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CHAPTER I  

INTRODUCTION 

 

1.1    A brief history of high-temperature superconductivity  

 After superconductivity was discovered by H. K. Onnes in 1911, many conduc-

tors were discovered and the critical temperature rose year by year. More than 2000 

superconducting materials had been discovered by 1975, and the critical temperature, 

Tc, had reached 22.3K with the discovery of Nb3Ge in 1973. After that, however, no 

higher critical temperature was obtained for more than 10 years.  

 A new era in superconductivity opened when J. G. Bednorz and K. A. Muller�� dis-

covered a sharp drop in the resistance of 2 x x 4La Ba CuO−  at a temperature of approxi-

mately 30 K (Bednorz and Muller�� , 1986). They continued their study of this novel 

material in order to be certain that the resistivity change they had observed reflected a 

transition to the superconducting state. By October in the same year they had obser  - 

ved the Meissner effect, and so established that the new material was indeed a super- 

conductors. A month later, Jorgensen and his colleagues (Jorgensen et al., 1987) con- 

firmed the Bednorz- Muller��  results while their work was further supported by experi- 

ments by Zhou and his colleagues (Zhou et al., 1989). In the following month, in a 

collaborative effort led by Chu (Chu et al., 1987), a new member of this high tempe- 

rature superconductor (HTS) was discovered, 2 3 7YBa Cu O , which possessed a cT  of   

over 90K. Thus within a year of the original discovery the superconducting transition 
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temperature had increase by a factor of three, and it was clear that a revolution in su- 

perconductivity had begun. 

 Within the next six years a number of additional families of high temperature su- 

perconductors were discovered. These included Tl- and Hg- based systems which had 

maximum Tc’s of 120K and 160K respectively. All shared the feature which appeared 

responsible for the occurrence of HTS, the presence of planes containing Cu and O 

atoms, which are separated by bridging materials which act as charge reservoirs for 

the planes. The physical properties of these compounds were also investigated very 

intensively, and it was confirmed that in all cuprate superconductors the superconduc- 

tivity occurred in very thin layers including Cu-O planes. Some of various isolation 

planes between the Cu-O planes are shown in Figure 1.1. 

 

 

 

 

                                                                                                                                        

Figure 1.1 Diagram of Cu-O planes with various isolation planes between the Cu-O 

planes (Burns, 1992). 
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 There have in the past ten years been many attempts to obtain high-temperature 

superconductivity in materials other than cuprates. Superconductivity was observed in 

alkali-ion doped C60 at 33K (Haddon et al., 1991), and in MgB2 at 39K (Nagamatsu et 

al., 2000). But the superconductivity in both these materials is explained by the BCS 

theory, so it can be said at present that all the non-BCS superconductors belong to 

cuprate family. We therefore need to find new non-BCS superconductors outside the 

cuprate family if we raise the critical temperature beyond room temperature. Room 

temperature superconductivity is still a dream of many scientists, but there is no 

guideline to reach it at present. Nowadays, La-based (Tc = 30K), Y-based (Tc = 90K), 

Bi-based (Tc = 120K), and Hg-based (Tc = 134K) cuprates are the high temperature 

superconductors most frequently studied. 

 The theory of low temperature superconductivity has been well understood since 

the so-called BCS theory was put forward in 1957 (Bardeen et al., 1957). It is based 

on a peculiarity of the interaction between 2 electrons in a crystal lattice. However 

BCS theory does not explain successfully the high temperature superconductivity and 

its precise mechanism is still a mystery. What is known is that the composition of the 

copper-oxide materials has to be precisely controlled if superconductivity is to occur. 

2 3 7YBa Cu O  can be regarded as being derived from semiconducting 2 3 6YBa Cu O  by 

doping with O2 charge carriers formed by oxidation. However the crystal is not comp-

letely saturated with oxygen atoms, and there are a number of vacancies in the lattice. 

Thus the actual superconducting material is often written as 2 3 7YBa Cu O −δ , where δ  

must be less than 0.7 if the material is to be superconducting. The reason for this is 

still not clear, but it is known that the vacancies occur only in certain places in the 
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crystal, the copper oxide planes and chains, giving rise to a peculiar oxidation state of 

the copper atoms, which somehow leads to the superconducting behaviour. 

 Recent research trends to high temperature superconductivity are divided into 

three categories.The first is revealing the fundamental principles in superconductivity, 

the second is investigating the properties of the superconductors, and the third is 

applying them to practical uses. First, to explain the cause of high temperature super-

conductivity, there are promising theories such as marginal Fermi liquid, spin-bag, 

electron’s valence bond fluctuation theory, and antiferromagnetic fluctuation theory. 

These theories are continuously varied, changed, and developed by other theorists. 

 Amongst theories above, Anderson’s theory (Anderson, 1987) which is based on 

the separation between spin and charge brought up some doubts when applied to two 

dimensional case although it is plausible in one dimension. Meanwhile, the antiferro- 

magnetic fluctuation theory led by Pines (Pines, 1990) cannot deal microscopic phe -

nomena since it is based on macroscopic phenomenology. It is still in question if the 

theory of Scalapino (Scalapino, 1987) which form d-wave symmetry would explain 

high-temperature superconductivity.  Since the discovery in 1911, classical supercon- 

ductivity has been understood in the BCS theory proposed by Bardeen, Cooper, and 

Schrieffer in 1957. But fundamental understanding of high temperature superconduc- 

tivity is still not clear after its discovery. 

 Second, the comprehension about its properties is continuingly being deepened. 

Mean field of the Ginzburg-Landau theory could be applied to ideal clean type A 

superconductors. However, it is also significant to understand double mixture state for 

this state is applied to high temperature superconductivity which forms a vortex glass 

state because of its strong thermal fluctuation under impurity or disorder. It is essen  – 
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tial to comprehend phase transition of this state for its physical consequence. 

 There has been great effort to synthesize a new HTS such as that having an 

infinite number of CuO2 planes, or that based on Bi, Y, Hg and its modified forms. 

Recently, the study on properties of Ag-based superconductors which were manufac- 

tured under high temperature and high pressure, and the study on KxC60 which were 

obtained by putting impurity in Fullerin C60 are going on. 

 Third, applications of superconductivity are remarkable. One of the most pros-

pective applications is on microwave communication. The reason is that electric 

current consuming using superconductor is much smaller than that by other materials, 

beside it could be applied directly to microwave generator, filter, resonator, low noise 

oscillator, etc.  

 This period of rapid discovery may well continue for some time. While it is 

certainly early to review any aspect of these novel materials, intense effort has been 

turned toward the understanding of their electronic structures and properties, and it is 

useful to collect the results and contemplate their implications. Developing a clear 

understanding of the electronic structure of these high-Tc materials is central not only 

to identifying the pairing mechanism, but also to describing the host of other essential, 

and often unusual properties displayed by these materials. Although a complete 

understanding of the important electronic properties would include the electronic 

response to perturbations of various kinds, this is an area in which little detailed work 

has been done. 

1.2  Characteristics and properties of HTS 

         Some common characteristics of HTS are that they are ceramic, flaky oxides, 

which are poor metals at room temperature and are difficult materials with which to  
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work. They contain few charge carriers compared to normal metals and display highly 

anisotropic electrical and magnetic properties which are remarkably sensitive to oxy-

gen content. While superconducting samples of the 1-2-3 material, 2 3 7 xYBa Cu O − , can 

be easily made in a microwave oven, single crystals of the high purity required to de- 

termine the intrinsic physical properties of these systems are exceedingly difficult to 

make. 

 Various techniques have been adapted or developed successfully for the synthe-

sis and fabrication of high quality HTS in various forms. They are from polycrystal to 

single crystal, from bulk to thin film, and from disk to wire, for scientific pursuit and 

device development. Some highlights are: 

 (1) More than 120 non-metallic HTS have been found with Tcיs above 23K, the 

record for the conventional intermetallic superconductors. They fall into three diffe - 

rent compound groups, namely, the cuprate, the bismuthade, and the fullerite. All su- 

perconductors with Tcיs above the liquid nitrogen boiling point of 77K are cuprates 

which have a distinct layered structure.  

 (2) These HTS are usually characterized by a low carrier concentration of ∼  

21 310 / cm , short coherence lengths of 810x10− cm and 83x10−∼ cm, along and perpen- 

dicular to the 2CuO -layer, respectively, and a large penetration depth of 83000x10−∼  

cm.  

 (3) The Tc has risen rapidly t o the current record of 134 K[ 2 2in(HgBa Ca −  

3 8Cu O +δ (Hg-1223)] at ambient pressure and 164K at 30GPa in the last ten years.  

 (4) The upper critical field Hc2 has exceeded 150T ( )2 3 7inYBa Cu O YBCO⎡ ⎤⎣ ⎦ .  

 (5) The critical current densities (Jc’s) at77K in zero external field achieved are:  
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6 25x10 A / cm∼ , in YBCO thin films; 6 210 A / cm∼ in YBCO/Ni  flexible tapes; 8x∼  

104A/cm2 in YBCO melt-texture bulk; and 46X10 A /∼ 2cm in 2 2 n 1 n 2nBi Sr Ca Cu O− +δ  

 (BSCCO) tapes. Jc decreases with externally applied field. However BSCCO (at 

4.2K) and YBCO (at 77K) out perform the best conventional Nb3Sn (at 4.2K) at high 

field. 

