact of E-GMA (polar) with HDPE (nonpolar) resulted in better 

compatibilization. During the melting of the HDPE and E-GMA, the E-GMA 

molecules appeared to orient themselves in a way that favored the copolymer 

formation right at the interface. Initial close contact of E-GMA (polar) with PET 

(polar) resulted in a coarser morphology and inferior mechanical properties. During 

the melting of the PET and E-GMA, the E-GMA-PET copolymer molecule’s remained 

in the PET phase and it was not able to emerge at the interface. This was reflected in 

the vastly different morphologies and mechanical properties of the blends using 

different sequences and modes of component addition. 
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 Jabarin and Bhakkad (1995) studied ternary blends of PET, HDPE, and 

maleicanhydride grafted polyolefin resin (Mitsui Admer AT 469C). The blend 

compositions and processing variables were studied. A self-wiping co-rotating twin 

screw extruder was used for melt blending operations. The blend compositions were 

used to prepare ternary blends: PET80/HDPE15/Admer5, PET80/HDPE10/Admer10, 

and PET80/HDPE5/Admer15. Each of the compositions was extruded at screw speed 

of 100, 200, 300, and 350 rpm. The results indicated that melt viscosities of these 

ternary blends were dependent upon the blend composition, but independent of the 

twin screw speed of processing. SEM results indicated that the HDPE and Admer 

phases had been dispersed in the PET matrix in the form of discrete droplets. The 

average sizes of the dispersed phase particles decreased with increasing Admer content 

and screw speed. The improvements in ternary blend impact resistance were observed 

when Admer concentration and screw speed were increased. The adhesion between the 

Admer chains and the PET matrix caused a toughening effect in PET led to a decrease 

in modulus. 

 Kalfoglou, Skafidas, and Kallitsis (1995) investigated the effect of 

compatibilizer types on morphological properties and mechanical properties of PET 

and HDPE blends. The compatibilizers were ethylene-glycidyl methacrylate 

copolymer (E-GMA), an ethylene ethylacrylate glycidyl methacrylate terpolymer (E-

EA-GMA), a hydrogenated styrene butadiene-styrene copolymer grafted with maleic 

anhydride (SEBS-g-MA), and MA-modified ethylene-methyl acrylate copolymer (E-

MeA-g-MA). The blends were prepared in a co-rotating twin screw extruder. The 

composition of PET/HDPE/compatibilizer was 70/20/10. They had found that the 

compatibilizing effictiveness decreased in sequence, E-GMA>E-EA-GMA>SEBS-g-
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MA>E-MeA-g-MA. The different reactivities of the compatibilizers depended on the 

type of functionality in the compatibilizers. In the case of GMA-containing 

compatibilizers, the dispersed phase of HDPE in component was more efficiently 

stabilized due to high reactivity. GMA might react with both carboxyl and hydroxyl 

terminal group of the polyester but MA might only react with the hydroxyl moieties 

and partly so because of the reversibility of the esterification reaction at the high 

mixing temperatures. The different blend morphologies can be explained the 

mechanical properties. The ultimate tensile properties and especially energy to tensile 

failure depended on adhesion between the different phases in the compatibilized blend. 

The increased ability to disperse in GMA compatibilized ternaries led to an increase 

interface across which grafting occured. This led to improve tensile properties 

compared to blends obtained with MA compatibilizers. 

 Pietrasanta, Robin, Torres, and Boutevin (1999) studied the reactive 

compatibilization of HDPE/PET blends. The compatibilizers used were E-GMA and 

E-EA-GMA with variable contents of reactive functions (1 to 8 wt% of glycidyl 

methacrylate). The blends of HDPE/PET in weight compositions of 80/20, 60/40, 

40/60, and 20/80 with or without compatibilizers were studied. All blend compositions 

with 5 wt% E-EA-GMA were prepared in a co-rotating intermeshing twin screw 

extruder followed by injection moulding or directly by injection moulding. One stage 

of processing was sufficient because the extrusion followed by an injection with 

regard to the injection alone did not improve the Young’s modulus, maximum strength, 

strength at break, and elongation at break of the blends significantly except for the 

impact strength of HDPE/PET (80/20) blended with 5 wt% E-EA-GMA prepared by 

extrusion. The glycidyl methacrylate functionalized polyolefins as reactive
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compatibilizers in single step was sufficient. Moreover, the rate of shearing brought by 

the screw of the injection moulding machine was sufficient to ensure a dispersion of 

the disperse phase and a reduction of the interfacial tension. This study showed the 

possibility to compatibilize blends of HDPE and PET by injection moulding. This melt 

processing was interesting in an industrial because it permitted the transformation of a 

blend of polymers in one step.  

 Guerrero, Lozano, Gonzalez, and Arroyo (2000) reported the effect of a 

compatibilizer on the mechanical properties of HDPE/PET blends. The blend of 

HDPE/PET in weight compositions of 75/25, 50/50, and 25/75 with and without 

compatibilizers were prepared in an internal mixer. The compatibilizer was a 

copolymer of ethylene and methacrylic acid partially neutralized with zinc (Surlyn). 

The olefinic part of Surlyn was compatible with HDPE, whereas the carboxylic end 

groups would form strong hydrogen bonds with carbonyl group of PET. There was no 

evidence of adhesion between two phases in the case of uncompatibilized blends. The 

viscosity of blends with Surlyn had increased. This indicated that there was less 

slippage at the interface. The addition of 7.5% of Surlyn in PET/HDPE (75/25 wt%) 

improved the elongation at break from 2.6 to 41.5% which was double of neat PET 

value. Izod impact strength of the blend also increased due to a high adhesion between 

two phases. 

 Kim, Park, Kim, and Suh (2000) studied the compatibilization of HDPE/PET 

blends. High-density polyethylene grafted with the blocked isocyanate group (HDPE-

g-BHI) was used as a reactive compatibilizer for an immiscible HDPE/PET blend. The 

blend ratios of the HDPE-g-BHI/PET or HDPE/PET were 90/10, 70/30, 50/50, 30/70, 

and 10/90 by weight. During the melt blending in an internal mixer, the chemical 
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reaction occurred between the isocyanate group and carboxyl or hydroxyl end groups 

of PET. SEM micrographs of cryogenically fractured surface in HDPE-g-BHI/PET 

blends exhibited that HDPE-g-BHI/PET blends had a much finer dispersion of the 

dispersed phase than that of HDPE/PET due to the decrement of the interfacial tension 

between the continuous and dispersed phases. An in situ-formed graft copolymer 

reduced interfacial tension and increased interfacial adhesion between the two phases. 

The tensile strength and elongation at break of reactive compatibilized blends showed 

higher values than those of uncompatibilized blends. The result was confirmed by 

dynamic mechanical analysis. The HDPE-g-BHI/PET blends showed a greater storage 

modulus than that of the HDPE/PET blends at the same composition. This result could 

be interpreted as due to the formation of an in-situ graft copolymer. DSC results for 

HDPE/PET and HDPE-g-BHI/PET at the compositions 30/70 and 10/90 blends 

showed that at the same composition appeared to be little difference in the 

endothermic heat by PET melting and the exothermic heat by PET crystallization. 

These results showed that the crystallinity of the continuous PET phase in the 

HDPE/PET blends remained unchanged regardless of the reactive compatibilization of 

the blocked isocyanate group grafted onto HDPE.  

 Lusinchi, Boutevin, Torres, and Robin (2001) studied in situ compatibilization 

of HDPE/PET (60/40) blends by interfacial grafting of maleic anhydride (MA) 

without initiator in the molten state. The grafting reaction of MA onto HDPE was 

carried out in a batch mixer varying reaction parameters of the temperature, roller 

speed, and time of reaction.  In a first step, the reactive copolymer was prepared in situ 

by grafting MA onto HDPE. In a second step, succinic anhydride reacted with 

functional end groups of PET. The in situ grafting of MA onto HDPE led to the 
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formation of a compatibilizer at the interface of HDPE/PET blends.  This paper 

showed that interesting grafting yields of 0.3-2.5 wt% were obtained when the grafting 

of MA onto HDPE in the molten state happened without any free radical initiator. 

Moreover, there were no crosslinking reactions because they did not use an initiator. 

So, this processing had more environmental friendly. The addition of a small content 

MA directly to HDPE/PET blends improved mechanical properties such as strength at 

break and elongation at break and morphology. The HDPE/PET blends without MA 

had a coarse morphology with larger domain size in comparison to compatibilized 

blends. The larger domain size did not appear of adhesion between the matrix and 

dispersed phase. The compatibilization of the blends with adding MA in one step of 

processing was an interesting way particularly for recycled blends because this method 

did not require prior expensive synthesis and led to better results when compared to 

those obtained by adding of graft copolymers to the blends. 

 Torres et al., (2001) studied the compatibilization of HDPE-PET (70/30 wt%) 

blends by adding grafted or statistical copolymers. HDPE was successfully 

functionalized using a melt free-radical grafting technique. Grafting was initiated in 

two ways: adding an initiator in the polymer-monomer mixture or activation by 

ozonization of polymer. The effects of the compatibilizers were obtained by studying 

the morphology, thermal, and mechanical properties of HDPE/PET blends. It can be 

seen that statistical copolymer was more effective in compatibilizing HDPE/PET 

blends than grafted copolymers. Significant improvement of elongation at break and 

impact strength of compatibilezed blends was found. Ozonization of HDPE by the 

introduction of a peroxide led to a better grafting yield and a better grafting efficiency 

of the blends. The morphology, elongation at break and Charpy impact strength of the 
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compatibilized blends were improved. The grafted copolymers formed mainly of 

HDPE were miscible in the matrix and not located preferably at the interface, unlike 

the statistical copolymer, which was compatible and placed at the interface. So, the 

statistical copolymer offered good interfacial adhesion between two phases. However, 

compatibilization of blends with grafted copolymers was an interesting method 

because it was easy and cheap in comparison to statistical copolymer. The DSC results 

could be directly related to the mechanical properties of the blends. The melting 

temperatures (Tm) of HDPE and PET in the blends with or without compatibilizer 

were close to those of pure HDPE and PET. The enthalpy of melting (Hm) and the 

crystallinity degree (%Xc) of HDPE decreased when PET was added to the blends. 

This tendency was more pronounced when the blends were compatibilized with 5 wt% 

statistical copolymer or 5 wt% HDPE ozonized-g-GMA. The enthalpy of melting (Hm) 

of PET increased strongly when HDPE was added to the blends. This incline was more 

affected when the blends were compatibilized. These results showed that interactions 

had been created between HDPE and PET in presence of these two compatibilizers.  

 

2.2  The study of compatibilization of recycled HDPE/PET blends 

 Akkapeddi and Vanbuskirk (1992) investigated the compatibilization of 

postconsumer PET-polyolefin blends. The various types of polyolefins were 

polyethylene (HDPE, LDPE, and LLDPE) and polypropylene (PP). The melt blends 

were prepared in a single screw extruder and a co-rotating twin screw extruder. The E-

GMA copolymer was found to be a good compatibilizer for all polyolefin. The 

reaction between PET and E-GMA led to higher melt viscosity for this binary blend 

compared to the melt viscosities of all the other component polymers. The content of 
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E-GMA and the method of mixing need to be controlled when E-GMA was used as a 

compatibilizing agent in PET-polyolefin blends. Addition of 10% E-GMA in a 

PET/HDPE (1.8:1) blend significantly improved the toughness and heat resistance. 

This blend had a PET matrix with HDPE as the dispersed phase. At higher E-GMA 

levels, the melt viscosity of PET phase containing the PET/E-GMA graft copolymer 

was higher than of the HDPE phase. This effect resulted in an apparent phase 

inversion which led to lower vicat softening temperature. 

