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Linear effects of the planned 7.5 Tesla superconducting wiggler on the
beam parameters of the Siam Photon Source are investigated. The
effects arising from focusing properties of the wiggler field are taken
into account via effective thin-lense focusing matrix of the wiggler.
Analytical expressions for the tune shift, stopband and betatron shift are
derived and calculated. Dependence of the linear effects on the original
betatron functions and the wiggler peak field are investigated. Matching
condition to reduce the perturbation is also suggested.

1. Wiggler focusing matrix

Due to longitudinal variation of the wiggler field and the deflection of the
electron beam in the horizontal plane a wiggler acts as a focusing device in the

vertical plane. The averaged focusing parameter is given by K, = (1/ p2> , where p

is the radius of curvature. For a wiggler with length L a transfer matrix for such
focusing element is therefore [1]
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where # = [K ,L and B, =1/ /K, . The effective thin-lens focusing matrix M

acting at the center of the wiggler may be constructed by multiplying the wiggler
focussing matrix from the left and from the right by an inverse of the straight section

matrix [2]
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2. Tune shift

The lingar tune shift due to the wiggler field can be calculated by perturbation
method [3,4]. The unperturbed, i.e. wiggler-off, one-turn matrix is

(6)
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where u is the unperturbed one-turn phase-advance and @, £ and y are the
unperturbed betatron functions. The perturbed, i.e. wiggler-on, one-turn matrix is then
M, - |:cos fy + fow sin g, By sin Hy } o

— ¥ SIN 41y, COS 4, — &y SN 1y,
where the the subscripts W indicates the perturbed parameters. This perturbed one-
turn matrix can also be constructed by multiplying M__ .. by the wiggler focusing

matrix M, . This gives
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Comparing the two perturbed one-turn matrices the perturbed one-turn phase-advance
can then be obtained from

COS fty = %Tr[Mw,!ﬁ] = cos gz cosd —Lﬁgmﬁ—(;ﬁ' + ﬂ'] 9

where £ is the unperturbed betatron function at the wiggler position. The tune-shift
is then given by
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3. Stopband width

The stopband is produced when |cos 4| > 1, which can readily be evaluated
from (9). We rewrite (9) in the form

COS it = acos i —bsin u (11)

where
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With |cos yw| > 1 the equation for the stopband may be written, from (11),

12
(acospu—bsinp) >1 (12

From the above equation the stopband width can then be evaluated from the quadratic
equation

(b —an® p-2abtan g +(@* -1 >0 . (13)
This gives the equation for the stopband boundary points

ab++b*+a’ -1
tan u = PR . (14)

4. Change in betatron function

The focusing property of the wiggler causes a change in the betatron function
around the ring. To calculate the change in betatron function we adopt the
perturbation methods of Refs. [1] and [2] as the following.

Assume the ring has at least two-fold symmetry with the symmetry points at
the wiggler position and the position opposite the wiggler. Starting at the symmetry
point, in which a = 0, opposite the wiggler the one-turn matrix is
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We can then obtain the perturbed betatron function at the point opposite the wiggler
from the m,, element of the above one-turn matrix

By sin g, = B, sin grcosd’ +%(ﬁ'z cos’ %—ﬁuz sin’ %J , (16)
where f, and f, are the unperturbed and the perturbed betatron functions,

respectively, at the point opposite the wiggler. Value of sin z,, can be found from Eg.



{9). We note however that Eq.(9) does not give the sign of the perturbed phase
advance. The sign of sin g, . and hence g, , can be determined by the requirement

that the betatron function is always positive.
To find the perturbed betatron function at other points we writc down the
beam matrix at some starting point [4]
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We may then write for the perturbed beam matrix
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For a transformation matrix T(s),
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which transforms the beam from the starting point to point s, the beam matrix at s is
then given by [4]

A)=TAO)T" , (19)

where T’ is the transpose of the matrix T . We can therefore obtain the change in the
beam matrix from, taking into account the fact that & = 0 at symmetry points,
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Evaluating the m,, element of the above matrix gives

Ap(s)= (ﬂw _ﬁo{flzl _ﬁj . (21)

The transformation matrix which transforms the beam from a symmetry point to point
s is given by [4]
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Together with (21) we obtain the change in the betatron function
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From (23) the maximum change of the beatraton function depends on the relative
values of S, and f,. In the case of S, > f, the maximum betatron change is

reached when the quantity in the square bracket is reaching the value 1. In the case of
B, > By the betatron change reaches the maximum when the quantity in the square

bracket is reaching — 3,/ B, . The maximum changes of the betatron function due to
the wiggler ficld may therefore be summarized as the following
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5. The planned 7.5 T superconducting wiggler for SPS storage ring

For the planned superconducting wiggler we calculate the wiggler focusing
parameter numerically. The focusing parameter 1s then

_ Wl_ _1%2”2 ,
o ={)-i(5) fros

The integration limits extend over the wiggler magnetic length. The limits are then
chosen at the points where the integrated focusing strength, K L, converges. The

wiggler magnetic field is simulated from a modeled three-pole wiggler magnet,
reported in [5]. The wiggler magnetic length used is L=0.5m. This gives the

following parameters for the wiggler

K, =0846, §=046, B, =109, B =0.15 cosd =0998 . (26)

From these parameters we obtain the calculated betatron shift, tune shift and
stopband width using Egs. (9), (10), (14), (16) and (24). The calculated values are
(AB! B =131, Av=0.13 and Av,,,,., = 0.23. The residual tune value used

in the calculations is 0.18 and the original betatron function is 4.29 m.
6. Matching