 With the continuing improvement in sample preparation and the successful 

development of new characterization techniques in recent years, experimental results 

from different groups converge and exhibit high quality enough for empirical rules to 

be drawn and theoretical models proposed to be tested. Some of the highlights are as 

following: 

 (1) All curates HTS have a layered structure and can be represented by a generic 

formula ( )m 2 n 1 n 2n m 2A E R Cu O A m2 n 1 n E− + + − − −⎡ ⎤⎣ ⎦   with a stacking sequence of  

m (AO)-layers inserted between 2(EO)-layers on top of n CuO2 –layers interleaved by  

(n-1) (R)-layers, where A, E, and R are various cations. Layers of these compounds 

can be grouped into two blocks: the charge-reservoir block (CRB) of [(EO) (AO)m 

(EO)] and the active block (AB) of {(CuO2) [(R) (CuO2)]n-1}. The CRB provides the 

sources of charge carriers for the AB which is considered to be the main component 

for superconductivity in the compound. As a result, a great majority of the theoretical 

models are built on a 2D-electron system in the CuO2-layers. 

 (2) All cuprate HTS can be derived from their corresponding anti-ferromagnetic 

insulating parents via the so-called modulation doping over a very limited range. This 

is by introducing to or removing carriers from the AB without inducing in AB defects 

via anion or cation substitution, and / or addition or removal in the CRB. The 

overwhelming majority of HTS and all those with Tc’s above 30K are hole-doped, 
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although HTS can be electron-doped. The compounds usually undergo the transfor- 

mation with hole-doping: antiferromagnetic insulator → superconducting metal→  

non-superconducting metal and thus form a very interesting schematic phase diagram. 

The detection of antiferromagnetism of short correlation length deep into the super- 

conducting doping-region has been one main inspiration for the magnetic supercon- 

ducting mechanism proposed. 

 (3) Tc for all cuprate HTS varies almost universally with the carrier concentra- 

tion per unit Cu-ion, p, as ( )2max
c c 0T T 1 82.6 p p⎡ ⎤= − −⎣ ⎦  , where max

cT is the maximum 

Tc of a compound system when optimally doped at p = p0 which is 0.16∼ . Super- 

conductors with p < p0 are called underdoped and those with p > p0 called overdoped. 

This Tc-p correlation has been the most effective guide to optimizing Tc of a com- 

pound. Few theoretical models advanced to date, while recognize the great signifi- 

cance of p; have dealt with the approximated quadratic dependence of Tc on p. 

 (4) Hole-doped cuprate HTS, when p is equal or close to p0, exhibit salient fea- 

tures in many of their normal-state properties that are not in complete agreement with 

predictions of the well-accepted Fermi-liquid theory for metals. For instance, the 

resistivity ( )ρ  decreases linearly as temperature decreases. The Hall resistivity ( )Hρ  

also shows a strong temperature dependence which diminishes as the sample is made 

non-superconducting by changing its doping. For underdoped samples, anomalies are 

detected in measurements of magnetic susceptibility, thermal power, and nuclear 

magnetic resonance, attributed to the possible formation of a spin-gap below the 

characteristic temperature Ts.  

 (5) HTS display basically the same general magnetic phase diagram [H (T)] as 

the conventional low temperature superconductors, which is defined by the lower 
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critical field [Hc1], the irreversibility field [Hi(T)] and the upper critical field [Hc2(T)]. 

The region underneath Hc1(T) is the Meissner state that between Hc1(T) and Hi(T) the 

vortex lattice state and that between Hi(T) and Hc2(T) the vortex liquid state. Jc  be-

comes zero above Hi(T). Because of the high Tc and high Hc2 of HTS, the phase-space 

between Hi(T) and Hc2(T) is greatly expanded and thus reveal readily some features, 

which may or may not be unique to HTS. These features have been ascribed to the 

large fluctuation effect associated with weakly pinned magnetic fluxoids due to the 

quasi-2D nature of HTS.  

 (6) The holes in HTS form pairs below Tc with a total spin S = 0, and the evi- 

dence from experiments shows that this superconducting pairing state has an angular 

momentum L= 2, i.e., d-pairing. Magnetic pairing mechanism has long been predicted 

to give rise to a d-pairing, although other causes of non-magnetic origin have also 

been proposed. 

 It is instructive to contrast the properties of HTS and low temperature supercon-

ductors (LTS), which have important bearing in developing a comprehensive micros-

copic theory. It is easier to compare the similarities and differences of HTS and LTS 

in tabular form as shown below: 
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Table 1.1 Comparisons between HTS and LTS (Chu, 2004). 

 

 HTS LTS 

Similarities   

0ρ = (when H < Hi ) yes yes 

Meissner state ( )c1when H H≤  yes yes 

Charge-carrier pairing yes yes 

Ginzburg-Landau theory applicable applicable 

Differences   

Tc  164K≤  23K≤  

Coherence length 710 cm−∼  510 cm−∼  

Carrier concentration 21 310 cm−∼  23 310 cm−∼  

Penetration depth long short 

Type all some 

Structure 2D∼  3D 

Anisotropy large small 

Fluctuations large small 

Normal state properties abnormal normal 

Magnetic properties complex less complex 

Pairing symmetry d s 
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 Because of the properties discussed above, HTS can transmit a large electric 

current without loss at low frequencies and with only a small loss at high frequencies, 

trap and shield a strong dc magnetic field, shield an electromagnetic signal at high fre-

quency display a drasticρ -change near Tc and exhibit novel behaviour when made  

into tunnelling junctions. Many application concepts have exploited one or more of 

these characteristics. Many prototype devices have been build and tested successfully. 

1.3   Development of theoretical models                                              

        After the discovery of the high-temperature superconductivity in cuprates, many  

 kinds of theoretical models of the mechanism of the high-temperature superconducti- 

vity were proposed, but even today there is no consensus among theoretical physic-

ists.There are so many various kinds of interactions in such complicated systems; 

electron-phonon interactions, spin-spin interactions, charge density waves, spin densi- 

ty waves, and so on. It may be considered that we are just beginning to understand the 

physics of these complex systems. Explaining this phenomenon clearly will take a 

long time. 

 There is, also, no consensus among theorists as to how to develop a more detai- 

led theoretical description of the cuprates. The approaches which have been tried can 

be classified as top-down or bottom-up. In a top-down approach, one chooses a model 

early on (the Hubbard model is a typical example), develops solutions for alternative 

choices of model parameters, and then sees whether the solutions lead to results 

consistent with experiment. In a bottom-up approach one begins with the experimen-

tal results, and attempts to devise a phenomenological description of a subset of the 

experimental results. One then explores alternative scenario, until one arrives at a sce-

nario and associated microscopic calculations which are consistent with experiment. 
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Then, and only then, does one search for a model Hamiltonian whose solution might 

provide the ultimate microscopic theory.   

 The theory of high temperature superconductivity has proven to be elusive to 

date. This is probably as much caused by the fact that in these complex materials it is 

very hard to establish uniquely even the experimental phenomenology, as well as by 

the evolution of many competing models, which seem to address only particular as -

pects of the problem. The Indian story of the blind men trying to characterize the main 

properties of an elephant by touching various parts of its body seems to be particularly 

relevant. It is not even clear whether there is a single theory of superconductivity or 

whether various mechanisms are possible. Thus it is impossible to summarize, or even 

give a complete general overview of all theories of superconductivity. The general 

view point (determined by majority vote) seems to be that low temperature supercon-

ductors are phonon mediated whereas high Tc ones are somehow “unconventional” 

and anisotropic, although the origin of the anisotropy remains controversial. Because 

of this, numerical studies in well-defined theoretical models may prove to be particu -

larly illuminating and may help uncover the essence of superconductivity.  

 In the next section a simple model will be reconsidered to describe the HTS 

where the plasmons are assumed to be the attractive bosons in the pairing effect. The 

plasmon exchange model has indeed been presented and discussed by several authors 

as soon as the HTS were discovered. It is to be stressed that the high Tc in the new 

materials is due not to the plasmon mechanism itself. It has been realized that the 

phonons could also play a major role in the pairing effect as they do in the normal 

superconductors. On the other hand, there is experimental evidence that the electron-

phonon interaction is very important, but it  is  not  sufficient  to lead  to the observed  
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high Tc. This coexistence concept has received experimental support.   

1.4  Concept of plasmon exchange model 

      Concerning with exchange by phonons and plasmons, one should note that these 

are not hypothetical, but real excitations. At the same time, the high anisotropy of the 

new oxides, caused by the presence of layer and chain structures, makes the plasmon 

mechanism very favourable. The behaviour of plasmons in quasi-low-dimensional 

materials, their dispersion relations, etc., differ in a striking way from those in the 

usual 3D systems. The electron-phonon interaction (EPI) leads to the appearance of 

an effective attraction between electrons. The interaction of an electron with the rest 

of the Fermi sea is a more complicated phenomenon than EPI. Namely, this interac- 

tion is not only responsible for the usual screening, but, in addition, it contains a dyna- 

mic part. This dynamic part corresponds to the collective motion of electrons with 

respect to the lattice or to the relative motion of two groups of carriers in a system 

with two energy bands. Plasmons are the quasi-particles describing such collective 

motion, and in this case, they are similar to phonons which are the quasi- particles 

describing the collective excitations of the lattice. 