 Iniguez, Michel, Gonzalez-Romero, and Gonzalez-Nunez (2000) studied the 

morphological stability of postconsumer PET/HDPE blends at different composition 

(10%-90% by volume of PET in HDPE) with and without a compatibilizer. It was 

shown that the addition of styrene-ethylene/butylenes-styrene (SEBS) triblock 

copolymer (containing 70 wt% of a random copolymer of hydrogenated ethylene-1 

butene, and 30 wt% of styrene) in PET/HDPE blend not only modified its morphology 

by inducing the formation of a finer dispersion, but also stabilized the morphology. 

The compatibilized blends showed a little change of a droplet size when they were 

reprocessed in an internal mixer, compared with the particles size of the mixtures 

obtained from the twin screw extruder. So, the influence of the reprocessing for 

compatibilized blends morphology was negligible. For uncompatibilized blends of 10, 

20, and 30% by volume of PET, the modulus and tensile strength increased with PET 

concentration, while the elongation at break decreased. These tendencies coincided 

with the results obtained by Kim et al (2000). For the case of compatibilized blends, 

the modulus and the tensile strength did not change. However, the elongation at break 

increased significantly. When the PET was the dispersed phase, the particle size 

showed a relatively little increment with PET concentration. However, when the 
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HDPE was the dispersed phase, the drop sizes were much higher than PET. This could 

be explained that the viscosity ratio was low (0.25) when PET was the dispersed phase 

and particle disintegration was the process that govern the particle size blends. At 

higher viscosity ratios (4.0) when HDPE was the dispersed phase, the droplet breakup 

process became much slower and consequently started to dominate droplet size. Under 

such conditions, the droplet size increased with viscosity ratio and changed only 

slightly with concentration.                                                                                                                       

 Pluta, Bartczak, Pawlak, Galeski, and Pracella (2001) investigated the phase 

structure and viscoelastic properties of compatibilized blends of recycled PET and 

HDPE in weight compositions of 75/25 and 25/75. These blends were prepared in a 

twin screw extruder. They found that compatibilization of both PET-rich and HDPE-

rich blends with E-GMA was more effective in relation to the size of dispersed phase 

than with SEBS-g-MA. The DSC studies showed that addition of the compatibilizer 

did not substantially change the crystallization behavior of blends. The presence of 

polyethylene in the blends markedly influenced crystallization of PET component. On 

the other hand, crystallization of the PE component in the blends was much less 

influenced by the presence of other blend components than the crystallization of PET. 

The crystallinity of the PET component in the PET-rich blends decreased stronger than 

that in the PE-rich blends. This result illustrated that the presence of HDPE in the 

blends markedly influenced the crystallization behavior of the PET component. The 

interaction of the compatibilizer with PET component indicated in DMTA data 

through temperature shift and the intensity change of the PET relaxation process. This 

effect was much more visible for the PET-rich blends compatibilized with SEBS-g-
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MA than those compatibilized with E-GMA. In the case of R-PE-rich blends a similar 

trend was observed. 

 Pawlak, Morawiec, Pazzagli, Pracella, and Galeski (2002) studied blends of 

postconsumer PET and HDPE in weight compositions of 75/25 and 25/75. Three 

compatibilizers were E-GMA, SEBS-g-MA, and HDPE-g-MA with variable contents 

(2, 3, 4, 5, and 10 wt%). The melt blends were prepared in a co-rotating twin screw 

extruder. The uncompatibilized blends were brittle in tensile tests and very low 

elongation at break. The modified blends with E-GMA or SEBS-MA were ductile. An 

increasing in the absorbed impact energy in Izod impact tests and the elongation at 

break were observed. Morphological observations showed a decrease in mean size of 

compatibilized blends. The applied compatibilizers depressed the interfacial tension in 

the melt and reacted with PET, led to smaller sizes of the dispersed phase. The 

increase in viscosity of compatibilized blends was the evidence of reaction during 

blending. The best results of mechanical and morphological properties were obtained 

for the 75%/25%/4 pph PET/HDPE/E-GMA and 25%/75%/10 pph PET/HDPE/SEBS-

g-MA blends. The HDPE-g-MA was much less effective for systems with PET as the 

major component, but it was more effective as a compatibilizer for HDPE-rich blends. 

For the optimum content of the E-GMA compatibilizer for the 75%/25% PET/HDPE 

system was found to be about 4 pph. A higher content of E-GMA might result in the 

crosslinking of HDPE and inferior the properties of the blends. 

 Pracella, Rolla, Choinna, and Galeski (2002) studied the effect of reactive 

compatibilization on the morphology of recycled PET/HDPE blends in weight 25/75 

and 75/25. The compatibilizers used for HDPE/PET blends were high-density 

polyethylene grafted with maleic anhydride (HDPE-g-MA), ethylene propylene 
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copolymer grafted with maleic anhydride (EPR-g-MA), ethylene glycidyl 

methacrylate copolymer (E-GMA), ethylene-acrylic acid copolymer (E-AA), and 

styrene-ethylene/butylenes-styrene block copolymer grafted with maleic anhydride 

(SEBS-g-MA) at various concentrations (5, 10, and 15 pph). The binary blends of PET 

with E-GMA showed the highest torque during melt mixing, which was associated to 

change of melt viscosity and related to the occurrence of interfacial interactions 

between the carboxyl/hydroxyl end-groups of PET and epoxy functionality of E-

GMA. The uncompatibilized blend showed a brittle fracture, without yielding and 

very low of elongation at break. A large increasing of elongation at break of ternary 

blends from 110% to about 370%, together with higher stress at break from 19 to 23 

MPa were found with increasing the E-GMA content in the range 2-4 pph. The 

reduction of dispersed particle size in the presence of the compatibilizer related to 

decrease of interfacial tension and suppress of coalescence which depended on the 

amount of compatibilizer in the blend.  

 Aglietto, Coltelli, Savi, Lochiatto, and Ciardelli (2002) studied the post-

consumer polyethylene terephthalate (PET)/ very low density polyethylene (VLDPE) 

blends through reactive processing. The blend was prepared in an internal mixer. The 

addition of LLDPE with 0.8% mol of MA in VLDPE/PET (70/20) blends is a good 

way to obtain systems with good morphological properties. The SEM results showed a 

good improvement of phase adhesion and a clear decreasing of dispersed phase 

diameter comparing uncompatibilized and compatibilized blends.  
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2.3 The effect of short glass fiber and calcium carbonate as filler on   

 the properties of polymer blends 

 An important application of recycled materials is considered to obtain 

reinforced composites. The incorporation of fillers into thermoplastics has been widely 

performed in industry to enhance certain properties. Calcium carbonate, wood flour 

and glass fiber are commonly used to increase the stiffness of recycled plastic. In 

addition, the effects of carbon fiber, straw, and other plastics have all been studied 

(George and Dillman, 2000). Reinforcement of polymeric materials by short fibers has 

grown rapidly. Glass fibers are the most used reinforcing materials in structural 

reinforced thermoplastics. They have many desirable characteristics such as high 

tensile strength, high chemical resistance, and excellent insulating properties. In the 

case of calcium carbonate, it is a common practice in the plastics industry to reduce 

the production costs of molded products (Albano, Gonzalez, Ichazo, Rosales, Urbina 

de Navarro, and Parra, 2000). Several studies have been reported on the reinforcement 

of polymer blends by the use of short glass fiber and calcium carbonate.  

 Joshi, Maiti, and Misra (1992) investigated the thermal and rheological 

behaviour of short glass fiber reinforced composites based on poly(butylene 

terephthalate) (PBT)/HDPE blends. The composites were prepared by using a single 

screw extruder with a screw speed of 10-15 rpm and barrel temperatures ranging from 

250-260oC. The PBT/HDPE/ionomer ratio was fixed at 76/19/5. Ionomer was 

poly(ethylene-co-sodium methacrylate). Short glass fiber (SGF) contents varied from 

10-30 wt%. The DSC results indicated that the melting temperature of both PBT and 

HDPE components did not change significantly on the addition of SGF. It was 

indicated that there was no change in the crystallite size of PBT in the presence of 
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SGF due to the very fast crystallizing nature of PBT. The degree of crystallinity was 

increased with the presence of SGF due to heterogeneous nucleation. The 

crystallization temperature of the blends containing SGF had shifed to higher values. 

This result was excepted for the composition without the ionomer. It could be seen that 

the presence of the SGF facilitated the crystallization of PBT as well as HDPE in the 

blends. Rheological studies showed an increase in viscosity with incorporation of 

fibers. However, the addition of SGF resulted in a decrease of the extrudate swell. 

 McLoughlin, Elliott, and Townsend (1999) studied the compatibilization of 

PP/PET blends and their composites. PP-g-MA and PP-g-GMA were used as the 

compatibilizer. The fiber glass had a nominal length of 3.2 mm and was coated with an 

aminosilane. The blends and composites were prepared by using a co-rotating twin 

screw extruder. Adding a small content of PET to 30 wt% fiber glass filled PP 

containing PP-g-MA increased tensile strength and flexural modulus. The addition of 

PET to glass filled PP could be also reduced glass usage without significant property 

reduction. Adding either the PP-g-MA or the PP-g-GMA to glass filled PP without 

PET increased tensile strength, tensile elongation, and Izod impact strength. Moreover, 

incorporation of PP-g-MA into PP/PET composites presented the greater property 

enhancements than those the composites containing PP-g-GMA at the same weight 

percent. This trend was likely to depend on the graft content.     

 Albano et al. (2000) studied the mechanical and morphological behavior of 

blends of polypropylene (PP) with virgin and recycled HDPE (80/20 wt%), 

functionalized and non-functionalized ethylene propylene copolymer (EPR 5 wt%), 

and calcium carbonate (30%). Coupling titanate agent of 1 wt% was used to treat 

calcium carbonate. The blends were prepared in a W&P intermeshing co-rotating twin 
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screw extruder. A slight increase in Young’s modulus for PP blends with recycled 

HDPE and HDPE as compared to pure PP could be observed. The elongation at break 

was decreased due to the poor interfacial adhesion between these polymers. The f-EPR 

was not effective on tensile and impact properties.  The use of nf-EPR was favorable 

because costs of functionalization were reduced. When HDPE was replaced by 

recycled HDPE with untreated CaCO3 in PP/HDPE/nf-EPR, the Young’s modulus and 

impact strength were decreased, except for elongation at break was increased. This 

behavior suggested that recycled HDPE and EPR acted together as a plasticizer in the 

blends. It was also found that the use of treated CaCO3 did not contribute to obtain 

better mechanical properties.      

 Gonzalez, Albano, Ichazo, and Diaz (2002) studied the effects of coupling 

agents on mechanical and morphological behavior of the PP/HDPE (80/20 wt%) blend 

with the two different particle size of CaCO3. The coupling agents used were titanates, 

(Lica 01, Lica 09, Lica 12) and a 1:1 mixture of Lica 12 and Lica 01, and zirconate ZN 

12. Lica 12 was used at 0.3, 0.5, 0.7, and 1.0 wt% with respect to the filler and the 

other coupling agents at 0.3 and 0.7 wt%. The blends were prepared in a Werner and 

Pfleiderer intermeshing co-rotating twin screw extruder. This study illustrated that the 

addition of the coupling agent to CaCO3 improved the mechanical properties of 

PP/HDPE/CaCO3 composites. The value of mechanical properties depended on the 

particular characteristics of coupling agent. Each one gave rise to increase in a specific 

mechanical property. In the case of Lica 01, an increase was proved in Young’modulus 

at 0.7 wt% and elongation at break at both concentration (0.3 and 0.7 wt%), whereas 

ZN 12 caused an increase in elongation at break. The 1.1 mixture of Lica 12 and Lica 

01 resulted in an increase in impact resistance of the PP/HDPE/CaCO3 composite. 
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 Tjong, Xu, Yiu Li, and Mai (2002) investigated the mechanical behavior and 

fracture toughness of MA compatibilized short glass fiber/SEBS/PP hybrid 

composites. In this study, MA was either grafted to PP (PP-g-MA) or SEBS copolymer 

(SEBS-g-MA). The mPP blend was prepared by compounding 95% PP with 5% PP-g-

MA. The matrix of hybrid composites consisted of either SEBS/mPP or SEBS-g-

MA/mPP. The polymer pellets and shot glass fiber (SGF) were loaded into a 

Brabender twin-screw extruder with operating temperature profiles of 180-220-220-

210oC. The results showed that pure PP exhibited low impact strength of 1.95 kJ/m2 

because it was notch-sensitive under impact loading. Incorporation of PP-g-MA into 

PP led to a slight decrease in impact toughness. A maximum impact toughness of 

23.16 kJ/m2 was achieved by adding the SEBS into mPP due to adhesion between two 

phases. It was inefficient to improve the impact strength of the blend via grafting of 

both PP and SEBS with MA. The tensile results showed that the incorporation of 

SEBS or SEBS-g-MA in mPP led to a sharp drop in the yield stress and stiffness. 