From the above results it can be seen that installation of the superconducting
wiggler could cause serious effects on the SPS storage ring operation. This
undesirable result is to be expected from instailation of such high field wiggler in such
low energy machine. Nevertheless, the effects can be substantially reduced by various
correction methods. One of the methods is retuning the storage ring to find suitable



operation point for operation with the wiggler on, This matching condition may be
considered from the linear effects obtained above.
For the wiggler located at a symmetery point, i.e. ¥y =1/, Eq.(9) can be

rewritten, using cos(u + 6" ) =cos zcos#’ —sin gsinf’,
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We then consider the betatron function in  Eq.(16). Using the identities
sin(u+6") =sin gcos® +cosusin@® and cosy=cos’ p/2—sin’ 4/2 we can
rewrite Eq.(16) as

B sin phy = fo| sin(u+6") +(f° -ﬁo)sinﬁ"[ 2, 7

From (27) and (28) one matching condition becomes apparent [2]. It can be seen that
if the condition

cos® u/?2 N sin’ 61/2]:| (28)

¥
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is fulfilled we immediately obtain the results,

py =p+0", Bv=P=8 . (30)

The betatron shift of Eq.(24) is therefore zero. Moreover, from these results we also
see from Eq.(11) that » =sin@’, and hence b +a’ =1. The stopband width, Eq.(14),
therefore becomes zero.

With the matching condition (29) the betatron shift and the stopband width can
therefore be minimized. The storage ring can then be operated without lattice function
change, though the tune shift still remains. It is to be noted, however, that the perfect

match is dependent on #°, which in turn depends on the focusing parameter. It can
therefore be realized for only one field value of the wiggler.

7. Betatron function dependence

As clearly seen that the linear effects of the wiggler on the ring parameters are
dependent on the betatron function at the wiggler position. These effects are shown as
a function of storage ring’s unperturbed betatron function at the wiggler position in
Figures 1a, 1b and lc.

It can be seen that the betatron shift and the stopband width are zero at the
matched value of betatron function. The tune shift is minimum but nonzero at this
betatron function. To reduce the perturbation from the wiggler it should then be
preferable to retune the storage ring to make the betatron function close to the
matched value. However, though this matching method is apparently helpful it may

not be practical in many cases. Since the betatron function has to be matched to 8 ,

which is usually very small. The matching attempt will put the storage ring operation
under a heavy constraint, which may not be realizable in practice
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Figure 1 : Calculated maximum betatron shift (a), vertical tune shift (b) and stopband width {c}
caused by the 7.5 T superconducting wiggler as a function of unperturbed betatron function at the
wiggler position. The residual tune is 0.18.



8. Perturbation as a function of wigger peak field

It is expected that the aimed operating peak field of 7.5 Tesla of the wiggler
in the 1 GeV storage ring will be difficult. To estimate the practicality of operating the
wiggler we investigate here how the perturbation scales with the wiggler peak field.

For simplicity in the following calculations we will assume the sinusoidal field
distribution for the wiggler and use the focusing parameter averaged over the wiggler
period. With the beam energy of 1 GeV the focusing parameter of the planned 7.5 T
superconducting wiggler is therefore,

.045 B?
K.=<L> 1 _0.045 0 -253 . (31)

y AP =2p§_ £?

With an assumed magnetic length of L =0.35 m, this gives the following parameter
for the wiggler

=056, B, =063 p =011, cosd =0.99% . (32)

Figures 2a, 2b and 2¢ show the betatron shift, the tune shift and the stopband
width as a function of wiggler peak field. The calculations are for two values of the
unperturbed vertical betatron function, 4.29 m for the present operation and 1.00 m to
see effectiveness of the matching.
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Figure 2 : Calculated maximum betatron shift (a), vertical tune shift (b) and stopband width (c)
caused by the superconducting wiggler as a function of wiggler peak magnetic field. The blue lines are
for the unperturbed betatron function of 4.29 m and the red lines are for 1m. The residual tune is 0.18.

From the calculations it is seen that effects of the wiggler on the storage ring
will be serious at high operating peak field. The effects are especially large for large
betatron function. It is noted here that for the betatron function of 4.29 m the betatron
shift and the tune shift cannot be calculated when the wiggler peak field is higher than
about 6 Tesla and 7 Tesla, respectively. In the same case, the quadratic equation for
the stopband, Eq.(13), becomes upright when the wiggler peak field is higher than
about 5.5 Tesla. This indicates instability of operation at such condition, However, the
calculations are based on an assumed sinusoidal wiggler field. The focusing parameter
in this case is larger than that calculated from simulated wiggler field. The results
obtained in these calculations are therefore exaggerated.

Nevertheless, it is seen that the effects increase rapidly with increasing wiggler
peak field. It is also clearly seen that the linear effects decrease substantially in case of
very low betatron function. If such low betatron function can be achieved it should be
reasonable to expect practical operation of the wiggler at maximum field of 7.5 Tesla.
The remaining perturbation will have to be corrected by some effective correction
methods.

9. Conclusions

From the calculations the focusing parameter of the planned wiggler is
calculated from simulated wiggler field to be K, =0.846 m™ , with the integrated

focusing strength of K ,L=0.423 m™'. The betatron shift, tune shift and stopband

width are calculated for the original betatron function of 4.29 m and the operating
residual tune of 0.18. The calculated values are (AS/f8),.. =131, Av=013

and A, 4.s = 0.23. The matching condition is found for the betatron function of

B =0.15 m at the wiggler position.

Results of the calculations suggest very large perturbation caused by the
wiggler. Possibility of retuning the storage ring to adjust the betatron function at the
wiggler position to match the above matching value has to be further investigated.
Effective correction method to correct the remaining perturbations will have to be

sought.
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