 As mentioned earlier this approach is based on the concept of coexistence of the 

phonon and plasmon mechanisms. This concept is receiving various experimental 

support. Experimental data on thermal conductivity, photo-induced IR absorption, 

isotope shift, sound attenuation, etc., show that the electron-phonon coupling plays an 

important role. 

 The increase of the thermal conductivity at temperatures T < Tc means that the 

phonons make a major contribution to the total thermal flow, and the electron-phonon 

interaction is a main relaxation mechanism  (Morelli et al., 1987). The analysis of the  
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photo-induced IR absorption gives direct evidence for strong electron-phonon coupl- 

ing in the high-Tc oxides (Kim et al., 1987). The isotope shift cT M∼  which has been 

observed experimentally is also an important manifestation of the electron-phonon 

coupling (Cohen et al., 1987). 

 The presence of the isotope shift is definite evidence of the contribution of EPI, 

although the question of the strength of EPI cannot be answered from the value of α  

alone. There are other experimental indications of strong electron-phonon coupling, 

such as ferroelectricity of the materials and drastic change of the phonon dispersion 

relation caused by the superconducting transition. 

 It is believed that strong electron-phonon coupling is very important for high Tc, 

but, nevertheless, it is not sufficient and there is a need for an additional mechanism 

(Kresin, 1987; Ashkenazi et al., 1987; Ruvalds, 1987). Such a conclusion can be 

drawn from the analysis of neutron spectroscopy and tunnelling data. 

 Since many of the recent discovered superconducting materials have a layered 

structure. The layers are composed of Cu-O planes (or sheets) separated from each 

other by planes of various other oxides and rare earths as shown in Fig.1.1. The elect-

rons interact with each other within the same layer as well as from layer to layer via 

an effective interaction involving plasmon exchanges among all layers. The CuO2 

layer is assumed to form a two-dimensional electron gas (2DEG) and that two electr-

ons in a given layer can interact attractively by plasmon exchanges either within that 

layer or via the various neighbouring layers. An isolated layer has only one plasmon 

mode with a dispersion relation 1/ 2
p qω ∝ . Interlayer interaction leads to a noticeable 

modification of the pure two-dimensional (2D) dispersion relation, namely, to the 

formation of plasmon bands. Nevertheless, anisotropy results in a picture which 
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differs in a striking way from the isotropic three-dimensional (3D) case. In addition, 

the maxima of the plasmon density of states are shifted toward the boundaries of the 

plasmon branches, which enhances the electron-plasmon coupling considerably. 

 It is the layered nature of the superconducting cuprates which confines the 

collective motion of the electrons predominantly to the planes and leads to the 

unusual features of its plasmon spectra. In addition, in the 2 3 7YBa Cu O  materials the 

appearance of one-dimensional chain structures introduces quasi-one-dimensional 

collective modes with similar unusual properties. 

 Indeed, it is a well-known fact that the spectrum of a layered electron gas (LEG) 

contains low-energy electronic collective modes, often called acoustic plasmons with 

a dispersion relation p qω ∝ . That such modes could not be observed experimentally 

at finite q so far is related to the fact that the only technique known to date to determi- 

ne the plasmon energy as a function of its wave-vector (i.e., electron energy loss 

spectroscopy), has a resolution of 0.2-0.5 eV at best ( Nuc ker�� et al., 1989; Stockli�� et 

al., 2000). It remains thus an experimental challenge to measure collective charge 

excitations down to very low energies and finite q. It is also worth noting that the 

largest contribution of acoustic plasmons to physical quantities such as the condensa-

tion energy is expected to come from finite but rather small values of q with respect to 

the Fermi wave-vector. To study the effect of acoustic plasmons on superconductivity 

requires thus to probe finite q’s. 

 Low energy electronic collective modes matter for superconductivity because 

they can act as intermediate bosons providing an effective attractive interaction bet-

ween quasi-particles (Bill et al., 2000). Therefore, their importance is not limited to 

HTS. Organic or chalcogenide materials are other examples of layered systems that 
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undergo a superconducting phase transition. It is thus of fundamental interest to get 

insight into the relationship between acoustic plasmons and superconductivity. 

 The conventional theory of superconductivity has mostly dealt with 3D isotropic 

systems. In this theory the Coulomb repulsion is described by a static pseudopotential 

∗µ  and its value is reduced because of the well-known logarithmic factor ( )ln E /ω  

where E is an electronic energy and ω  is a characteristic bosonic (e.g. phonon) ener-

gy. Such a static approach is justified by the large value of the plasmon frequency 

( ) ( )1/ 22
p q 0 4 ne / mω = = π  which ranges between 5eV and 30eV. Such high energies 

imply a perfect, instantaneous screening of the Coulomb interaction. 

 Layered conductors have a structure of the plasmon spectrum that differs funda-

mentally from 3D metals. In addition to the high energy “optical” collective mode 

mentioned above, the spectrum contains also an important low-frequency part or 

acoustic plasmons (Kresin and Morawitz, 1988). The screening of the Coulomb inter- 

action is incomplete and the dynamic nature of the interaction becomes important. As 

a result, the interplay between the attractive interaction and the Coulomb term is more 

subtle than introduced in the conventional theory of superconductivity (Bill et al., 

2003). It is on this screened Coulomb term and its interplay with the electron phonon 

mechanism that will be used to describe the superconducting state of layered conduct-

ors. It is assumed that the phonons themselves provide the pairing so that at T= 0 K 

the compound is in the superconducting state. In other words, the presence of phonons 

is sufficient to overcome the static Coulomb repulsive interaction. Within this 

scenario the dynamic screening acts as an additional factor. Therefore, in the absence 

of the plasmon term we obtain the conventional Eliashberg equations. 
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 To study the impact of dynamic screening on the superconducting state we need 

to calculate the dielectric function, which contains the polarizability ( )nq,∏ ω . In 

particular, to obtain Tc, we have to determine these functions at finite temperatures 

and all values of ( )nq,ω . The full temperature, frequency and wave-vector dependen- 

ce of dielectric function and the effect on Tc will be studied in this research.    

 



CHAPTER II 

ELECTRONIC EXCITATION SPECTRUM 

 

 2.1  Dielectric function and plasmons 

          A plasmon or a plasma excitation is a fundamental elementary excitation of an 

electron system or any charged-particle system. It is the collective normal mode of 

charge-density oscillation in the free-carrier system, which is present both in classical 

and quantum plasma. Studying the collective plasmon excitation in the electron gas 

has been among the very first theoretical quantum-mechanical many-body problems 

studied in solid-state physics dating back to the early 1950s. 

      The collective motion of electrons corresponding to the density fluctuation is a 

wave motion with frequency pω , called plasma oscillations. When the interaction bet-

ween particles is short ranged, frequency of oscillations with long wavelength are 

always proportional to the inverse wavelength as in sound waves. In contrast, charge 

density fluctuation can exert the long-range Coulomb force on each other, however 

for apart they appear. As a consequence the frequency remains finite in the limit of 

long wavelength. 

      In one-component plasma model, the electrons are considered in a background 

of positive ions forming a cloud of neutralizing charges. Being neutral, the response 

of plasma to an external electric field is characterized by a dielectric function. In ge- 

neral this is a function of position in the system and time. Therefore, its Fourier trans-
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form (q, )ε ω  is a function of wavenumber qG  and frequencyω . This function relates 

the dielectric displacement vector ( )D q,ω
G G  to the electric field ( )E q,ω

G G  by the equa - 

tion 

                    ( ) ( ) ( )D q, q, E q,ω = ε ω ω
G GG G                                                                   (2.1) 

The dielectric displacement is determined through Poisson’s equation by a test charge 

density while the electric vector depends not only on the test charge but also on the 

charge fluctuations induced by the test charge. Therefore, 

              ( ) ( )tiq.D q, 4 q,ω = πρ ω
GG G G                                                                            (2.2) 

              ( ) ( ) ( )tiq.E q, 4 q, q,⎡ ⎤ω = π ρ ω + ρ ω⎣ ⎦
GG G G G   

where ( )t q,ρ ω
G  is a test charge density and ( )q,ρ ω

G  is the fluctuational (variational) 

charge density. 

        The average density ρ  may be represented by the free particle polarization 

function given by 

                   k q k
3

k q k

f ( ) f ( )2(q, ) dk
(2 ) i

+

+

ε − ε
∏ ω =

π ε − ε +ω+ θ∫                                                    (2.3) 

where kε is the kinetic energy and )(f kε  is the Fermi distribution function. The factor 

2 is due to spin, and the imaginary notation iθ  in the denominator means that it is 

brought to zero after integration. The dielectric function is then given by 

                      
1(q, )

1 V(q) (q, )
ε ω =

+ ∏ ω
                                                              (2.4) 

where               
2

2

4 eV(q)
q
π

=                                                                                      (2.5) 
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is the Fourier transform of the Coulomb potential. The dielectric function thus obtain- 

ed represents a result based on the random-phase approximation (RPA). 