Addition of SGF restored the stiffness of these blends. SEM observations revealed that 

the SGF surfaces of both SGF/SEBS/mPP and SGF/SEBS-g-MA/mPP hybrids were 

coated with a thin layer of matrix material. This implied that the MA functional group 

of mPP improved the adhesion between SGF and PP, and between SGF and SEBS. 

 Gnatowski and Koszkul (2005) investigated the influence of compatibilizer and 

filler type on the properties of polymer blends. The materials in this study were PA6, 

PP, polybond3150 (thermoplastic MA), glass fiber, and titanium dioxide (TiO2). The 

twin screw THEYSHN TSK 75-N extruder and single-screw extruder had been used to 

mix the ingredients. The addition of 2% polybond in PA6/PP/TiO2 composite 

increased in the tensile strength. Adding 30% of glass fiber to the PA6/PP blend one 
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could obtained higher tensile strength. For the same percentage composition of 

PA6/PP blends, the addition of TiO2 caused the increase in the value of hardness. 

Impact resistance of the PA6/PP and polybond with the addition of 30% of glass fiber 

was higher than those of the blend without glass fiber. The highest softening 

temperature had been found for the blend of PA6/PP with 2% polybond.       

 Malchev, David, Picken, and Gotsis (2005) studied the mechanical properties 

of short glass fiber reinforced PE/PA6. The mixing was prepared in a Collin single 

screw extruder with a screw speed of 60 rpm and the barrel temperature of 240oC. The 

composites of PE/PA6/SGF at various compositions of 65/25/10, 75/15/10, 85/5/10, 

70/15/15, and 80/15/5 were prepared. The addition of minor quantities of a second 

thermoplastic polymer (PA6) could be improved the mechanical properties of short 

glass fiber composites (PE/SGF). The modulus of the binary composite (PE/SGF 95/5) 

was lower than the modulus of the ternary composite (PE/PA6/SGF 80/15/5). The high 

values of the tensile modulus of ternary composites were measured well above the 

melting point of the matrix phase. The morphology investigation revealed the 

existence of a fiber network (PA6/SGF) within the matrix polymer (PE). The network 

formation process was governed by the wetting of the fiber surface by PA6. The 

modulus of the composites that had been treated to be compatible with the component 

(PA6) was an order of magnitude higher than the one of the composites made with 

matrix compatible glass fibers. The tensile modulus of the composites increased with 

increasing the amount of short glass fiber in the whole temperatures above the melting 

point of the minor polymeric phase (PA6). 

 

 

 



 
                              

   22

2.4 Recycled plastic lumber 

 Recycled plastic lumber (RPL) is a wood-like product made from recycled 

plastic or recycled plastic mixed with other materials. In early 1970’s, plastic lumber 

processes were developed in Europe, Japan, and U.S. At that time, the materials 

targeted for processing into plastic lumber consisted solely of post-industrial plastic 

scrap, which was the only source of low-priced plastic available. The development in 

the plastic lumber was very rapid during 1990. Since that time, the sale of RPL had 

grown to capture a significant share of the deck board and deck railing market 

(Climenhage, 2003). The manufacturing processes that had been developed 

specifically for processing mixed plastic might be roughly categorized into four basic 

types: intrusion processes based on Klobbie’s design, continuous extrusion, the 

“Reverzer” process, and compression molding. Each of these processes was capable of 

producing products from a variety of macroscopically inhomogeneous mixtures of 

waste plastics. Because of the heterogenous nature of these mixtures, commingled 

processes were limited to produce products of large cross section. The small internal 

imperfections might be of little consequence for the mechanical properties. Properties 

of the products were measured by testing several of the large samples, thereby 

averaging the effects due to the inclusions upon the bulk material (Lampo and Nosker, 

1997).  

 RPL made from commingled plastics might be contained material inclusions 

and impurities. It resulted in an open porous structure. For example, a cross-sectional 

profile of a piece of plastic lumber consisted of 80% HDPE, 4% LDPE, and 4% PP. 

The remaining 12% was attributable to polyvinylchloride (PVC), polystyrene (PS), 

PET. The piece was solid around the perimeter of the cross section while the area 

 



 
                              

   23

around the core contained numerous pores of varying size. These voids were believed 

to be caused by a combination of factors. Wherever the polyethylene phase 

crystallized significant shrinkage occurred. This was due to the bulky nature of the 

profiles and low heat transfer of the polymers. The remaining core of molten material 

turned cool slowly, crystallized, and shrinked. However, because the outer skin had 

already solidified, the external dimensions of the piece stayed approximately the same. 

Consequently, internal pores or voids formed. Average variation of density depended 

on position of the sample taken along the length of the profile (Ehrig, 1992).  

 RPL products could be worked with conventional carpentry tools and had a 

number of advantages over wood products. It was unaffected by water, salt water or 

chlorine, which also mean it never needed to be painted or stained. It came in many 

natural looking color and blends nicely into the natural environment (Lampo, and 

Nosker, 1997). Common uses of RPL were in agricultural (e.g. ranch fences, gates), 

civil engineering (e.g. walkways, railings), marine engineering (e.g. piers, boat docks), 

recreational (e.g. park benches, picnic tables), and others (e.g. roofing shingles). RPL 

products were highly attractive and could be manufactured to meet a wide variety of 

design and appearance specifications when wood or some other natural fiber source 

was added. Moreover, the addition of additives improved the processabilily and the 

performance of plastic lumber in service. Foaming agents were used to reduce the 

weight of products and impart a uniform cell or pore structure. Coupling agents were 

used to increase tensile strength, flexural strength, and impact strength. Extrusion aids 

were used to increase the throughput and reduce temperature and also reduce melt 

fracture. Antioxidants were used to improve thermal stability. The use of UV 
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stabilizers was effective in retaining gloss and color. Flame retardants were required in 

a window or door casing (Climenhage, 2003).  

 

2.5 Long-term structural properties of the plastic lumber 

 In service, failures of thermoplastics were commonly attributed to aging of the 

material in its particular environment, brought about by a combination of the effects of 

heat, light, water, and mechanical stresses on the material. Water absorption was 

widely recognized as one of the main causes of long-term failure of materials exposed 

to the atmosphere or in contact with aqueous media. There were several recognized 

modes of humid ageing: by reversible phenomenon of the matrix, differential swelling 

related to concentration gradients, embrittlement linked to the degradation of the 

macromolecular skeleton by hydrolysis, osmotic cracking, and hygrothermic shock 

with change of water state (Merdas, Thominette, Tcharkntchi, and Verdu, 2002). 

Several studies had shown the important effects of absorbed water and ageing 

temperature on the physical and mechanical properties of materials (Foulc, Bergeret, 

Ferry, Ienny, and Crespy, 2005). It had been observed that hygrothermal ageing 

induced the decrease of the mechanical strength of the glass fiber reinforced PET 

composites. Gel permeation chromatography analysis showed that the chemical 

degradation step of the composites occurred immediately and that the main 

degradation mechanism was random chain scission. Hydrolysis generated oligomers 

that either diffused slowly out of the material and solubilised in the ageing bath or 

crystallized in the interspeherulitic zone. So, the production of oligomers modified not 

only the hydrophilicity of PET but also its crystalline morphology, both factors being 

likely to interfere with the absorption process. In long ageing times, hydrolysis might 
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affect even the crystalline zone of PET since the lamellar thickness decreased. 

Besides, interfacial debonding induced the formation of cracks or voids that led to an 

additional uptake of water and the final osmotic cracking responsible for the material 

fracture.  

 Pegoretti and Penati (2004) studied the effects of hygrothermal aging at 70oC in 

water, and at 80% relative humidity on the molar mass and thermal properties of 

recycled PET and its short glass fiber composites. Chopped strands E-glass fibers type 

952 were used as reinforcing agents in percentages of 15 and 30 by weight. All 

components were mixed in a single screw extruder working at 160 rpm and at 

temperatures in the range 280-310oC. It was found that during the initial period of 

exposure, water uptake increased linearly with the square root of time and apparent 

diffusivity decreased as fiber content increased and as relative humidity decreased. 

Recycled PET showed a decrease of molar mass during aging with a rate depending on 

the relative humidity conditions. This result can be explained by considering the fact 

that water diffused only in the amorphous regions and consequently the crystalline 

fraction was insensitive to hydrolysis. So, one expect that the residual polymer after 

completed degradation of the amorphous phase was composed of chains of length 

equal to the crystalline lamellae thickness. DSC result showed that the temperature of 

the melting peak of recycled PET and its composites was not affected by the 

investigated hygrothermal aging. However, the area under the endothermic peak 

increased steadily during aging for all samples. This indicated the presence of a 

crystallization process favored by temperature and by the reduction of molar mass. 
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CHAPTER III 

EXPERIMENTAL 

 

3.1 Materials 

 The materials used in this study were recycled HDPE (drinking water bottles), 

recycled PET (drinking water and soft drink bottles), high density polyethylene 

(H6430BM, Thai Polyethylene Co., Ltd.), glycidyl methacrylate monomor (GMA, 

Fluka), and dicumyl peroxide (DCP, Acros). Copolymer of ethylene with 6 wt% 

glycidyl methacrylate, IGETABOND 2C supplied from Sumitomo Chemical, Japan 

was used for calibration of grafting level. Polyethylene grafted with maleic anhydride 

(PE-g-MA, Fusabond E MB100D, DuPont) was obtained from Chemical Innovation 

Co., Ltd. 

 Calcium carbonate (CaCO3, Wittaya Srom Co., Ltd.) with average diameter of 

2.05 μm and glass fiber (GF, Saint Gobain Vetrotex Co., Ltd.) were used as reinforcing 

fillers in the blends. The glass fiber was obtained in roving form and then cut into an 

approximate length of 4 cm. 

 

3.2  Experimental 

 3.2.1  Synthesis of HDPE-g-GMA 

 High density polyethylene grafted with glycidyl methacrylate (HDPE-g-

GMA) was prepared by using internal mixer (Hakke Rheomix 3000p) equipped with 
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roller rotors. The composition of HDPE/DCP/GMA was 100/0.6/10 phr. All 

components were mixed together for 10 min at 180oC with a rotor speed of 60 rpm.  

 3.2.2  Characterization of HDPE-g-GMA 

 The grafted polymers were dissolved in a hot xylene and then 

precipitated by acetone. The homopolymer of GMA remained in acetone. The samples 

were dried under vacuum at 70oC for 48 hrs. The grafted GMA content of HDPE-g-

GMA was determined by Fourier transform infrared spectrophotometer (FTIR, Perkin 

Elmer). HDPE-g-GMA were made into thin films (100-200 μm) by compression 

molding at 150oC. The number of scan was 16 at a resolution 4 cm-1. The range of 

measurement was between 4000 and 600 cm-1. The epoxy group which is 

characteristic of GMA at 910 cm-1 was used to determine the grafting level. An 

ethylene unit band (CH2 rocking) at 720 cm-1 was used as the internal standard 

(Jarukumjorn and Min, 2000). 

