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scribing the behavior of a dispersive continuum are obtained as an Euler-Lagrange

equation for the Lagrangian of the form

L = L(ρ, ρt,∇ρ, u)

where t is time, ∇
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u̇ + ψ′′ρx = 0.

Hence, in the case Wρ̇ρ̇ = 0 equations (1.1), (1.2), (1.3) are similar to the

gas dynamics equations. This case was completely studied in (Chirkunov, 1989).

the one-dimensional case of equations (1.1), (1.2), (1.3) was studied in (Hematulin,



CHAPTER II

FLUIDS WITH INTERNAL INERTIA
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Notice that if W is a linear function with respect to ρ̇, then these equations
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The gas pressure
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CHAPTER III

GROUP ANALYSIS METHOD

In this chapter, the group analysis method is discussed. An introduction

to this method can be found in various textbooks (cf. Ovsiannikov 1978), (Olver,
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where
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Note that after substituting (3.



12

where

ζux(x, u, ux) =
∂h(x, u, ux; a)

∂a

∣∣∣∣
a=0
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For constructing prolongations of an infinitesimal generator in case n,m ≥ 2

one proceeds similarly.

Let x = {xi}
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where

ζ
u
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Here n,m is the numbers of independent and dependent variables, respectively and

r∗ is the total rank of the matrix composed by the coefficients of the generators

Xi, (i = 1, 2, ..., r).

Definition 5. A set M is said to be invariant with respect to the group G
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The generator X
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3.3 Classification of subalgebras

One of the main aims of group analysis is to construct exact solutions of

differential equations. The set of all solutions can be divided into equivalence

classes of solutions:

Definition 10.
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Let L
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where
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The notion of partially invariant solutions generalizes the notion of an invariant

solution, and extends the scope of applications of group analysis for constructing

exact solutions of partial differential equations. The algorithm of finding invariant

and partially invariant solutions consists of the following steps.

Let Lr be a Lie algebra with the basis X1, ..., Xr. The universal invariant

J consists of s = m + n − r∗ functionally independent invariants

J =
(
J1(x, u), J2(x, u), ..., J7ψTfψ7.965ψ4.339ψT5/F291
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The number l satisfies the inequality 1 ≤ l ≤ q ≤ m. The representation of

the H(





CHAPTER IV

GROUP CLASSIFICATION OF THE

THREE-DIMENSIONAL EQUATIONS

4.1 Introduction
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where u4 = ρ and x4 = t. An infinitesimal operator Xe of the equivalence Lie

group is sought in the form (Meleshko, 2005),

Xe = ξi∂xi
+ ζuj

u
+
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group

Xe
1 = ∂x1 , X

e
2 = ∂x2 , X

e
3 = ∂x3 ,

Xe
4 = t∂x1 + ∂u1 , X

e
5 = t∂x2 + ∂u2 , X

e 2 , Xt∂x =
eu2
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where k
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with some function B(ρ, ρ̇) 6= 0. Because Wρ̇ρ̇ 6= 0, one has that β032
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If ϕ′′
2 = C2ρ

−µ 6= 0, the extension of the kernel is given by the generator

(1 − µ)X1 + 2(X14 + φX7),

where φ = (µ + λ + p − 2)/p. If ϕ′′
2 = 0, the extension is given by the generators

pX1 − 2X7, (p + λ − 1)X1 + 2X14.

If k = −2, then integrating (4.14), one obtains

W (ρ, ρ̇) = −qoρ
λ ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ), (qo 6= 0).

Substituting this into equations (4.2)-(4.4), we obtain

c1 = c15(λ − 1)/2,

and the condition

c15(ρϕ′′′
2 − ϕ′′

2(λ + 2)) + qoλ(λ − 1)(c15 − c7)ρλ−2 = 0.

If λ(λ− 1) = 0 and ϕ2 is arbitrary, then the extension is given only by the

generator

X7.

If λ(λ − 1) = 0 and ϕ′′
2 = C2ρ

λ+2, then the extension of the kernel consists

of the generators

(λ − 1)X1 + 2X14, X7.

If λ(λ − 1) 6= 0 and ϕ′′
2 = C2ρ

λ+2 − qo

4
λ(λ − 1)µρλ−2, then the extension is

(λ − 1)X1 + 2(X14 + (µ + 1)X7)

where c7 = (µ + 1)c15.

If k = −1, then integrating (4.14), one obtains

W (ρ, ρ̇) = −qoρ
λρ̇ ln(ρ̇) + ρ̇ϕ1(ρ) + ϕ2(ρ),
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If ϕ′′
2 6= 0, then ϕ2 = C2ρ

−µ, where µ = 2c7/c15. The extension of the kernel

consists of the generator

(1 − µ)X1 + 2 + �75ψ-.955ψTfψ11.9.16.7538ψ-1.793ψTd[(7)]TJ/F23ψ11.955ψTfψ4.733ψ1.793ψTd[.ψ11.9.n-93ψTd[(7)]T-2347.274ψ-37.252ψTd[(If)]TJ/F23ψ11.955ψTfψ117042ψ0ψTd[(ϕ)]TJ/F27ψ7.97ψTfψ7.689ψ4.338ψTd[(00)]TJ/F21ψ7.97ψTfψ0ψ-7.293ψTd[(2)]TJ/F15ψ11.955ψTfψ8.413ψ2.955ψTd[(/)-277(0,)-326(then)-327(a)1theex(tenion,)-326of, the(k)28(ernel)-37(ise)-326(iv)37(en,)-326by, the gener(a)1orsf

X1 + 24f



40Table4.1Groupclassi�cationofequations(4.1)
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The characteristic system of this equation is
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The general solution of this equation is
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In the second case, we assume that

(2λ + 3p − 4) − µ(p − 2) 6= 0.