      In Eq. (2.4), V (q) is the bare Coulomb potential. In a self-consistent approach 

this potential is replaced by V(q) / ε . In this case the dielectric function is given by 

                         (q, ) 1 V(q) (q, )ε ω = − ∏ ω                                                             (2.6) 

 The polarization function corresponds to three dimensions. The static polariza- 

tion function (q,0)∏ is called Lindhard’s function. The Lindhard model is used for the 

free electron gas where the wavefunctions are plane waves and the energies are 

2 2
k k / 2mε = = . The occupancy of the states is determined by the Fermi distribution 

function ( )kf ε  at the temperature T = 0. The 3D analytic expression for the polariza- 

tion function is given by 

                     ( )
2

F
2 2

k 1 4 s 2sq,0 1 s ln
2 4 s s 2s

⎡ ⎤+⎛ ⎞∏ = − −⎢ ⎥⎜ ⎟π −⎝ ⎠⎣ ⎦
                                             (2.7) 

where Fs q / k=  is a dimensionless parameter and kF is the Fermi wave-vector. The 

polarization function depends on dimension. 

  The RPA dielectric function has been used frequently, but it does not provide a 

good approximation for large q. Therefore, the dielectric function given by Eq. (2.4) 

is modified such that 

                 
( )

( )
V(q) q,

(q, ) 1
1 V(q)G(q, ) q,

∏ ω
ε ω = −

+ ω ∏ ω
                                                  (2.8) 

where ),q(G ω  is a correction function. This function is unknown, but it is expected to 

approach 1 for 0q →  because the RPA is generally good in this limit. 

      The dielectric function can vanish at a plasmon frequency that depends on q. 
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 The equation 

                      0),q( p =ωε                                                                                          (2.9) 

provides a plasmon dispersion relation. For three dimensions, the plasmon in the long-

wavelength limit is well defined and is given by 

                     
1/ 22

p
4 ne

m
⎛ ⎞π

ω = ⎜ ⎟
⎝ ⎠

                                                                              (2.10) 

where n is the electron density and typical values of pω=  are in the range 10-20 eV. 

The long-wavelength response of a 3D electron liquid is dominated by a strong reson- 

ance at the plasma frequency pω . The system will oscillate with this frequency with- 

out a driving external field. The restoring force is given by the internal field set up by 

the disturbance in the charge distribution. At shorter wavelengths, the plasma oscilla- 

tions show dispersion, i.e., their frequency depends on the wave number q. At not too 

short wavelengths, the dispersion relation can be expanded as follows: 

                      ( ) 2
p pq q ...ω = ω +α +                                                                        (2.11) 

where the dispersion coefficient is given by 2 2
F p3k /10mα = ω  in the Lindhard approx- 

imation (RPA). 

 The dielectric function is imaginary because of the small imaginary number in 

the integrand. Note that 

                    ( )i 1P i x
x i x

= − πδ
+ θ

                                                                         (2.12) 

where P stands for taking the principal value and the symbol iθ  is a small imaginary 

part which is brought to zero after it has been used. 

 The real part of the dielectric function is related to screening. In general, the real  
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part is large for smallω , indicating that screening in the static case is effective. The 

imaginary part is related to the Coulomb energy and describes the creation of real 

excitations of the system. In the dielectric response Im1/ ε  describes the density fluc- 

tuation spectrum of the system. 

 The real part of the Lindhard dielectric function had been shown to be 

 

( ) ( )
( )

( )
( )

2 22 2
F2F

1 F2 2 2 3 2
F

2 22
F2

F2 3 2
F

2qk q 2m /k2me me 1 q mq, 1 k ln
q q 2 q 2qk q 2m /

2qk q 2m /me 1 q mk ln
q 2 q 2qk q 2m /

⎡ ⎤ + − ω⎛ ⎞ω
ε ω = + + − −⎢ ⎥⎜ ⎟π π − + − ω⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤ + + ω⎛ ⎞ω
+ − +⎢ ⎥⎜ ⎟π − + + ω⎢ ⎥⎝ ⎠⎣ ⎦

=
= = = =

=
= = =

 (2.13) 

In particular, for the static case we have 

               ( )
2 2 2

2F F
1 F2 2 2 3

F

k 2k q2me 2me 1 qq,0 1 k ln
q q 4 2k q

⎛ ⎞ +
ε = + + −⎜ ⎟π π −⎝ ⎠= =

                         (2.14) 

The imaginary part of the Lindhard dielectric function is 

 ( )

( )

( )

2 2
2

F F3 3

22
2 2 2

2 F F F2 3

2m e if q 2k and 0 2m / 2qk q
q

me 1 q mq, k if 2qk q 2m / 2qk q
q 2 q

0 in theother cases

⎧ ω
< ≤ ω ≤ −⎪

⎪
⎪ ⎡ ⎤⎛ ⎞ω⎪ε ω = − − − ≤ ω≤ +⎢ ⎥⎨ ⎜ ⎟

⎢ ⎥⎝ ⎠⎪ ⎣ ⎦
⎪
⎪
⎪⎩

=
=

=
= =

(2.15) 

The ( )q,ω  plane of the imaginary part of the Lindhard dielectric function is shown in 

Fig.2.1. 
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       Figure 2.1 Imaginary parts of the Lindhard function. The dashed line, where  

       Simultaneously ( )1 q,ε ω  and ( )2 q,ε ω  vanish, gives the dispersion curve of  

       plasmon mode (Grosso and Parravicini, 2000). 

 

 
 It is seen from Fig. 2.1 that the ( )q,ω plane is divided into 4 regions. The imagi- 

nary part ( )2 q,ε ω vanished in regions I and IV, while it is different from zero only in 

regions II and III. It depends linearly on ω  in the region II and quadratically in the 

region III. Note that in the regions I and IV electron-hole single particle excitations of 

wave-vector q are not possible (and thus 2ε  vanishes there). 

 Introducing the dimensionless quantity Fx q / 2k= , the real part ( ) ( )1 q,0 qε ≡ ε  

for the static case given by Eq. (2.14) can be recast in the form 

                             ( ) ( )
2
TF
2

kq 1 F x
q

ε = +                                                                    (2.16) 

where the function F(x) is given by 

 

q F2k

ω  

pω  

2
F

2m 2qk qω > +
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2
F

2m 2qk qω = +
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2
F

2m 2qk qω = − +
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2
F
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F
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                           ( )
21 1 x 1 xF x ln

2 4x 1 x
− +

= +
−

                                                          (2.17) 

and ( )2 2
TF Fk 4 e D E= π is the Thomas-Fermi screening wavevector and D (EF) is the 

density of states at the Fermi energy. 

 For small q ( )Fq 2k� , we have x 1� and ( )F x 1≈ , therefore the Lindhard func- 

tion gives the same result as the linearized Thomas-Fermi theory. 

 For large q ( )Fq 2k� , we have x 1�  and ( ) 2F x 1/ 3x≈ , then the Lindhard func- 

tion has the asymptotic behaviour 

                                                    ( )
2 2
TF F

4

k k4q 1
3 q

ε → +  

A decrease of ( )q 1ε −  as q-4 assure a well-behaved screening charge density at the 

origin. 

 For intermediate q ( )Fq 2k≈  the Lindhard dielectric function is continuous for 

Fq 2k≈ , but with a logarithmic singularity in the derivative i.e., ( )d q / dqε ≈ −∞ . The 

singular in reciprocal space generates oscillation of the screening charge in real space 

known as Friedel oscillations. 

2.2 Plasmons in two dimensions   

        The collective behavior in plasmons of lower dimensionality is quite different 

from that in 3D systems. The differences occur because the electric fields remain 3D 

while the induced charge densities have reduced dimensionality. The 2D plasmon is 

another different type of plasmon, the charge density distribution of which is restric- 

ted in 2D space and thus shows very different electrodynamic properties compared 

with those of 3D plasmons. 
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      The static polarization function in 3D case given by Eq. (2.7) is different from 

that in 2D case. For 2D system at T = 0, it is given by  

               ( ) ( )1/ 22

1, s 21q,0
2 1 1 4s s 2−

≤⎧⎪∏ = ⎨π − − ≥⎪⎩
                                                  (2.18a) 

For 1D system, the static polarization is given by 

               ( )
2

2

1 s 2sq,0 ln
2 q s 2s

+
∏ =

π −
                                                                      (2.18b) 

Figure 2.2 illustrate the Lindhard approximation for one-, two-, and three-dimensional 

cases of the static polarization function ( )q,0∏ in units of ( )0,0∏ . The 1D curve with 

a divergence at Fq 2k=  shows relatively the strongest response to the test charge. In 

2D case, the derivative of ( )q,0∏  is singular at Fq 2k= , and the 3D curve has an 

inflection point. In these two cases, the response is strongest for q = 0. In all three 

cases, ( )q,0∏  approaches 0 as q →∞ . 
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                 Figure 2.2 Lindhard approximation for static polarization in 

                        one-, two-, and three-dimensional electron gas. 

 

  The Fourier transform of the Coulomb potential is also quite different from that 

in 3D case which is given by Eq. (2.5). In 2D case, it has the form 

                    ( )
22 eV q

q
π

=                                                                                       (2.19) 

and the Fermi momentum is    

                   ( )1/ 2
Fk 2 n= π                                                                                        (2.20) 

  For two dimensions, the plasmon dispersion relation at absolute zero is given in 

the long-wavelength limit ( )q 0→ by 

                      
1/ 22

p 0
2 ne 3q 1 a q

m 8
⎛ ⎞π ⎛ ⎞ω = +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
                                                           (2.21) 

Hence, a 2D plasmon is not defined in this limit. Here 0a  is the Bohr radius. 