 3.2.3  Preparation of HDPE/PET blends 

 Recycled HDPE and PET were cleaned by water and ground by a 

mechanical grinder (Retsch grinder machine). The blends of HDPE/PET at various 

compositions of 80/20, 60/40, 40/60, and 20/80 wt% were investigated. Polyethylene 

grafted with maleic anhydride (PE-g-MA) and high density polyethylene grafted with 

glycidyl methacrylate (HDPE-g-GMA) were used to compatibilize the blends. The 

compatibilizers were added in the HDPE/PET blends at 2, 4, 6, and 8 phr. Before 

blending, the reground HDPE and PET were dried in an oven at 105oC and 160oC, 

respectively for 4 hrs. After that, they were tumble blended and fed into a co-rotating 

intermeshing twin screw extruder (Brabender DSE 35/17D) at barrel temperature of 

255-260-265-270oC.  The screw speed was 50 rpm. The extrudates were cooled and 
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stranded in a water bath before pelletization.  Granulated blends were dried at 105oC 

for 4 hrs before shaping. The blend specimens for mechanical testing were prepared by 

injection molding (Chuan Lih Fa, model CLF-80T) at barrel temperature of 240-260-

265-270oC, injection speed of 60%, injection pressure of 33%, and holding pressure of 

50%. In addition, the blend specimens for compressive testing were prepared by 

compression molding (Go Tech) at temperature of 280oC.  

3.2.4  Preparation of HDPE/PET/filler composites.  

 All the composites were prepared by the same procedure as the blends. 

The filler content was 10 phr. Before mixing, the glass fiber and calcium carbonate 

were dried in an oven at 200oC for 24 hrs. The filler was tumble blended with the other 

components and incorporated through a feed port located at initial. 

 

3.3 Material characterization 

 3.3.1  Physical properties 

 3.3.1.1  Density 

 The density of PET, HDPE/PET blends, and their composites 

were determined using a pyknometer with distilled water as a medium while the 

density of HDPE was determined using Methyl ethyl ketone as a medium (ASTM 

D792). 

 3.3.1.2  Water absorption 

 Water absorption of HDPE, PET, their blends, and composites 

were performed according to ASTM D570. The samples were immersed in distilled 

water at room temperature. Five samples were tested in each blend sample. 
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 Percentage increase in weight during immersion is calculated as 

follows: 

 

  100Χ
weightdry

weightdryweightwet%weight,inIncrease −
=           (1)      

 

 3.3.2  Thermal properties 

 3.3.2.1  Melting temperature (Tm), crystallization temperature (Tc),  

   and crystallinity degree (%Xc) 

 Thermal properties of HDPE, PET, their blends, and composites 

were determined using Differential Scanning Calorimetry (Perkin Elmer Instruments 

model UNIX DSC-7). The samples were first heated to 280oC, cooled to 40oC, and 

then re-heated to 280oC under nitrogen atmosphere. The heating and cooling rates 

were 10oC/min. Melting temperature, crystallization temperature, and crystallinity 

degree were obtained according to ASTM D3417. 

 The crystallinity of the sample was calculated by the following 

equation: 

 

 ( ) 100ΧΔHΔHdegreeity Crystallin lline100%crystasample=        (2) 

 

   where ΔHsample is the heat of fusion of sample (J/g). 

   ΔH100%crystalline is the heat of fusion of pure crystalline (J/g). 

ΔH100%crystalline of PET is 119.8 J/g and ΔH100%crystalline of PE is 293.0 J/g (Wunderlich and 

Dole, 1957). 
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 3.3.2.2  Heat distortion temperature (HDT) 

 Heat distortion temperature of HDPE, PET, their blends, and 

composites were investigated using HDT testing machine (ATLAS, model HDV 1 

Manual DTVL/VICAT) at a heating rate of 2oC/min with the standard load of 455 kPa 

(ASTM D648). Silicone oil was used as heating transfer media. The injected 

rectangular cross section specimens with 127 mm in length, 13 mm in depth, and 3.5 

mm in width were tested. Three specimens were immersed under the calculated 

loading weight at the assigned standard load. The HDT value was read from the 

thermometer when the specimen had been deflected to 0.25 mm or 0.01 in. 

 3.3.3  Rheological properties. 

 Melt flow index (MFI) of HDPE, PET, their blends, and composites was 

obtained using a Kayeness melt flow indexer at 270oC with a load cell of 2.16 kg.  

 Viscosity at various shear rates of HDPE, PET, their blends, and 

composites was measured using the Kayeness capillary rheometer at 270oC. 

 3.3.4  Mechanical properties 

 3.3.4.1  Tensile properties 

 Tensile properties of HDPE, PET, their blends, and composites 

were examined using an Instron universal testing machine (model 5565) with a load 

cell of 5 kN, a crosshead speed of 5 mm/min, and a gauge length of 80 mm. Tensile 

tests were performed according to ASTM D638. The dimension of dumbbell shaped 

specimens at 12.7 mm in width at narrow section, 20 mm in overall width, 80 mm in 

gauge length, 165 mm in overall length, and 3.5 mm in thickness were prepared by 

injection molding. Five samples were tested in each blend sample. 
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 3.3.4.2  Flexural properties 

 Flexural properties of HDPE, PET, their blends, and composites 

were examined according to ASTM D5943 using an Instron universal testing machine 

(model 5565) with a load cell of 5 kN and a crosshead speed of 5 mm/min. The three 

points bending test figure was followed to determine the flexural properties. The 

specimen length was 70 mm and span length was 56 mm. Five samples were tested in 

each blend sample. 

 3.3.4.3  Compressive properties 

 Compressive properties of recycled HDPE/PET blends and 

composites were examined using an Instron universal testing machine (model 5565) 

with a load cell of 50 kN, a crosshead speed of 1.27 mm/min. Compressive test was 

performed according to ASTM D695. The rectangular specimens from compression 

molding were cut to a width, thickness, and height of 12.7 by 12.7 by 25.4 mm., 

respectively. Five tests were performed in each blend sample. 

 3.3.4.4  Izod impact properties 

 Impact properties of HDPE, PET, their blends, and composites 

were studied using an Atlas testing machine (model BPI). Impact tests were performed 

according to notched Izod impact strength (ASTM D256). The total impact energy of 

2.7 J was selected. The test specimens with 12.7 mm in thickness, 64 mm in length, 

and 3.5 mm in width were prepared by injection molding. Ten specimens were tested. 

The impact resistance was reported as impact strength (J/m2) that was the failure 

energy divided by the cross section area of the sample. 
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 3.3.5  Morphological properties 

 Morphological properties of HDPE/PET blends and composites were 

examined using a scanning electron microscope (SEM, JEOL model JSM 6400) at 10 

kV. The samples were freeze-fractured in liquid nitrogen and coated with gold before 

analysis. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1  Analysis of HDPE-g-GMA 

 Infrared spectrometry is used to determine the grafting level of HDPE-g-GMA. 

This analysis is performed with a Fourier transform infrared spectrophotometer 

(FTIR). Mixtures of IGETABOND 2 C and HDPE with different compositions (2, 4, 

and 6 wt% GMA) are prepared. The infrared spectra of HDPE and HDPE-g-GMA at 

2, 4, and 6 wt% of GMA are shown in Figure 4.1. The IR spectra of HDPE-g-GMA 

show three peaks located at 990 cm-1, 910 cm-1, and 850 cm-1 corresponding to the 

characteristic absorption band of epoxide function (Torres et al., 2000) and three peaks 

located at 720 cm-1, 1368 cm-1, and 1460 cm-1 corresponding to the characteristic 

absorption bands of polyethylene (Lusinchi et al., 2001). This result confirms that the 

grafting of GMA onto HDPE has occurred. The intensity of epoxy peak at 910 cm-1 

increases with increasing the grafting yield of GMA.  

 In order to determine the grafting level, FTIR calibration curve is constructed. 

The intensity ratios of epoxy group (910 cm-1) from GMA and CH2 rocking (720 cm-1) 

from PE are measured. FTIR calibration curve of HDPE grafted GMA is shown in 

Figure 4.2. The linear correlation between the intensity ratios and amount of GMA is 

found. The grafting level of the HDPE/DCP/GMA 100/0.6/10 is 4.16 wt%. HDPE-g-

GMA is used as the compatibilizer. 
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Figure 4.1   The infrared spectra of HDPE and HDPE-g-GMA at varied content of 

 GMA (a) HDPE, (b) HDPE-g-GMA (2 wt%), (c) HDPE-g-GMA  

 (4 wt%), and (d) HDPE-g-GMA (6 wt%) 
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Figure 4.2   Calibration curve for the determination of the grafting yield of GMA 

 onto HDPE by FTIR. 

 

4.2  The effect of blend compositions on properties of HDPE/PET      

 blends 

 4.2.1  Density 

  Density of HDPE, PET, and their blends are shown in Table 4.1. Density 

of HDPE and PET are 0.97 and 1.38 g/cm3, respectively. Density of HDPE/PET 

blends increase with increasing PET content in the blends. 
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Table 4.1   Density of HDPE, PET, and their blends 

Composition 
(wt%) Density (g/cm3) 

HDPE 0.98±0.02 

HDPE/PET 
80/20 1.10±0.01 

HDPE/PET  
60/40 1.14±0.02 

HDPE/PET  
40/60 1.17±0.01 

HDPE/PET 
20/80 1.19±0.02 

PET  1.38±0.01 

 

 4.2.2  Morphological properties  

 SEM micrographs of recycled HDPE/PET blends are shown in Figure 

4.3. In case of HDPE-rich blends, the dispersion of the dispersed phase is better than 

that of PET-rich blends. This may result from that HDPE has higher viscosity than 

PET during blending. The presence of holes on the matrix formed by the pullout of 

particles indicates that there is low adhesion between the continuous and the dispersed 

phases. Iniguez et al. (2000) studied the morphological stability of post consumer 

HDPE/PET at different compositions. They found that the droplet size increased with 

viscosity and composition of dispersed phases.  
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                                                                                (a) (b) 

 

   (c) (d) 

          

Figure 4.3   SEM micrographs of (a) HDPE/PET 80/20, (b) HDPE/PET 60/40, 

        (c) HDPE/PET 40/60, and (d) HDPE/PET 20/80 (x 1500) 

 

 4.2.3   Mechanical properties  

 The effects of PET contents on tensile strength, tensile modulus, tensile 

strain at break, flexural strength, flexural modulus, and impact strength of HDPE/PET 

blends are given in Table 4.2. Mechanical properties of the blends depend on blend 

compositions. Tensile strength, tensile modulus, flexural strength, and flexural 

modulus of HDPE/PET blends slightly increase with increasing PET contents while 

tensile strain at break and impact strength of the blends decrease. 
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Table 4.2   Mechanical properties of HDPE, PET, and their blends 

Tensile Flexural 
Compositio

n 
(wt%) strength 

(MPa) 
modulus 
(MPa) 

strain at 
break 
(%) 

strength 
(MPa) 

modulus 
(MPa) 

Impact 
strength 
(J/m2) 

HDPE 18.10±0.12 731.60±29.07 Not broken 24.10±0.52 
 

805.96±30.15 
 

20241.12±25.54 

HDPE/PET 
80/20 20.37±0.35 872.24±37.25 10.87±1.09 30.02±0.68 

 
945.76±14.39 

 
5763.29±29.91 

HDPE/PET  
60/40 22.66±1.22 1007.86±23.98 4.04±0.42 35.58±1.14 

 
1211.86±28.40 

 
2928.71±58.64 

HDPE/PET 
40/60 20.19±0.72 1146.72±18.17 2.44±0.15 31.78±1.74 

 
1427.76±71.62 

 
1685.55±41.22 

HDPE/PET 
20/80 30.85±0.73 1320.73±53.03 3.46±0.16 54.49±0.47 

 
1872.54±44.90 

 
2578.41±77.12 

PET  56.98±1.15 1663.53±26.64 4.42±0.26 89.92±2.38 
 

2789.27±18.60 
 

1435.42±55.47 

 