Equation (5.22) gives

k4 = −(2p + 3((2λ + 3p − 4) − µ(p − 2)))k3.

The extension of the kernel becomes

2(−λ+(p−1)µ−2p+2)X1+(2λ+(p+2)µ
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Substituting (5.29) into equations (5.3)-(5.6), we have

k4 = 5k3

and the condition

ϕ′′′
2 ρk3 + ϕ′′

2(k1 + 2k3).

If ϕ′′
2 = 0, then the extension of the kernel is given by the generators

X1, X3 + 5X4.

If ϕ′′
2 6= 0, then k3 6= 0 ans ϕ2 = C2ρ

−µ, where µ = k s
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ordinary differential equation. Here also all dependent variables can be defined

through the function h(r), but the equation for h(r) is a fourth-order ordinary

differential equation. In fact, since H 6= 0, from (5.30) one obtains that U 6= 0.

Hence, α = αo, where αo is constant. From the first and third equations of (5.30),

one finds

ρ = Ro
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commutators:

X0 X1 X2 X3

X0 0 X0 X3 2X0

X1 0 X2 0

X2 0 −2X2

X3 0

Solving the Lie equations for the automorphisms, one obtains:

A0 :

 x̃0 = x0 + a0(x1 + 2x3) + a2
0x2,

0
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5.2.5 One-dimensional subalgebras

One can decompose the Lie algebra L4 as L4 = I ⊕ N , where I = L3 is

an ideal and N = {X1} is a subalgebra of L4. Classification of the subalgebra

N = {X1} is simple: it consists of the subalgebras:

N1 = {0}, N2 = {X1}.

According to the algorithm (Ovsiannikov, 1993) for constructing an optimal system

of one-dimensional subalgebras one has to consider two types of generators: (a)
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Case (b)

Assuming that x0 6= 0, choosing a2 = −x3/x0, one maps x3 into zero. In

this case x2(A2) → x̃2 =2 (
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To find invariants, one needs to solve the equation

XJ = 0,



60





62







CHAPTER VI

INVARIANT SOLUTIONS OF ONE OF

MODELS

This chapter is focused on obtaix
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If β = 0, then there is one more admitted generator,

Y6 = t∂t − u∂u.

The six-dimensional Lie algebra with the generators {Y1, Y2, ..., Y6} is denoted by

L6.

The structural constants of the Lie algebra are defined by the table of

commutators:

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0 0 Y2 −2Y1 −Y4 Y1

Y2 0 0 −Y2 Y3 0

Y3 0 Y3 0 −Y3

Y4 0 −2Y5 0

Y5 0 −Y5

Y6 0

Solving the Lie equations (3.22) for the automorphisms, one obtains:

A1 :


ỹ1 = y1 + τ1(y6 − 2y4) + τ 2

1 y5,

ỹ
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Case (b)

Assuming that y1 6= 0, choosing τ5 = −y
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Subalgebra

1 Y5 ± Y1

2 Y1 + Y3

3 Y1

4 Y2

5 Y3

Subalgebra

6 αY1 + Y6 + Y5

7 Y6 + αY2

8 2Y6 + Y4

Here α 6= 0 is an arbitrary constant.

Remark 1. Since the automorphism A4 for W = −aρ−3ρ̇2 differs from the

automorphism A4 for the Green-Naghdi model, the subalgebras Y1 + γY3, (γ 6= 0)

considered in (Bagderina and Chupakhin, 2005) are equivalent here to Y1 + Y3.

Remark 2. Because of the automorphism A4 the subalgebras {Y5 + βY1}

are equivalent to one of the subalgebras: {Y5 + Y1}, {Y5 − Y1} or {Y5}. The

subalgebra {Y5 − Y1} is equivalent to {Y4}. The subalgebra {Y5} is equivalent to

{Y1}. Notice also that the subalgebra {Y6 + Y5} ggY6 + Y
6 + Y
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Let α = 1/4 + γ2, γ 6= 0. In this case, invariants of the Lie group are

U = s
((

(t + 1/2)2 + γ2
)
u − xt

)
, R = xρ,

where

s =
(
(t + 1/2)2 + γ2

)−1/2
e

1
2γ

arctan( 2t+1
2γ

).

The representation of an invariant solution is

s
((

(t + 1/2)2 + γ2
)
u − xt

)
= U(y), ρ = x−1R(y), y = xs.

Substituting the representation of a solution into (4.1), one obtains two ordinary

differential equations. The general solution of the first equation (conservation of

mass) is

U = kyR−1.





73

One can easily see that these equations have the constant solution f = 1.
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6.2.3 Invariant solutions of 2
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In the case β = 0 this equation is reduced by the substitution R′ = f(R)/y
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6.2.6 Invariant solutions of Y1 + Y3

Invariants of the generator

Y1 + Y3 = ∂t + t∂x + ∂u

are
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Substitution into equations (6.2) gives

R′ = 0, RU ′ = 0.

6.2.8 Invariant solutions of Y3





CHAPTER VII

CONCLUSIONS
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original three-dimensional system of equations is reduced to a system with two

independent variables. Group classification of the reduced system is obtained.

All invariant solutions of the reduced system with the potential function Wq0ρ5ρ2 +

The last part of the thesis deals with the one-dimensional equations. All

invariant solutions of fluids with the potential function W
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