( )
( )
q,0
0,0

∏
∏

 

Fq / 2k  

1D 
 

2D 

3D 
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       For electrons in the inversion layer, an effective Bohr radius must be used. It is 

given by 

                      
2

0 2
v

1a
m e g

∗
∗

∗

ε
=
=                                                                                     (2.22) 

where ∗ε  is an effective dielectric constant m∗ is an effective mass and vg  is the val- 

ley degeneracy. 

  In practice, a system like an inversion layer is not a truly 2D system. We shall 

therefore comment on the effect of a finite width of the layer and give the results for 

the quasi-2D electron liquid. 

       For a 2D classical electron gas between Si and SiO2 in a MOSFET, the disper- 

sion relation for small q is given by  

                          
1/ 22

p
ne q

2 m∗ ∗

⎛ ⎞
ω = ⎜ ⎟ε⎝ ⎠

                                                                         (2.23) 

where                  ( )s 0x
1 coth qd
2

∗ε = ε + ε⎡ ⎤⎣ ⎦                                                           (2.24) 

sε  and 0xε  are the dielectric constants of Si and SiO2 layers respectively, and d is the 

thickness of the oxide layer. The dispersion curve vanishes in the long-wavelength 

limit. This is a 2D characteristic that has been confirmed by experiment. 

       The special feature of the 2D system is that the plasmon dispersion at long- 

wavelengths is proportional to 1/ 2q rather than being constant as in 3D case. Collective 

or plasmon modes of a 2D electron system have been known for many years to give 

an excitation spectrum that starts at zero energy, rather than at a finite energy as for 

bulk or surface plasmons. This was verified first for electron on liquid helium and 

later for electron in inversion layers. The plasmon dispersion of 2D system in classical   
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limit is given by (Fetter, 1974a) 

                         ( )
1/ 22

1/ 2
p D

2 ne q 1 3q / k
m

⎛ ⎞π
ω = +⎜ ⎟

⎝ ⎠
                                                   (2.25) 

where 2
D Bk 2 ne / k T= π  is 2D Debye screening constant. 

       The specific theoretical issue is that the plasmon frequency pω is exactly known 

only at long wavelength ( )q 0→ . At finite q, away from the long-wavelength limit,   

there are several corrections to the plasmon dispersion ( )p qω arising from (finite 

wave vector) response, local-field corrections, finite temperature, and other mecha- 

nisms relevant to the specific electron system being studied.  

 2.3  Plasmons in layered systems 

    Electronic collective modes are notably different in layered systems as compar- 

ed to 3D metals. A 3D electron gas has one degenerate “optical” plasmon branch with 

p 0ω ≠ . In addition to this branch (corresponding to zq 0= ), layered systems display 

“acoustic” branches for all values of zq 0> . Here, zq is the wave vector normal to the 

conducting sheets. A layered conductor is characterized by a highly anisotropic plas- 

mon band ( )p zq,qω  without a gap at q = 0 except for the single branch for which 

zq 0=  (q is a 2D wave vector in the plane of the sheets). 

 The detailed distribution of electric field intensities of the layer plasmons for a 

general value of  zq  is very complicated due to interference from the contributions 

from different layers. It is physically instructive, however, to note that the upper and 

lower extrema of the plasmon branches correspond to physically transparent field 

patterns. The former ( zq 0= ) has the carriers in adjacent sheets and hence the entire 

layered array moves in-phase against the uniform background- a type of motion which 
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for phonons is called acoustic- while it here leads to the highest frequency mode- the 

bulk plasmon. The latter ( zq / L= π   where L is the interlayer distance) has electrons 

on adjacent sheets moving out-of-phase against each other- a type of motion which  

for phonons leads to an optic mode. Note that these qualitative notions are interchan- 

ged here because for phonons one consideres the center-of-mass motion of the ions 

against one another, and the optic modes arise from having at least two atoms per unit 

cell. For the layer plasmons considered here the carriers are moving in the direction of 

the layers only against the uniform background density.  

 The band-width of the plasmon band, which is pω  at q = 0, collapses to zero for 

q of order 1/L, and the singular upper and lower boundaries coalesce into the single-

layer plasmon. 

 Two factors due to interlayer interactions affect the plasmon dispersion relation. 

First, the interlayer Coulomb interaction plays an important role. Second, one should 

consider interlayer transitions of the electrons, the importance of this factor increases 

with decreasing interlayer distance. It has been shown (Grecu, 1973) that introduction 

of a single hopping term for the electronic motion perpendicular to the layers 

introduces a finite gap at q = 0. Because of the small density of states in that region, 

we confine ourselves to pointing out that the major features of the layer plasmon 

bands, in particular, their singularities at their upper and lower boundaries, are not 

expected to be affected by inclusion of a small hopping term in the z-direction. 

 As a result, the polarization operator ∏ has the same form as in the 2D case, but 

the Coulomb potential V is different because of the Coulomb interlayer interaction. 
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 Layered systems are characterized by a plasmon band ( )zf q,qΩ =  where  

( )zq,q  are wave vectors in the planes and perpendicular to them. The z axis is chosen 

to be perpendicular to the layer. The collective excitation spectrum of the layered 

electron gas is shown in the Fig. 2.3. 

 

 
 
 

 
q Fk F2k
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( )zq,qω  

zq / L= π  

zq 0=  

Electron Hole Pair Excitations−  

Plasmon Bands  

 

Figure 2.3 Plot of the various plasmon branches and electron-hole pair excitation as a 

function of q (absolute value of in-plane wave vector) and zq  for a layered electron 

gas (Kresin and Morawitz, 1988). 

 The values of Ω  are restricted to lie between the upper and lower branches. 

These branches correspond to zq 0= and zq / L= π  for the upper-most and the lowest 

branches, respectively. In addition, we note that these boundary modes correspond to 

in phase motion of electron on different planes ( zq 0= ) and out-of-phase motion  

( zq / L= π ) on adjacent planes. 
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 The upper branch correspond to 3D behavior, and the dependence of ( )q,0Ω  is 

similar to the behaviour of the usual 3D sample. On the other hand, the behaviour of 

the lowest branch ( )q, / LΩ π  is entirely different. It is important to note that in the 

limit zq 1/ L�  the interlayer interaction does not play an important role, and we are 

dealing with a two-dimensional dispersion relation qω ∼ . There is a crossover from 

3D to 2D behaviour in the region zq 1/ L∼ . This crossover corresponds to a maximum 

in the density of states (Landau and Lifshitz, 1976). This can be seen by considering 

the dependence of the plasmon frequency Ω  on one less variable and, hence, the 

derivative with respect to this variable goes to zero. This leads to an effective increase 

in the density of states in this region. 

 Therefore, interlayer interaction leads to the formation of a highly anisotropic 

plasmon band ( )zq,qΩ . A very important feature of this band is the nonuniform dis - 

tribution of the density of states. Indeed, the dispersion relation ( )zq,qΩ is described  

by the following equation (Morawitz et al., 1993):  

                  ( ) ( )
( )

2
2 2
F 2

F

F y, z
y, z y

2F y, z / y±Ω = ν +
ν +

                                                      (2.26) 

where         ( ) sinh yF y,z
cosh y cos z

=
−

                                                                       (2.27) 

Fν  is proportional to the Fermi velocity, y qL≡  and zz q L≡ . 

       It is easy to see that the derivative z/ q+∂Ω ∂  vanishes at zq 0, / L= ± π . The sin- 

gularity ( ) 1
z/ q −

+∂Ω ∂  implies a singularity in the plasmon density of states at both 
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boundaries. This singularity is transformed into a sharp peak if we take into account a 

small interlayer hopping term. 

       Hence, we see that the plasmon density of states has two peaked regions. The 

sharp increase of the density of states near the lower boundary is particularly impor- 

tant for the superconducting state in the layered superconductors. 

      The upper branch, +Ω , and the lowest branch, −Ω , of the layered electron gas in 

the plasmon region are shown to be (Molozovsky et al., 1993) 

                  ( )
1/ 22

1/ 22 ne q coth L / 2
m+

⎛ ⎞π
Ω = ⎜ ⎟

⎝ ⎠
                                                         (2.28) 

which is the purely optical plasmon frequency, and 

                    ( )
1/ 22

1/ 22 ne q tanh qL / 2
m−

⎛ ⎞π
Ω = ⎜ ⎟

⎝ ⎠
                                                      (2.29) 

which is the proper acoustic plasmon frequency. 

 The −Ω  plasmon involves charge fluctuations in the planes which, in the long-

wavelength limit, are completely out of phase with each other. Consequently, in this 

limit, the −Ω  mode involves no net charge fluctuation and hence will not be excited 

by an electromagnetic wave. This feature is ultimately the reason why the −Ω  mode is 

acoustic, with its energy going to zero. Even more interesting is the role that the −Ω  

mode might play as a new source of an attractive interaction between electrons in the 

2CuO  sheets and hence high-temperature superconductivity.   