 4.2.4  Rheological properties  

 Shear viscosities of HDPE, PET, and their blends at 270oC are shown in 

Figure 4.4. HDPE is the most viscous among the materials. Viscosities of the blends 

are dependent on the blend compositions. The viscosities of the HDPE/PET blends 

increase as a decrease of PET contents in the blends. MFI of the blends, as shown in 

Figure 4.5, decrease with an increase of HDPE contents. 
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Figure 4.4   Shear viscosities of HDPE, PET, and their blends 
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 Figure 4.5   MFI of HDPE, PET, and their blends 
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 4.2.5  Thermal properties  

 DSC curves of HDPE, PET, and their blends at various compositions of 

80/20, 60/40, 40/60, and 20/80 wt% from the second heating scan are shown in Figure 

4.6. Melting temperatures of HDPE and PET component are detected at 132.35oC and 

246.77oC, respectively.  
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Figure 4.6  DSC curves of HDPE, PET, and their blends 

 

 The melting temperature (Tm), crystallization temperature (Tc), enthalpy 

of melting (ΔHm) and crystallinity degree (%Xc) of HDPE, PET, and their blends are 

shown in Table 4.3. The melting temperatures of HDPE and PET component in the 

blends are closed to those of recycled HDPE and PET. This behavior is normal for 

immiscible polymer blends in melt state (Wilfong, Hiltner, and Baer, 1986). Similarly, 

Torres et al. (2000) had studied reactive compatibilization blends of HDPE and PET 
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recyclates. They had found no significant change in the melting temperature of HDPE 

and PET in the blends. ΔHm and %Xc of HDPE component decrease with adding PET 

to the blends while ΔHm and %Xc of PET component decrease with increasing HDPE 

contents. The above changes demonstrate that the presence of HDPE or PET in the 

blend markedly influences the crystallization behavior of the PET and HDPE 

components, respectively. Pluta et al. (2001) also obtained similar results on 

HDPE/PET blends.  

 

Table 4.3   Calorimetric characterization of HDPE, PET, and their blends  

HDPE component PET component 
Compositio

n 
 (wt%) Tc

(oC) 
Tm

(oC) 
ΔΗm
(J/g) 

Xc
(%) 

Tc
(oC) 

Tm
(oC) 

ΔΗm
(J/g) 

Xc
(%) 

HDPE 116.80 132.35 207.84 70.94 - - - - 

HDPE/PET 
80/20 116.01 132.47 160.06 54.63 - 248.57 4.44 3.71 

HDPE/PET 
60/40 116.37 131.99 107.31 36.62 198.96 247.99 7.29 6.08 

HDPE/PET 
40/60 116.49 131.70 67.51 23.04 198.34 248.60 8.38 6.99 

HDPE/PET 
20/80 116.74 131.10 40.44 13.80 198.84 247.99 18.91 15.78 

PET  - - - - 198.41 246.77 23.81 19.87 

 

 

 HDT of HDPE, PET, and their blends are shown in Figure 4.7. HDT of 

HDPE and PET are 65.3 and 69.3oC, respectively. HDT of HDPE/PET blends slightly 

increases with increasing PET contents.  
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Figure 4.7   HDT of HDPE, PET, and their blends 

 

 4.2.6  Water absorption  

 Relationship between water absorption rate and immersion time of 

HDPE, PET, and their blends is shown in Figure 4.8. The water absorption rate 

increases with the immersion time. The water absorption rate of PET is higher than 

that of HDPE due to the hydrophilic group (ester groups) in PET (Merdas et al., 2002). 

The water absorption rate of HDPE/PET blends increases with increasing PET 

contents. After immersion times of 30 days, the water absorption rate of all 

compositions seem to be constant. 
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Figure 4.8   Water absorption rate versus immersion time of HDPE, PET,  

 and their blends 

 

 The effect of water absorption on the tensile strength of HDPE, PET, and 

their blends is shown in Figure 4.9. No significant change in the tensile strength of 

each material after water immersion is found. 

. 
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Figure 4.9   Effect of water absorption on tensile strength of HDPE, PET,  

 and their blends 

 

 One of the main objectives of this research is to study the possibility of 

making the plastic lumber from the recycled HDPE/PET blends. Therefore, the blend 

composition of 20 wt% HDPE and 80 wt% PET is chosen to further study due to their 

suitable mechanical properties compared with soft wood. In order to enhance the 

mechanical properties of the blends, the effect of adding compatibilizers and fillers on 

the properties of the blends is investigated.  
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4.3 The effect of compatibilizer types and contents on properties of  

 HDPE/PET blends 

 4.3.1  Density 

           The blend compositions of 80 wt% PET and 20 wt% HDPE with 2, 4, 6, 

and 8 phr of PE-g-MA and HDPE-g-GMA are investigated. Density of the 

uncompatibilized and compatibilized blends is shown in Table 4.4. Density of the 

HDPE/PET blends is increased with the addition of the compatibilizers. 

Compatibilizer contents insignificantly affect on the density of the blends. 

 

Table 4.4   The effect of compatibilizer types and contents on the density of     

 HDPE/PET blends (20/80 wt%) 

Composition 
(wt%) Density (g/cm3) Composition 

(wt%) Density (g/cm3) 

HDPE/PET 
20/80 1.19±0.02 HDPE/PET 

20/80 1.19±0.02 

HDPE/PET/PE-g-MA 
20/80/2 1.25±0.01 HDPE/PET/HDPE-g-GMA 

20/80/2 1.29±0.00 

HDPE/PET/PE-g-MA 
20/80/4 1.25±0.01 HDPE/PET/HDPE-g-GMA 

20/80/4 1.28±0.01 

HDPE/PET/PE-g-MA 
20/80/6 1.24±0.01 HDPE/PET/HDPE-g-GMA 

20/80/6 1.28±0.01 

HDPE/PET/PE-g-MA 
20/80/8 1.24±0.01 HDPE/PET/HDPE-g-GMA 

20/80/8 1.27±0.01 

 

 4.3.2  Morphological properties  

 Morphologies of the uncompatibilized and compatibilized blends are 

shown in Figure 4.10. The uncompatibilized HDPE/PET blend shows a coarse 

morphology with larger domain size in comparison to the compatibilized blends. The 

larger particle size does not show an adhesion between the matrix and dispersed phase. 

 



 
                              

   46

This is confirmed the incompatibility of the two components. The compatibilizer 

controls the morphology of blends by preventing of coalescene and reduction of the 

interfacial tension. The dispersed phase sizes depend on the compatibilizer content. 

The improvement in the interfacial adhesion and reduction in the size of the dispersed 

phase with increasing the compatibilizer content are observed. In case of the HDPE-g-

GMA compatibilized blends, a dispersion of the dispersed phase is better than that of 

the PE-g-MA compatibilized blends. In addition, the particle size of the dispersed 

phase of the HDPE-g-GMA compatibilized blends is smaller and the interfacial 

adhesion appears to be stronger than that of PE-g-MA compatibilized blends. This 

result might due to high reactivity between GMA and PET chain ends (Kalfoglou et 

al., 1995). 
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(a) 

 

 

 

 

 (c) (b) 

(d)  (e) 

 

Figure 4.10   SEM micrographs of (a) HDPE/PET 20/80 (b) HDPE/PET/PE-g-MA 

20/80/2, (c) HDPE/PET/PE-g-MA 20/80/4, (d) HDPE/PET/PE-g-MA 

20/80/6, (e) HDPE/PET/PE-g-MA 20/80/8, (f) HDPE/PET/HDPE-g-GMA 

20/80/2,(g) HDPE/PET/HDPE-g-GMA 20/80/4, (h) HDPE/PET/ HDPE-g-

GMA 20/80/6, and (i) HDPE/PET/HDPE-g-GMA 20/80/8 (x 1500) 
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Figure 4.10   SEM micrographs of (a) HDPE/PET 20/80 (b) HDPE/PET/PE-g-MA 

   

 

 

 

(f) (g)  

 

 

 

 

(i) (h)  

 

20/80/2, (c) HDPE/PET/PE-g-MA 20/80/4, (d) HDPE/PET/PE-g-MA 

20/80/6, (e) HDPE/PET/PE-g-MA 20/80/8, (f) HDPE/PET/HDPE-g-GMA 

20/80/2,(g) HDPE/PET/HDPE-g-GMA 20/80/4, (h) HDPE/PET/ HDPE-g-

GMA 20/80/6, and (i) HDPE/PET/HDPE-g-GMA 20/80/8 (x 1500) 

 (Continued) 
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  Loyens and Groeninckx (2002) reported that the two functional groups 

of the compatibilizers (MA or GMA) would react in a different manner with the PET 

functional end groups resulting in the formation of graft copolymers across the 

interface. The overall reaction schemes generally expected are shown in Figure 4.11. 

The compatibilization performance between these two functional groups is considered 

the functional reactivity of the carboxylic and/or hydroxyl groups at the chain ends of 

the PET. The MA is expected to react with the hydroxyl group of the PET to form the 

desired compatibilizer while the GMA is expected to react with both carboxyl and 

hydroxyl terminal group of the PET. Similar studies had been reported by Sun, Hu, 

and Lambla (1996) and Kalfoglou et al. (1995). 
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Figure 4.11   Chemical reaction schemes : (a) maleic anhydride and PET functional 

                end groups and (b) epoxide and PET functional end groups  

                       (Loyens and Groeninckx, 2002) 
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 Compatibilization reaction of MA or GMA with PET functional end 

groups can be confirmed by using FTIR technique. The spectra of the 

uncompatibilized blend, PE-g-MA, and PE-g-MA compatibilized blends are shown in 

Figure 4.12. IR peak at 1778 cm-1 is characteristic of MA group in PE-g-MA as shown 

in curve (b) of Figure 4.12 (Lusinchi et al., 2001). The absorption at 1778 cm-1 

disappears in the compatibilized blends. This indicates the chemical reaction between 

MA and hydroxyl group of PET, as shown in Figure 4.11 (a). IR spectra of PE-g-MA 

compatibilized blend could not give clear evidence for component reaction because 

PET carbonyl absorption interfered with the absorption bands of MA appearing in the 

same range (Kalfoglou et al., 1995). 
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Figure 4.12   The infrared spectra of (a) HDPE/PET 20/80, (b) PE-g-MA,  

 and (c) HDPE/PET/PE-g-MA 20/80/2 
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 The IR spectra of the uncompatibilized blend, HDPE-g-GMA, and 

HDPE-g-GMA compatibilized blends are shown in Figure 4.13. The disappearance of 

the epoxy group at 910 cm-1 after melt blending is a proof of epoxy ring opening 

reactions with PET (Tsai and Chang, 1996). The chemical reaction mechanism is 

shown in Figure 4.11(b). However, chemical structures of the reaction products can 

not be positively identified from the spectra.  
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(c)

(b)

(a)

 

 

Figure 4.13   The infrared spectra of (a) HDPE/PET 20/80, (b) HDPE-g-GMA, 

 and (c) HDPE/PET/HDPE-g-GMA 20/80/2 

 

 4.3.3  Mechanical properties  

 The mechanical properties of the blends are related to the phase 

morphology. The uncompatibilized blend has poor mechanical properties due to weak 

adhesion at the interface. The addition of the compatibilizers causes an improvement 
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in tensile strength, tensile strain at break, flexural strength, compressive strength, and 

impact strength of the blends as shown in Table 4.5. However, tensile modulus slightly 

decreases in the same composition range due to elastomeric behaviour of these 

copolymers (Dimitrova et al., 1999). The mechanical properties of HDPE/PET blends 

as a function of compatibilizer contents are shown in Figure 4.15. In the case of PE-g-

MA compatibilized blends, an increase of tensile strength (from 34 MPa to 41 MPa), 

tensile strain at break (from 3 to about 10%), flexural strength (from 53 MPa to 60 

MPa), and compressive strength (from 81 to 104 MPa) are found with increasing the 

PE-g-MA content in the range 2-6 phr. At the compatibilizer content of 2-4 phr, 

HDPE-g-GMA compatibilized blends have the tensile strength, tensile modulus, 

tensile strain at break, flexural strength, compressive strength, and impact strength 

higher than that of PE-g-MA compatibilized blends. However, when HDPE-g-GMA 

content is increased to be 6-8 phr the tensile strength, tensile strain at break, flexural 

strength, and impact strength are lower than that of PE-g-MA compatibilized blends. 

The interfacial adhesion increases with adding HDPE-g-GMA resulting in an increase 

of these mechanical properties until reaching a saturation value. A further increase of 

HDPE-g-GMA content may result in the crosslinking reaction and worsen properties 

of the blends (Pawlak et al., 2002).  

 Loyens and Groeninck (2002) proposed two reactions involved during 

blending of PET/EPR/EPR-g-GMA. Firstly, the compatibilization reaction will lead to 

the formation of graft copolymers at the interface between PET and EPR. This results 

in the dispersion of the minor phase and inhibits coalescence. Secondly, the present 

crosslinking reactions will interfere with the phase morphology formation. The 

particles will become more viscous and less deformable. Droplet break up is 
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prevented. These crosslinking reactions, as shown in Figure 4.14, are additional and 

possibly even competitive to the compatibilization reactions. The first crosslinking 

reaction involves the secondary hydroxyl groups present on the graft copolymer 

formed at the interface. The second crosslinking reaction is based on the 

difunctionality of the PET matrix, as each PET chain contains two functional end 

groups capable of reaction with the epoxide functionality.  
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Figure 4.14   Crosslinking reactions in GMA compatibilized PET/ethylene-co- 

 CH2

propylene rubber (a) first crosslinking reaction and (b) second    

crosslinking reaction (Loyens and Groeninckx, 2002)
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 Table 4.5   The effect of compatibilizer types and contents on the mechanical properties of HDPE/PET blends (20/80 wt%) 

Tensile  Flexural  Compressive  
Composition  

(wt%) strength 

(MPa) 

modulus 

(MPa) 

strain at 

break (%) 

strength 

(MPa) 

modulus 

(MPa) 

strength 

(MPa) 

modulus 

(MPa) 

Impact 

strength  

(J/m2) 

HDPE/PET 

 20/80 

30.85±0.73 1320.73±53.03 3.46±0.16 54.49±0.47 1872.54±44.90 59.52±5.27 1500.76±106.00 2578.41±77.12 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA  

20/80/2 

34.41±0.53 

40.11±0.66 

 

1291.91±12.25 

1305.89±50.82 

 

3.94±0.08 

5.77±0.44 

 

53.72±0.74 

58.15±1.11 

 

1839.69±46.03 

1845.32±39.43 

 

81.37±3.59 

83.40±5.23 

 

1492.26±149.81 

1475.55±127.40 

3176.87±84.45 

3489.75±52.63 

 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA  

20/80/4 

37.24±0.62 

40.43±0.20 

 

1285.37±35.11 

1296.85±18.80 

 

5.17±0.31 

6.57±0.30 

 

55.45±1.68 

57.99±0.56 

 

1820.29±24.22 

1816.06±50.51 

 

78.53±7.02 

91.07±7.45 

 

1489.11±98.45 

1487.21±78.94 

3635.25±92.76 

4022.22±42.65 

 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA  

20/80/6 

41.80±0.41 

39.52±0.20 

 

1239.35±39.61 

1262.44±46.88 

 

10.40±0.77 

8.10±0.67 

 

60.73±0.78 

56.45±0.66 

 

1800.20±13.08 

1729.03±19.20 

 

103.88±12.50 

78.51±9.30 

 

1494.56±79.95 

1493.58±100.23 

4641.24±74.86 

4363.63±90.23 

 

HDPE/PET/PE-g-MA 

HDPE/PET/HDPE-g-GMA  

20/80/8 

39.36±0.29 

38.59±0.15 

 

1159.92±79.43 

1219.57±59.15 

 

10.98±0.83 

8.54±0.71 

 

55.87±1.48 

52.71±0.50 

1750.59±36.93 

1659.49±20.26 

 

102.88±6.75 

76.38±7.54 

 

1499.69±88.83 

1496.70±103.85 

5503.45±93.02 

5174.51±42.55 
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Figure 4.15   The effect of compatibilizer types and contents on the mechanical 

 properties of HDPE/PET (20/80 wt%) (a) tensile strength, (b) tensile modulus, 

(c) tensile strain at   break, (d) impact strength, (e) flexural strength, (f) 

flexural modulus, (g) compressive strength, and (h) compressive modulus 
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Figure 4.15   The effect of compatibilizer types and contents on the mechanical 

 properties of HDPE/PET (20/80 wt%) (a) tensile strength, (b) tensile modulus, 

(c) tensile strain at   break, (d) impact strength, (e) flexural strength, (f) 

flexural modulus, (g) compressive strength, and (h) compressive modulus 

 (Continued) 

 

 The optimum content of the PE-g-MA compatibilizer for the HDPE/PET 

(20/80 wt%) is 6 phr. Higher content of the compatibilizer does not offer further 

significant improvement in the mechanical properties. Similarly, Pracella, et al. (2002) 
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reported that the average particle size rapidly decreased with increasing the 

compatibilizer content until to reach an equilibrium value. The equilibrium 

concentration roughly corresponded to the amount of copolymer necessary to saturate 

the interface, and in these conditions the particle size reduction is mainly due to 

suppression of coalescence. In case of HDPE-g-GMA compatibilizer, the optimum 

content is 2 phr. Blends containing HDPE-g-GMA compatibilizer higher than 2 phr 

show no significant decrease of the disperse phase size and no significant effect on the 

tensile and flexural properties. 

 4.3.4  Rheological properties  

 Rheological measurements are used to demonstrate the occurrence of 

compatibilization reaction (Tsai and Chang, 1996). The viscosity of the 

uncompatibilized and compatibilized blends by adding 2, 4, 6, and 8 phr of the PE-g-

MA and HDPE-g-GMA are shown in Figure 4.16. The viscosities versus shear rate of 

all the compatibilized blends are higher than that of the uncompatibilized blend. The 

viscosity of the blends increases with increasing quantity of the both compatibilizers. 

The increase in viscosity of compatibilized blends indicates occurrence of interfacial 

interactions between the hydroxyl end-groups of PET and the reactive MA 

functionalized polyolefins and between the carboxyl/hydroxyl end-groups of PET and 

epoxy groups of GMA as reactive compatibilizers (Kalfoglou et al., 1995). The similar 

results were reported by Dagli and Kamdar (1994); Pracella et al. (2002); Pawlak et al. 

(2002). The viscosities of the compatibilized blends with HDPE-g-GMA are higher  

than those blends with PE-g-MA. This is supported that epoxy groups of GMA give 

rise to stronger interaction with the PET chain ends. The result is in agreement with 

Pracella et al. (2002). They found that the interaction between epoxy group of GMA 
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and polyester chains appeared to be stronger than that of MA or AA functionalized 

polyolefins due to an increase of the melt viscosity for compatibilized blends PET/PE 

with PE-g-GMA. 
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Figure 4.16   The effect of compatibilizer types and contents on the viscosities  

 of HDPE/PET blends (20/80 wt%) 

 

 Melt flow index (MFI) of the uncompatibilized and compatibilized 

blends are shown in Figure 4.17. It clearly demonstrates that the higher compatibilizer 

contents in the blends result in the lower MFI. This result indicates that the viscosity 

of the blend increases with increasing quantity of the both compatibilizers. MFI results 

are well corresponding with viscosity results measured from capillary rheometer. 
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Figure 4.17   The effect of compatibilizer types and contents on melt flow index  

 of HDPE/PET blends (20/80 wt%) 

 

 4.3.5  Thermal properties  

 Thermal properties of HDPE/PET blends by adding 2, 4, 6, and 8 phr of 

the compatibilizers are listed in Table 4.6. The crystallization temperature (Tc) of 

HDPE phase remains almost constant for all compositions examined while the Tc of 

PET component in the compatibilized blends is shifted to temperature lower than that 

observed for uncompatibilized blend. The similar results were obtained by Jabarin and 

Bhakkad (1995). They reported that the Tc of HDPE component was remained nearly 

constant with increasing of maleic anhydride grafted polyolefin while the Tc of PET 

was observed to decrease as increasing the amount of the compatibilizer. The 

reduction of the Tc of PET indicates a decrease in the crystallization rate of PET due to 

 



 
                              

   

 

62

the presence of the compatibilizer. The addition of PE-g-MA to the blends does not 

significantly affect on the Tm of both HDPE and PET components. While Tm of PET in 

the blends compatibilized with HDPE-g-GMA is shifted to temperature lower than 

those of the uncompatibilized blend.  Pawlak et al. (2002); Pracella et al. (2002) 

obtained similar results on the compatibilization of HDPE/PET blends. The shift of the 

Tm of PET with the amount of HDPE-g-GMA was observed. These melting point 

displacements indicated compatibility between the components with the presence of 

the compatibilizer that caused an increase of the mechanical properties (Lozano-

Ramirez and Guerrero-Salazar, 1999).  
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 Table 4.6   Calorimetric characterization of uncompatibilized and compatibilized blends  with PE-g-MA and HDPE-g-GMA  

HDPE component PET component 
 

 

Composition  

(wt%) Tc 

(
o
C)

Tm 

(
o
C)

ΔΗm 

(J/g) 

Xc 

(%)

Tc 

(
o
C)

Tm 

(
o
C)

ΔΗm 

(J/g) 

Xc 

(%)

HDPE/PET  

20/80 

116.74 131.10 40.44 13.80 198.84 247.99 18.91 

HDPE/PET/PE-g-MA 

HDPE/PET/HDPE-g-GMA 
20/80/2 

116.88 

117.74 

131.02 

131.24 

38.89 

36.91 

12.97 

12.60 

195.91 

196.97 

247.48 

241.40 

18.65 

14.30 

15.57 

11.94 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA 
20/80/4 

116.59 

117.82 

130.78 

130.80 

37.72 

36.87 

12.87 

12.58 

194.72 

194.87 

247.30 

240.32 

16.55 

13.25 

13.36 

11.06 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA 
20/80/6 

116.52 

117.95 

130.43 

131.04 

36.42 

30.54 

12.43 

10.42 

195.28 

194.70 

247.39 

239.75 

15.41 

12.13 

12.86 

10.13 

12.32 

7.75 

HDPE/PET/PE-g-MA  

HDPE/PET/HDPE-g-GMA 
20/80/8 

116.13 

117.82 

130.46 

130.51 

32.73 

29.96 

11.17 

10.24 

195.7 

194.72 

247.50 

239.86 

14.77 

9.28 
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 The effects of the compatibilizer types and contents on the crystallinity 

degree (%Xc) of PET and HDPE component in the HDPE/PET blends are shown in 

Figure 4.18. The %Xc of both matrix and dispersed phase depend on the types and 

contents of the compatibilizer. The %Xc of PET and HDPE component decrease with 

an increase of the PE-g-MA and HDPE-g-GMA contents. Papadopoulou and 

Kalfoglou (2000) reported that the crystallinity of PET and PP component were 

reduced with increasing the SEBS-g-MA contents. Crystallinity reduction might 

reflect a decrease of the rate of crystallization in the presence of the compatibilizer due 

to a decrease of the rate of diffusion processes associated with crystallization. These 

results can be explained by considering both the effect of the miscibility of the 

functionalized polyolefins with the HDPE phase and that of chemical reactions of 

functional groups with PET at the interface in the melt (Pracella et al., 2002). The both 

effects cause a finer and more homogeneous morphology and a reduction in the 

particle size of the disperse phase. Consequently, the crystallization of PET was 

inhibited and caused a decrease in the Tm and crystallinity of the PET (Marquez, 

Gambus, Romero-Rato, and Apartado, 1999).   
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Figure 4.18   The effect of compatibilizer types and contents on the crystallinity 

  degree (%Xc) of (a) PET component and (b) HDPE component  

  in the HDPE/PET blends (20/80 wt%) 
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 HDT of HDPE/PET compatibilized with PE-g-MA and HDPE-g-GMA 

are shown in Figure 4.19. No remarkable difference on HDT of uncompatibilized and 

compatibilized blends with PE-g-MA and HDPE-g-GMA is found. 
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Figure 4.19   The effect of compatibilizer types and contents on HDT  

 of HDPE/PET blends (20/80 wt%) 