CHAPTER III 

TEMPERATURE AND FINITE-WAVE VECTOR 

EFFECTS ON PLASMON DISPERSION RELATION 

IN LAYERED CONDUCTORS 

 

3.1  Interaction potential 

 Consider a layered system consisting of stacks of conducting sheets of CuO2 

which have a significant number of free charge carriers (electrons). These conducting 

sheets are along the z-axis and separated by dielectric spacer Mε . A series of identical 

CuO2 planes are separated by the interlayer distance L. The description of layered  

conductors can be made by neglecting the small interlayer hopping in a first approxi- 

mation. The electrons in a CuO2 plane interact via the Coulomb interaction with char- 

ge carriers both within and between the planes. The resulting potential has a particu- 

larly strong influence in the long-wavelength limit ( )q 0→ . 
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Figure 3.1 The layered electron gas model with two conducting sheets along z-axis 

and separated by dielectric spacer with dielectric constant Mε . 

 

 The effective interaction between charge carriers is given by 

                              ( ) ( )
( )

cV q
V q,

q,
ω =

ε ω
    (3.1)                          

where q is the wave vector along the plane and ( )cV q  is the bare Coulomb potential 

between the charge carriers. The function ( )q,ε ω is the longitudinal dielectric function 

for a single band of charge carriers. 

 The Fourier transform of the Coulomb potential along the plane is 

                                 ( ) ( )
2

c
M

2 eV q, r, r exp q r r
q
π′ ′= − −
ε

                                  (3.2) 

where r and r′ are the coordinates of the planes and are discrete variables. The elec- 
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trons are assumed to be confined only in the conducting CuO2 planes. In terms of the 

interlayer spacing L it is convenient to express. 

                                 jr jL=   and '
'

j
r jL=  

where j and j′  denote the indices for the CuO2 planes.  

 The bare Coulomb potential between the electrons in the r r′−  representation 

for fixed wave vector q becomes 

                                
( ) ( )

( )
c c

2

M

V q, r r V q, j, j

2 e exp q j j L
q

′ ′− =

π ′= − −
ε

                                        (3.3) 

The effective interaction potential between electrons can be conveniently described by 

the perturbation approach and is  

                ( ) ( ) ( ) ( ) ( )c c j
j

V q, , j, j V q, j, j V q, j, j q, V q, , j, j
′′

′′

′ ′ ′′ ′′ω = − ω ω∑ ∏             (3.4) 

where ( )q,∏ ω  is the polarizability function for the thj layer. Since the system is trans- 

lationally symmetric along the z-direction, we use following transformation 

                  ( ) ( ) ( )z z
j, j

V q V j j exp i j j L q
′

′ ′= − −⎡ ⎤⎣ ⎦∑                                                   (3.5) 

and             ( ) ( ) ( )
/ L

z z z/ L

LV j j V q exp i j j q L dq
2

−π

+π
′ ′− = − −⎡ ⎤⎣ ⎦π ∫                                  (3.6) 

where zq is the wave vector perpendicular to the plane. Performing the Fourier trans -  

formation of Eq. (3.4) and keeping in mind that the perioditicity of the layer is inde - 

pendent of j, the result is  
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( ) ( )

( ) ( )

2

z k k k
kM z

2

z
M z

2 eV q,q , exp iq z q z
q q,q ,

2 e R q,q
q q,q ,

π
ω = ⎡− − ⎤⎣ ⎦ε ε ω

π
=

ε ε ω

∑
                         (3.7) 

The function ( )zR q,q is defined as the layer form factor, introduced by Fetter (Fetter, 

1974a) in the hydrodynamic treatment of the layer plasmon dispersion and is 

                     ( ) ( )
( ) ( )z

z

sinh qL
R q,q

cosh qL cos q L
=

−
                                                        (3.8) 

The dielectric function for the layered system is then written in its general form as 

                     ( ) ( ) ( )z c zq,q , 1 V q,q q,ε ω = − ∏ ω                                                        (3.9) 

where             ( ) ( )
2

c z z
M

2 eV q,q R q,q
q
π

=
ε

                                                               (3.10) 

The plasmon spectrum of a layered conductor is determined by the poles that corresp- 

ond to the zeros of the real- frequency dielectric function 

                     ( ) ( )c z1 V q,q Re q, 0− ∏ ω =                                                               (3.11) 

The temperature effect  on  the plasmon  dispersion  relation comes from the  Re∏  

( )q,ω  in Eq. (3.11). 

 Note that the layer form factor ( )zR q,q  given by Eq. (3.8) is applied only to the 

conducting 2CuO layers which are stacked along the z-axis and separated by dielectric 

spacer with dielectric constant Mε . This layered electron gas model can be applied to 

the high-temperature oxides such as lanthanum cuprates, layered organic supercon- 
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ductors, intercalated metal halide nitrides, etc. Other different structures such as a 

superlattice with a basis of two different kinds of metallic sheets (Bi-O and Cu-O 

sheets) and a coupled sheet-chain system (Y-Ba-Cu-O superconductors) will have 

different forms of ( )zR q,q . 

The characteristic curve of the layer form factor ( )zR q,q as a function of qL for 

five values of zq L is shown in Fig. 3.2. It is found that for large separation between the  

planes qL 1 the function ( ) ( )zR q,q R Q 1≡ →  and ( ) ( )c z cV q,q V Q≡  reduces to  

that of a 2D Coulomb potential. For long in-plane wavelengths (qL 1)� , ( )R Q →  

22q / Q L and ( )cV Q diverges as 21/ Q for Q 0→ in agreement with the 3D Coulomb 

interaction.  
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             Figure 3. 2 Characteristic curves of the layer form factor ( )zR qL,q L . 

              zq L 0=  
              zq L /10= π  
              zq L / 5= π  
              zq L / 2= π  
              zq L = π  
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3.2 Polarization as a function of temperature 

 The polarization propagator of a single layer takes the well-known form (Fetter 

and Walecka, 1971), 

                     ( )
( )

( ) ( )2

20
p q p

f p q f pd pq, lim 2
i2η→

+

⎡ ⎤+ −
∏ ω = − ⎢ ⎥

ω+ η− ε + επ ⎢ ⎥⎣ ⎦
∫ G G G

G G G

=
                                  (3.12) 

where f (p) is the Fermi-Dirac distribution function and 2 2
p p / 2mε = = . The factor 2 is 

due to spin degeneracy. 

 To find the real part and imaginary part of the polarization propagator, it is easi- 

er to rewrite Eq. (3.12) as 

                ( )
( )

( )
2

2
p p q p q p

d p 1 1q, 2 f p
i i2 − +

⎡ ⎤
∏ ω = − −⎢ ⎥

ω+ η− ε + ε ω+ η− ε + επ ⎢ ⎥⎣ ⎦
∫ = =

     (3.13) 

The real part of ( )q,∏ ω  is then 

                ( )
( )

( )2
2

p p q p p q

2 1 1Re q, P d p f p
2 − +

⎡ ⎤−
∏ ω = −⎢ ⎥

ω− ε + ε ω+ ε − επ ⎢ ⎥⎣ ⎦
∫ = =

         (3.14) 

where P is the principal value. 

Since             ( )
2

2
p q p q 2pq cos

2m−ε − ε = − θ
=  

                        ( )
2

2
p p q q 2pq cos

2m+ε − ε = − + θ
=  

Equation (3.14) then becomes 
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          ( )
( )

( )
2

22
0

2m 1 1Re q, dp f p d
cos A cos Bq 2

π ⎡ ⎤∏ ω = θ −⎢ ⎥θ− θ−⎣ ⎦π ∫ ∫=
                    (3.15) 

where              m q 1 aA
q 2 p p

⎛ ⎞ω
= + ≡⎜ ⎟
⎝ ⎠=

                                                                      (3.16) 

                        m q 1 bB
q 2 p p

⎛ ⎞ω
= − ≡⎜ ⎟
⎝ ⎠=

                                                                      (3.17) 

Consider the angular integral,    ( )
2

1
0

dI
cos A

π θ
θ =

θ−∫ . 

Let iz e θ= , dz iz d= θ   and           1 1cos z
2 z
⎛ ⎞θ = +⎜ ⎟
⎝ ⎠

, then 

                                                      ( )1 2
c

2 dzI
i z 2zA 1

θ =
− +∫v . 

Poles of the angular integral are at 2
1,2z A A 1= ± − . Now, suppose A >1 then 1z 1> , 

2z 1<  and since 1 2z .z 1=  it is seen that only 2z  lies inside the unit circle z 1= . The 

residue is
2 1

1
z z−

, and hence 

                                                    ( )1 2 2 2

2 2 pI
A 1 a p
− π − π

θ = =
− −

. 

 Similarly, suppose B > 1, then   

                          ( )
2

2 2 2 2
0

d 2 2 pI
cos B B 1 b p

π θ − π − π
θ = = =

θ− − −
∫                                             

 For A, B 1< , it is easily seen that 1 2I I 0= = . Also for B < -1 i.e., for large q, 2I  has   
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the same value as given above except for a change of sign. We will not consider this 

case because it involves large q limit. 

 In general the Fermi function f (p) is a function of temperature defined by 

                                   ( ) ( )p

1f p
e 1β ε −µ

=
+

                                                                 (3.18)   

where B1/ k Tβ = , µ  is the chemical potential and Bk  is the Boltzmann constant. It is  

simpler to scale the parameters at finite temperature as follows: 

                         2
F Fx p / k , t T / T , z x / t , and= = = α = βµ                                   (3.19) 

where Fk  is the Fermi momentum FT  is the Fermi temperature, x, z and t are dimen-

sionless variables. The Fermi function then becomes 

                                   ( ) 2x / t

1f x
e 1−α

=
+

                                                                 (3.20) 

 or                               ( ) z

1f z
e 1−α=

+
                                                                     (3.21) 

The degeneracy parameter,α , is determined from the condition that the total number 

N is fixed. 