 

 4.3.6  Water absorption  

 Water absorption rate versus immersion time of uncompatibilized and 

compatibilized blends are shown in Figure 4.20. The water absorption rate of the 

compatibilized blends is lower than that of the uncompatibilized blend. The water 

absorption measurement indicates that the compatibilized blends are more effective 

than the uncompatibilized blend in improving the water resistance. Water absorption 
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rate seems to be constant after immersion for 30 days. Bae, Park, Kim, and Suh (2001) 

reported that the water resistance was improved by the compatibilization between the 

PET and PP phases. The reduction of water absorption rate was attributed to the finer 

dispersed phase size which was increased the total surface area for the PP dispersed 

phase. Arbelaiz et al. (2005) found that the reduction of water absorption rate was 

attributed to an improvement in an interfacial adhesion resulting in avoidance an easy 

penetration of water molecules into the compatibilized blends and a decrease water 

accumulation in the interfacial voids.  
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Figure 4.20   Water absorption rate versus immersion time of the uncompatibilized 

  and compatibilized blends 
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 The effect of the water absorption on the tensile strength of the 

uncompatibilized and compatibilized blends is shown in Figure 4.21. The addition of 

the compatibilizers insignificantly affect on tensile strength of the blends after 

immersion. In contrast, Bergeret et al. (2001) found that when PET and PBT were 

accessible to water, they tended to swell of the amorphous part due to water 

absorption, thereby developing shear stresses at the interface. Consequently, a 

decrease of the tensile strength was found. 

 

0

5

10

15

20

25

30

35

40

45

50

un
co

m
pa

tib
ili

ze
d

H
D

PE
/P

ET
 b

le
nd

PE
-g

-M
A

 2
 p

hr

PE
-g

-M
A

 4
 p

hr

PE
-g

-M
A

 6
 p

hr

PE
-g

-M
A

 8
 p

hr

H
D

PE
-g

-G
M

A
 2

 p
hr

H
D

PE
-g

-G
M

A
 4

 p
hr

H
D

PE
-g

-G
M

A
 6

 p
hr

H
D

PE
-g

-G
M

A
 8

 p
hr

Te
ns

ile
 st

re
ng

th
 (M

Pa
)  

   
 

0 day 1 day 7 days 14 days 30 days 60 days  

 

Figure 4.21   The effect of the water absorption on the tensile strength of the 

 uncompatibilized and compatibilized blends 
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4.4  The effect of filler reinforcement on properties of HDPE/PET  

 blends 

 Polymer blending and reinforcement had been studied for many years 

(Malchev et al., 2005). The incorporation of fillers into thermoplastics has been used 

to enhance certain properties. Glass fibers are the most commonly used fibers in short 

fiber reinforced polymer composites. They are selected in majority of applications 

because of their low cost, reasonably high modulus, and high tensile strength. The 

addition of the fiber to thermoplastics significantly improves both the stiffness and 

strength. Calcium carbonate (CaCO3) is abundantly available in nature. They are used 

to reduce cost as well as mold shrinkage (Talreja and Manson, 2001). In this study, 

short glass fiber (SGF) and CaCO3 at content of 10 phr are used to reinforce the 

HDPE/PET blends. The content of PE-g-MA and HDPE-g-GMA to compatibilize the 

composites are 6 and 2 phr, respectively.  

4.4.1  Density 

          Density of the blends and composites is shown in Table 4.7. Addition of 

SGF and CaCO3 results in insignificant effect on the density of the blends.  
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Table 4.7   Density of the blends and composites 

Composition 
(wt%) Density (g/cm3) 

HDPE/PET 
20/80 1.19±0.02 

HDPE/PET/SGF 
20/80/10 1.17±0.10 

HDPE/PET/CaCO3
20/80/10 1.15±0.05 

HDPE/PET/PE-g-MA/SGF 
20/80/6/10 1.20±0.03 

HDPE/PET/PE-g-MA/ CaCO3
20/80/6/10 1.18±0.09 

HDPE/PET/HDPE-g-GMA/SGF 
20/80/2/10 1.21±0.02 

HDPE/PET/HDPE-g-GMA/ CaCO3 1.19±0.04 20/80/2/10 

 

 4.4.2  Morphological properties  

 SEM micrographs of SGF and CaCO3 reinforced HDPE/PET blends are 

shown in Figure 4.22. Fracture surfaces of HDPE/PET/SGF composite, as shown in 

Figure 4.22 (a)-(c), reveal that the compatibilizers enhance the surface adhesion 

between SGF and polymer since SGF surfaces are more coated with the matrix. It 

results in an increase in the mechanical properties of the composites. Tselios et al. 

(1999) studied the glass fiber reinforcement of in situ compatibilized PP/PE blends. 

They found that the MA groups of PP-g-MA could react with the hydroxyl groups of 

glass fibers surface. This result might lead to an increase of adhesion between the 

polymer matrix and the glass fibers. Therefore, the reinforcement of compatibilized 

blends had higher elongation at break and impact strength compared with the 

corresponding uncompatibilized blends. 

 For HDPE/PET/CaCO3 composites, addition of the compatibilizers 

enhances the filler dispersion and adhesion through the phases. Sahnoune, Lopez-
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Cuesta, and Crespy (1999) studied the effect of SEBS-g-MA on the mechanical 

properties of CaCO3 filled HDPE and reported that the alkaline nature of the CaCO3 

and acidic nature of the MA led to strong acid-base interaction and to the formation of 

ionic bonds between the elastomer and the filler surface. 

 

(d) 

(c) (f) 

(a) 

(b) (e) 

 
 

Figure 4.22   SEM micrographs of (a) HDPE/PET/ SGF 20/80/10, (b) HDPE/PET/ 

PE-g-MA/SGF 20/80/6/10, (c) HDPE/PET/HDPE-g-GMA/SGF      

20/80/2/10, (d) HDPE/PET/ CaCO3 20/80/10, (e) HDPE/PET/PE-g-

MA/CaCO3 20/80/6/10, and (f) HDPE/PET/HDPE-g-GMA/CaCO3 

20/80/2/10 (x1500) 
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 4.4.3  Mechanical properties  

 Mechanical properties of the HDPE/PET blends reinforced with SGF 

and CaCO3 are shown in Table 4.8. In the case of HDPE/PET blends without 

compatibilizers, addition of SGF increases the tensile, flexural, compressive properties 

and impact strength. Tensile strength, tensile strain at break, compressive strength, 

compressive modulus, and impact strength can be improved by adding PE-g-MA to 

the HDPE/PET/SGF composites. Incorporation of HDPE-g-GMA in HDPE/PET/SGF 

composite causes an improvement in tensile strength, tensile strain at break, 

compressive strength, compressive modulus, and impact strength whereas no 

significant effect on the flexural strength and flexural modulus is observed. These 

results are corresponding to SEM observation. The transmission of the applied load 

through the matrix to the fibers depends on the state of the bonding between the matrix 

and the fibers. These keep the fibers tightly bound to the matrix, thus facilitating the 

transfer and distribution of the applied load among fibers (Tselios, Bikiaris, Savidis, 

and Panayiotou (1999). 

 When CaCO3 is added to HDPE/PET blends, a decrease in tensile strain 

at break, flexural strength, and impact strength is found. However, flexural modulus 

and compressive modulus are improved. Tensile strength, tensile strain at break, 

flexural strength, compressive strength, and impact strength are enhanced by the 

addition of the compatibilizers. Albano et al. (2000) found that the addition of CaCO3 

to the blend of PP and recycled HDPE (80/20 wt%) resulted in a slight increase in 

tensile modulus and a decrease of tensile strength. This was attributed to the inclusion 

of particles and their dispersion in the polymer matrix resulting in an increase of stress 

concentration. 
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Table 4.8   Mechanical properties of the blends and composites 

Tensile  Flexural Compressive 
Composition 

(wt%) 
strength 
(MPa) 

modulus 
(MPa) 

strain at  
break (%) 

strength 
(MPa) 

modulus 
(MPa) 

strength 
(MPa) 

modulus 
(MPa) 

Impact 
strength  
(J/m2) 

HDPE/PET 
20/80 30.85±0.73 1320.73±53.03 3.46±0.16 54.49±0.47 1872.54±44.90 59.52±5.27 1500.76±106.00 2578.41±77.12 

HDPE/PET/SGF 
20/80/10 39.19±1.96 1666.85±54.87 3.64±0.27 68.06±0.97 2887.53±78.56 75.23±9.87 1755.98±87.45 4527.21±72.51 

HDPE/PET/CaCO3
20/80/10 30.82±0.73 1393.91±45.66 2.76±0.46 40.06±1.22 2093.91±49.57 60.84±6.15 1682.54±94.12 1782.20±64.22 

HDPE/PET/PE-g-MA/SGF 
20/80/6/10 42.11±0.61 1748.52±55.96 5.97±0.25 59.57±1.97 2652.19±31.19 94.21±12.19 1977.24±113.31 5173.54±82.11 

HDPE/PET/PE-g-MA/CaCO3
20/80/6/10 31.55±1.53 1287.41±19.09 3.76±0.27 46.06±0.67 2012.54±27.50 80.20±4.35 1741.52±118.56 2285.40±78.43 

HDPE/PET/HDPE-g-GMA/SGF 
20/80/2/10 48.13±0.51 1692.24±33.18 4.95±0.15 67.32±1.52 2811.28±53.82 101.09±1.47 1859.25±89.56 6987.45±95.46 

HDPE/PET/HDPE-g-
GMA/CaCO3
20/80/2/10 

35.75±0.72 1377.13±29.37 4.43±0.43 50.04±1.52 1973.13±9.56 84.56±1.55 1640.85±74.52 2523.51±82.29 

 

. 
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 4.4.4  Rheological properties  

 The viscosity of the blends and composites are plotted in Figure 4.23. 

The viscosities versus shear rate of the composites are higher than those of the blends 

since the fillers perturb the normal flow of the polymer and hinder the mobility of 

chain segments in the melt flow. Adding both compatibilizers increases the viscosities 

of the composites. In addition, the compatibilized blends reinforced with SGF exhibit 

higher viscosity than that of the blends reinforced with CaCO3. MFI of the blends and 

composites are shown in Figure 4.24. Addition of the fillers causes a decrease in MFI. 

Giraldi et al. (2005) studied glass fiber-PET composites and found that the MFI of 

PET decreased with incorporation of the glass fiber. 
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Figure 4.23   Shear viscosities of the blends and composites 
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Figure 4.24   MFI of the blends and composites (a) compatibilized HDPE/PET blends, 

 (b) compatibilized HDPE/PET blends reinforced with 10 phr of SGF, 

and (c) compatibilized HDPE/PET blends reinforced with 10 phr of CaCO3

 

 4.4.5  Thermal properties  

 The effects of SGF and CaCO3 on the melting and crystallization 

behavior of HDPE/PET blends are listed in Table 4.9. Tm of both HDPE and PET 

component does not substantially change on the addition of SGF. The result is in 

agreement with Joshi et al. (1994). They found that SGF did not significantly affect on 

Tm of both HDPE and PBT components in HDPE/PBT/SGF composites. This result 

indicated that there was no change in the crystallite size of PBT in the presence of 

SGF due to the very fast crystallizing nature of PBT. The presence of the SGF does not 

affect on Tc of HDPE componet while Tc of PET component has shifted to higher 
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values. This means that the presence of the SGF facilitates the crystallization of PET. 

The %Xc of HDPE and PET component in the blends reinforced with SGF is higher 

than that of the blends without SGF. Tselios et al. (1999) found that the SGF acted as 

nucleating agents and increased the crystallinity of the PP/PE blends. The addition of 

the compatibilizers in the blends reinforced with SGF insignificantly affect on Tm and 

Tc of the HDPE and PET component while %Xc of PET component is decreased. 

 Tm and Tc of HDPE component of the blend reinforced with CaCO3 do 

not significantly change while the Tm and Tc of PET component have shifted to higher 

temperature. CaCO3 results in an increase in the %Xc in both HDPE and PET 

component. These results may be implied that CaCO3 acts like a nucleating agent and 

increases the rate of crystallization in the PET component (Pingping and Dezhu, 

2000). Gonzalez, Albano, Ichazo, and Diaz (2002) found that the CaCO3 acted as a 

nucleating agent during the crystallization of PP/HDPE. This resulted in an increase of 

%Xc of the both polymer components. The treatment of CaCO3 with the coupling 

agents of the titanate type (Lica12) produced a decrease in the heat of fusion of the 

PP/HDPE blend because the nucleating efficiency of CaCO3 was reduced. In addition, 

the use of the coupling agents did not influence on the Tc. Tm and Tc of the HDPE and 

PET component in the blends reinforced with CaCO3 do not affect on adding of the 

compatibilizers. Adding of the compatibilizers results in a decrease of %Xc of PET 

component. 
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  Table 4.9   Calorimetric characterization of the blends and composites 

HDPE component PET component 

Composition 

(wt%) Tc 

(
o
C)

Tm 

(
o
C)

ΔΗm 

(J/g) 

Xc 

(%)

Tc 

(
o
C)

Tm 

(
o
C)

ΔΗm 

(J/g) 

Xc 

(%)

 
HDPE/PET 20/80 
 

116.74 131.10 40.44 13.80 198.84 247.99 18.91 15.78 

HDPE/PET/ SGF 
20/80/10 116.75 130.24 44.12 15.05 206.29 248.59 22.78 19.20 

HDPE/PET/ CaCO3
20/80/10 116.24 130.41 42.59 14.54 207.22 248.89 21.30 17.75 

HDPE/PET/PE-g-MA/SGF 
 20/80/6/10 117.03 130.74 41.86 14.29 205.47 248.29 16.95 14.15 

HDPE/PET/PE-g-MA/CaCO3
20/80/6/10 116.20 129.72 39.18 13.37 204.70 249.12 18.25 15.23 

HDPE/PET/HDPE-g-GMA/SGF 
20/80/2/10 116.16 129.32 42.56 14.53 205.29 248.40 18.94 15.81 

HDPE/PET/HDPE-g-GMA/CaCO3 
20/80/2/10 116.60 130.33 40.28 13.75 205.94 248.97 17.73 
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 HDT of the blends and composites are shown in Figure 4.25. As 

expected, the presence of SGF significantly improves the HDT of the blends. 

However, CaCO3 does not significantly affect on the HDT.  
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Figure 4.25   HDT of the blends and composites (a) compatibilized HDPE/PET  

 blends, (b) compatibilized HDPE/PET blends reinforced with 10  

 phr of SGF, and (c) compatibilized HDPE/PET blends  

 reinforced with 10 phr of CaCO3

 

 4.4.6  Water absorption  

 Water absorption rate versus immersion time of the blends and 

composites are shown in Figure 4.26. The water absorption rate increases with adding 

the filler. Water absorption of all composites after immersion times of 30 days seem to 

be constant. Pires, Foulc, Abadie, Ferry, and Crespy (2001) studied effects of 
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accelerated environment on the mechanical properties of glass fiber reinforced 

thermoplastic composites based on polyamide 66, poly (ethylene terephthalate), and 

poly (butylene terephthalate). They found that the water absorption rate of the 

composites increased with immersion time and aging temperature. The swelling of the 

amorphous part due to water absorption should induce microcavity formation at the 

amorphous and crystalline interface. This resulted in a decrease in impact strength of 

the composites. 
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Figure 4.26   Water absorption rate versus immersion time of the blends and composites 

 

 The effect of the water absorption on the tensile strength of the 

composites is shown in Figure 4.27. No significant change in the tensile strength of 

 



 
                              

   80

the composites after water immersion is found because the water does not affect on the 

molecular structure of the composites.  
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Figure 4.27   Influence of the water absorption on the tensile strength of the 

composites (a) HDPE/PET/PE-g-MA/SGF (20/80/6/10), (b) 

HDPE/PET/PE-g-MA/CaCO3 (20/80/6/10), (c) HDPE/PET/HDPE-

g-GMA/SGF (20/80/2/10), and (d) HDPE/PET/HDPE-g-GMA/ 

CaCO3 (20/80/2/10) 
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4.5  Density and mechanical properties comparison for HDPE/PET  

 blend versus soft wood 

Density and mechanical properties of the blends reinforced with SGF are 

shown in Table 4.8. Densities of HDPE/PET blends and their composites are higher 

than Tectona grandis (soft wood). SGF enhances the mechanical properties of 

HDPE/PET blends. However, the tensile, flexural, and compressive modulus are lower 

than that of the soft wood. Lampo and Nosker (1997) reported that the addition of 

SGF could improve the strength of plastic lumber. Incorporation of the compatibilizers 

brings about an increase in tensile and compressive properties of the HDPE/PET/SGF 

composites. Flexural and compressive strength of this composite are better than that of 

the soft wood while flexural and compressive modulus are worse. Like wood, This 

composite could be nailed, screw, and sawed. 

 Generally, plastic lumber was not appropriated for direct substitution for wood 

of similar dimensions. When plastic lumber were applied, plastic deflection and creep 

properties were compensated by specifying larger cross sections or more closely 

spaced support elements (Lampo, and Nosker, 1997). 
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  Table 4.10   Density and mechanical properties of soft wood, HDPE/PET blends, and composites 

Tensile Flexural Compressive 
Materials 

Density 

(g/cm3) 

 
strength 

(MPa) 

modulus 

(MPa) 

strength 

(MPa) 

modulus 

(MPa) 

strength 

(MPa) 

modulus 

(MPa) 

Soft wood 

(Tectona grandis)(a)

0.62 - - 62.88 8002.31 32.07 9231.21 

HDPE/PET 

(20/80) 

1.19±0.02 30.85±0.73 1320.73±53.03 54.49±0.47 1872.54±44.90 59.52±5.27 1500.76±106.00 

HDPE/PET/SGF 

(20/80/10) 

1.17±0.10 39.19±1.96 1666.85±54.84 68.06±0.97 2887.53±78.56 75.23±9.87 1755.98±87.45 

HDPE/PET/PE-g-MA/SGF 

(20/80/6/10) 

1.16±0.03 42.11±0.61 1748.52±55.96 59.57±0.25 2652.19±31.19 94.21±12.19 1977.24±113.31 

HDPE/PET/HDPE-g-GMA/SGF 

(20/80/2/10) 

1.15±0.02 48.13±0.51 1692.24±33.18 67.32±1.52 2811.28±53.82 101.09±1.47 1859.25±89.56 

82   a: The engineering institute of Thailand under H.M. the King’s patronage, 1974
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CHAPTER V 

CONCLUSIONS   

 

 The properties of recycled HDPE/PET blends including mechanical, 

rheological, thermal, morphological properties, water absorption, and density were 

under the study. Also, the compatibilizers were used in the experiment to evaluate their 

impact on the analyzed properties. Polyethylene grafted with maleic anhydride (PE-g-

MA) and high density polyethylene grafted with glycidyl methacrylate (HDPE-g-

GMA) improved compatibility of HDPE/PET blends. They reduced the particle size of 

dispersed phase by enhanced interfacial adhesion between matrix and dispersed phase.  

 By varying the blend composition at 80/20, 60/40, 40/60, and 20/80 wt%, the 

results were tensile strength, tensile modulus, flexural strength, flexural modulus, heat 

distortion temperature (HDT), density, and water absorption increased with increasing 

PET contents while tensile strain at break, impact strength, and viscosity decreased. 

Dispersed phase size of HDPE-rich blends was smaller than that of PET-rich blends. 

Moreover, blend compositions affected on crystallinity behavior of the blends. 

 The results indicated that the compatibilizers improved the mechanical, 

rheological, thermal, morphological properties, water absorption, and density of the 

blends. (1) tensile, flexural, compressive, and impact strength, and tensile strain at 

break improved whereas tensile, flexural, and compressive modulus insignificantly 

changed, (2) HDT of the compatibilized blends were not influenced, (3) an increase in 

melt viscosity and depression of crystallinity degree PET and HDPE components in 
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the blends was found due to the presence of chemical reactions between 

compatibilizers and PET, (4) water absorption resistance was improved; HDPE-g-

GMA was more effective than PE-g-MA due to its higher reactivity of GMA 

functionality with PET terminal groups. The optimum content of HDPE-g-GMA and 

PE-g-MA for 80/20 HDPE/PET blends was 2 and 6 phr, respectively. 

 Effect of short glass fiber and calcium carbonate as filler to reinforce the 20/80 

HDPE/PET blends was investigated. The incorporation of short glass fibers into the 

blends enhanced the tensile, flexural, compressive, and impact properties as well as 

HDT. Reversely, calcium carbonate did not enhance the mechanical properties and 

provided no significant increase in HDT of the blends. Viscosity and water absorption 

rate were increased by adding fillers. As a nucleating agent, adding the filler to the 

composites improve crystallinity degree of PET and HDPE components. 

 The compatibilizers can improve the filler dispersion and adhesion between 

fillers and polymer matrices; thus, enhancing the properties of the composites. HDPE-

g-GMA increased tensile strength, compressive, and impact strength of the short glass 

fiber composites without having any significant effect on tensile modulus, tensile 

strain at break, flexural and compressive modulus, and HDT. Adding the HDPE-g-

GMA to calcium carbonate composites improved tensile, flexural, compressive, and 

impact strength. The compressive properties and impact strength of short glass fiber 

composites increased with adding PE-g-MA. 

HDPE/PET/HDPE-g-GMA/SGF (20/80/2/10 wt%) provides the best 

mechanical properties. Flexural and compressive strength of this composite were 

worse than that of the soft wood while flexural and compressive modulus were better. 

In addition, the densities of this composite were also higher than the soft wood.  
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 The mechanical properties of plastic lumbers are varied by time-temperature. 

Under the sustained loaded conditions, theirs mechanical properties are subject to 

permanent deformation. In load bearing application, plastic lumbers shall not be used 

to replace woods directly due to their plastic deflection and creep properties. 

Specifying larger cross sections or more spaced support elements can compensate the 

inferior properties of the plastic lumbers. 
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Recommendation For Future Work 

 The main interesting topics for the further studied related to this research study 

should be followed: 

(i) To find the optimum filler content for the HDPE/PET blends 

(ii) To investigate the effect of other types of the filler on the properties of the  

 blends 

(iii) To make the plastic lumber from the HDPE/PET blends 

(iv) To make the laminated veneer lumber from the HDPE/PET blends 

 

Research Publication 
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