 The value of the Fermi momentum Fk in terms of the electron density can be 

expressed at absolute zero as  

                                 
( )

Fk
2 2

F2
p 0

2A AN 2 1 d p k
22

= = =
ππ

∑ ∫                                 

 or                               
2
FkNn

A 2
= =

π
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Thus,                          ( )1/ 2
Fk 2 n= π                                                                       (3.22) 

 However, the areal density, n, at finite temperature can be evaluated by 

                                
( )

( ) ( )

( )

22
F

2
0

0

kN d pn 2 f p x f x dx
A 2

nt f z dz

∞

∞

= = =
ππ

=

∫ ∫

∫
    

Hence,                             z
0

1 dz
t e 1

∞

−α=
+∫  

or                                   1/ tln e 1⎡ ⎤α = −⎣ ⎦                                                                  (3.23) 

It is seen that for any given density and temperature, the ratio Ft T / T=  fixes the dege- 

neracy parameter α  and thus f (z). Unlike 3D case, α can be expressed in closed form 

in 2D system.  

 Using the above angular integral ( )1I θ  and the notations for parameters at finite 

temperature, the first term of Eq. (3.15) can be written in the form 

                                     
( ) ( )

F
1/ 22 z 2 2

F

k tm dz 1
q 2 e 1 a / tk z−α

−
π + −

∫=
 

Similarly for the second term in Eq. (3.15), thus the real part of ( )q,∏ ω  becomes 

         ( )
( ) ( )

F
1/ 2 1/ 22 z 2 2 2 2

F F

k tm dz 1 1Re q,
q 2 e 1 a / tk z b / tk z

−α

⎡ ⎤− ⎢ ⎥∏ ω = −
⎢ ⎥π + − −⎣ ⎦

∫=
        (3.24) 

This place an upper limit on z integral to be +ξ  and −ξ for the first and the second term 
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of Eq. (3.24) respectively where 

                         
2 2

2 2
F F

a band
tk tk+ −ξ = ξ =  

 or                     
F F

1 m q
t qk 2k±

⎛ ⎞ω
ξ = ±⎜ ⎟

⎝ ⎠=
                                                                     (3.25) 

 Since the Fermi function at low temperature limit is quite different from that at 

high temperature, these two limits will be considered separately in the next two 

sections. 

3.3 Low temperature limit 

 In the low temperature limit, it is necessary to consider 3 cases: 

1. −ξ >α , obviously +ξ > α  automatically 

2.  ±ξ < α                         

3. −ξ < α  and +ξ > α  

Case 1. ±ξ > α  

 Consider the integration 

z z z
0 0 0

dz 1 dz dz 1 dz 1
e 1 e 1 e 1z z z z

− −ξ ξα α

−α −α α−
α− − − −

= + −
+ + +ξ − ξ − ξ − ξ −∫ ∫ ∫ ∫  

                              = 321 III ++  

                          1
0

dzI 2 2
z

α

− −
−

= = ξ − ξ −α
ξ −∫  
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Let xz =α−  for I2  and xz =−α  for I3, then 

 
0

2 3 x x
0

dx 1 dx 1I I
e 1 e 1x x

−ξ −α

α − −

⎧ ⎫−⎪ ⎪+ = − −⎨ ⎬+ +ξ + −α ξ − −α⎪ ⎪⎩ ⎭
∫ ∫  

            x x
0

dx 1 1 dx 1
e 1 e 1x x x

−

−

ξ −α α

ξ −α− − −

⎧ ⎫⎡ ⎤⎪ ⎪= − − +⎢ ⎥⎨ ⎬+ +ξ −α + ξ −α − ξ −α +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫  

Since the last term is exponentially negligible, then 

1/ 2 1/ 2

2 3 x
0

dx 1 x xI I 1 1
e 1

−
− −ξ −α

− −−

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟∴ + ≈ − + − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟+ ξ −α ξ −αξ −α⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∫  

Also, since −ξ −α  is very large, this approximation will be 

2 3 x
0

1 dx 1 x 1 xI I 1 1
e 1 2 2

∞

− −−

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− ⎪ ⎪+ ≈ − − − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟+ ξ −α ξ −αξ −α ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫ …  

           
( ) ( )

2

3/ 2 3/ 2x
0

1 xdx 1
e 1 12

∞

− −

π
≈ =

+ξ −α ξ −α∫  

A similarly for the integration of z from 0 to +ξ . Equation (3.24) becomes 

  ( ) ( ){F
2

k tmRe q, 2 2 2 2
q 2 + − − +

−
∏ ω = ξ − ξ + ξ −α − ξ −α +

π=
  

                                            
( ) ( )

2

3/ 2 3/ 2
1 1

12
+ −

⎫⎛ ⎞π ⎪+ −⎜ ⎟⎬⎜ ⎟ξ −α ξ −α ⎪⎝ ⎠⎭
                      (3.26)                                 
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where              

2

2 2

2
F F F

m q
q 2 A1 m q
tk t qk 2k t

±
±

⎛ ⎞ω
±⎜ ⎟ ⎡ ⎤ω⎝ ⎠ξ = = ± ≡⎢ ⎥

⎣ ⎦

=
=

                            (3.27)                               

and                                                 
F F

m qA
qk 2k±

ω
= ±
=

  

Since, ( )1 A A
t+ − + −ξ − ξ = −  

                              
F F F F

1 m q m q
qk 2k qk 2kt

⎡ ⎤⎛ ⎞ω ω
= + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦= =
 

                               
F

1 q
kt

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
           (if 

F F

m q
qk 2k
ω

>
=

 i.e., small q limit) 

and the approximation 

                                         21 A 1
t± ±⎡ ⎤ξ −α ≈ −⎣ ⎦  

will be used, then Eq. (3.26) becomes 

( ) ( ) ( )1/ 2 1/ 22 2F
2

F

km qRe q, A 1 A 1
q k − +

⎧− ⎡ ⎤∏ ω = + − − − +⎨ ⎢ ⎥⎣ ⎦π ⎩=
 

                                   ( ) ( )
2 2 3/ 2 3/ 22 2t A 1 A 1
24

− −

+ −

⎫π ⎡ ⎤+ − − − ⎬⎢ ⎥⎣ ⎦⎭
 ,        for    m q

q 2
ω�
=

 

  The term in the bracket can be approximated as follows: 

        ( ) ( )1/ 2 1/ 22 2
3 3

1 1 1 1 1 1A 1 A 1 A A
2 A A 8 A A− + − +

+ − + −

⎛ ⎞ ⎛ ⎞
− − − ≈ − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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2 45

F F

F F F

qk kq q 3 q
k 2k m 8 k m

⎛ ⎞ ⎛ ⎞≈ − − −⎜ ⎟ ⎜ ⎟ω ω⎝ ⎠ ⎝ ⎠

= =  

and                ( ) ( )
43 33/ 2 3/ 22 2 F

3 3
F

A A qk3qA 1 A 1
A A k m

− − − +
+ −

− +

− ⎛ ⎞− − − ≈ ≈ − ⎜ ⎟ω⎝ ⎠

=  

Collecting these terms we, therefore, obtain the real part of the polarization propaga- 

tor in the case ±ξ > α  as 

                ( )
2 43 2 2 5

F F F
2

F F

mk k kq 3 t qRe q,
q 2k m 8 8 k m

⎡ ⎤⎛ ⎞π⎛ ⎞ ⎛ ⎞∏ ω = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟π ω ω⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

= =
=

                  (3.28) 

Case 2. ±ξ < α  

 This condition of ±ξ < α  is equivalent to
F F

m q 1
qk 2k
ω

± <
=

. Equation (3.24) be - 

comes 

               ( ) F
2 z z

0 0

k tm dz 1 dz 1Re q,
q 2 e 1 e 1z z

+ −ξ ξ

−α −α
+ −

⎡ ⎤−
∏ ω = −⎢ ⎥

π + +ξ − ξ −⎢ ⎥⎣ ⎦
∫ ∫=

  

The first integral can be approximated as follows: 

         z z
0 0 0

dz 1 dz dz 1
e 1 e 1z z z

+ + +ξ ξ ξ

−α α−
+ + +

= −
+ +ξ − ξ − ξ −∫ ∫ ∫ ,             let z xα − =  

                                        
xe dx2

x
+

α −

+
α−ξ +

≈ ξ +
ξ −α +∫  

Put  x y+ξ −α + = , the second term of the last equation becomes 
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y y

0 0

e dy e 1e dy e e
y y

+ ++
+ +

ξ ξξ −α− −
ξ −α ξ −α −α

+

= ≈ π −
ξ∫ ∫  

Similarly for the z-integration from 0 to −ξ . Hence 

            ( ) F
2

k tmRe q, 2 2 e e
q 2

+ −ξ −α ξ −α
+ −

− ⎡ ⎤∏ ω ≈ ξ − ξ + π − π⎣ ⎦π=
 

                               ( )F2

A Am k t e e e
q 2t t

+ −ξ ξ−α+ −
⎡ ⎤− π

= − + −⎢ ⎥π ⎣ ⎦=
 

                               
2 2

F2
F F F F F F

A / t A / t 1/ t

m q m q 2m q mk
q k qk 2k qk 2k qk

te e e
2

+ − −

⎧ ⎛ ⎞ ⎛ ⎞− ω ω ω⎪= θ − + θ − +⎨ ⎜ ⎟ ⎜ ⎟π ⎪ ⎝ ⎠ ⎝ ⎠⎩
⎫π ⎪⎡ ⎤+ − ⎬⎣ ⎦ ⎪⎭

= = = =
 

For the case
F F

q m
2k qk

ω
>
=

, the lowest order of the real part of polarization propagator 

has the approximated form as 

                                               ( ) F
2

F

mk 2mRe q, .
q qk

− ω
∏ ω ≈

π= =
 

which is a negative quantity. Hence, there is no plasmon mode in this case. 

Case 3. and− +ξ < α ξ > α  

 An analysis similar to the one given above shows that ( )Re q,∏ ω  is also negat- 

ive in this case and hence there is no plasmon mode too. 

 Therefore, the real part of the polarization propagator which is to be used for the 

calculation of plasmon dispersion relation is given by Eq. (3.28) only. 
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3.4 High temperature limit 

 In high temperature limit, we approximate the Fermi function by Boltzman fun-   

ction. Thus, Eq. (3.24) becomes 

                          ( ) zF
2

k tm 1 1Re q, e e dz
q 2 z z

α −

+ −

⎡ ⎤−
∏ ω = −⎢ ⎥

π ξ − ξ −⎢ ⎥⎣ ⎦
∫=

 

where                1e
t

α ∼  

The first integral can be evaluated as 

                  
1/ 2z z

0 0

e dz e z1 dz
z

+ +
−ξ ξ− −

++ +

⎛ ⎞
= −⎜ ⎟ξξ − ξ ⎝ ⎠

∫ ∫  

                                   
2

z
2

0

1 z 3 ze 1 dz
2 8

+ξ
−

+ ++

⎛ ⎞
= + + +⎜ ⎟ξ ξξ ⎝ ⎠

∫ … , provided 1±ξ >  

                                   2

1 1 31
2 4+ ++

⎛ ⎞
≈ + +⎜ ⎟ξ ξξ ⎝ ⎠

         (to the order of e +−ξ and 3

1

±ξ
) 

Similarly for the z-integration from 0 to −ξ , hence, 

                ( ) F
2 3/ 2 5/ 2 3/ 2 5/ 2

k tm 1 1 3 1 1 3Re q,
q 2 2 4 2 4+ + − −+ −

⎧ ⎫− ⎪ ⎪∏ ω + + − − −⎨ ⎬π ξ ξ ξ ξξ ξ⎪ ⎪⎩ ⎭=
 

 Consider the following terms: 

                    1 1 1 1t
A A+ −+ −

⎛ ⎞
− = −⎜ ⎟

ξ ξ ⎝ ⎠
 



 

                                                                                                                                       

49

                                        
1 12 2

Fqk q qt. 1 1
m 2m 2m

− −⎡ ⎤⎛ ⎞ ⎛ ⎞
= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ω ω ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= = =  

                                        
2 2

Fqk q qt. 1 1
m 2m 2m

⎡ ⎤
≈ − − −⎢ ⎥ω ω ω⎣ ⎦

= = =  

                                        
2 3

F
2 2

q kt
m

= −
ω

=  

and                 
3 2 2

F
3/ 2 3/ 2

qk1 1 3 q 3 qt t 1 1
m 2m 2m+ −

⎡ ⎤⎛ ⎞− ≈ − − −⎜ ⎟ ⎢ ⎥ξ ξ ω ω ω⎝ ⎠ ⎣ ⎦

= = =  

                                            
4 3 5

F
4 4

3 k qt t
m

= −
ω

=  

 Substituting these values into the above equation, the high temperature limit of 

the real part of polarization propagator will be 

                      ( )
2 2 2 2 2

F F
2 2 2

q k q k3Re q, 1 t
2 m 2 m

⎛ ⎞
∏ ω = +⎜ ⎟π ω ω⎝ ⎠

=                                             (3.29) 

3.5 Plasmon dispersion relation in layered superconductors 

 The plasmon dispersion relation in layered system is determined by the poles 

that correspond to the zeros of real-frequency dielectric function and given by Eq.          

(3.11), i.e., 

                                     ( ) ( )c z1 V q,q Re q, 0− ∏ ω =  

where the bare Coulomb potential ( )c zV q,q is given by Eq. (3.10). The real part of the 

polarization propagator at low temperature limit is given by Eq. (3.28) and by Eq. 

(3.29) for the high temperature limit. 
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 At low temperature limit, the plasmon dispersion relation becomes 

                      ( )
2 2 2 2

2 F
p 2 2

M

4e L 3 t qq R Q 1
L 2 4 4 me

⎡ ⎤⎛ ⎞ ⎛ ⎞ε π⎛ ⎞ω = + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ε ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦

=
=

                         (3.30) 

where 2 2
F Fk / 2mε = = is the Fermi energy. The dispersion relation consists of two parts. 

The first part, that appears as prefactor of Eq. (3.30), comes from the modified Cou - 

lomb interaction given by Eq. (3.10) with the layer form factor ( )zR q,q  given by Eq. 

(3.8).  This part reflects the finite-thickness effect of a layered system. Since ( )cV Q ≡  

( )c zV q,q diverges as 21/ Q  for Q 0→ in agreement with the 3D case, therefore the 

prefactor of Eq. (3.30) at zq 0=  and qL 1�  reduces to the value 2
M4 ne / Lmπ ε of 3D 

optical plasmon. On the other hand, for zq L = π  and qL 1� , the prefactor of Eq. 

(3.30) becomes a function of  2q  and the plasmon dispersion reduces to the acoustic 

plasmon ( )p qω ∝ . The plasmon band is, therefore, confined between the upper branch 

with zq L 0= and the lower branch with zq L = π . Since for large separation between the 

planes ( )qL 1� , ( )cV Q  reduces to the 2D coulomb interaction, then the prefactor of 

Eq. (3.30) becomes the value 2
M2 ne q / mπ ε  of 2D case. Figure 3.3 shows the charac- 

teristic curves of the layer plasmon dispersion in unit of the usual optical mode 

( )2 2 2
op p z F Mq 0,q 0 4e / Lω = ω = = = ε ε . 

 The second part of the layer plasmon dispersion at low temperature limit is the 

terms in bracket of Eq. (3.30). This part comes from the 2D nature of the polarization 

propagator ( )q,∏ ω  given by Eq. (3.28). It contains the finite-wave-vector (higher 
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order in q) effect and the temperature effect. At T 0K= , the effect of the leading 

higher order in q, which is ( ) 2 23 / 4 q / me= , in agreement with the term ( )( )TF3 / 4 q / q  

reported by Hwang and Sarma (Hwang and Sarma, 2001) and the previous work 

(Rajagopal, 1977). The electronic excitation spectrum for the layered system at T = 0 

is shown in the Figure 3.2(b) and shows similar curves that reported by the others 

(Bill et al., 2003).The finite-temperature effect, which is ( )2 2 2 2t / 4 q / meπ = , is quite 

small and negligible for Ft T / T 1≡ �  as seen in Figure 3.2 (c)-(f) and confirmed by 

Hwang and Sarma (Hwang and Sarma, 2001). 

 From Eqs. (3.8), (3.10) and (3.29) we obtain the plasmon dispersion at high tem- 

perature limit: 

                          ( )
2 2

2 F
p 2 2

M

4e L 3 qq R Q 1 t
L 2 2 me

⎛ ⎞ ⎡ ⎤ε ⎛ ⎞ω = +⎜ ⎟⎜ ⎟ ⎢ ⎥ε ⎝ ⎠ ⎣ ⎦⎝ ⎠

=
=

                                  (3.31) 

Since the finite-temperature effect comes from the 2D nature of ( )q,∏ ω  which is the 

term ( ) 2 23 / 2 t q / me=  in the bracket of Eq. (3.31). For t 1� , this term is in agreement 

with the term D3q / k calculated by Fetter (Fetter, 1974b) for the classical electron sur- 

face layer ( 2
D Bk 2 ne / k T= π  is the 2D analog of the Debye Huckel− �� screening cons - 

tant). This term is also in agreement with the term ( )( )( )F s3 / 2 2 T / T q / r  reported by 

Hwang and Sarma (Hwang and Sarma, 2001) for a very-low-density electron system 

on the surface of liquid helium. It must be noted that this result is valid only in a very 

narrow range of q due to the condition 1±ξ > or ( )2me / qt 1<= . Since t 1� , this expre- 
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ssion limits the range of q values very near zero. If  1±ξ >  is not satisfied we do not 

get any plasmon mode as may be easily seen by the explicit calculation. 

 It is easily seen from Figure 3.3 that the inclusion of the second term in the 

dispersion relation makes the slope of the acoustic plasmon increase significantly. The 

finite-wave-vector effect is therefore, important at low temperature limit. The tempe- 

rature dependence shows a smaller effect compare to the effect by higher order in q. 

The dispersion relation at high temperature limit given by Eq. (3.31) is proved to be 

valid compared with the classical limit of the 2D system such as the system of elec- 

trons on the surface of liquid helium, but valid only in a very narrow range of q near 

zero. 



 

                                                                                                                                       

53

0 0.5 1 1.5 2
qêkF

0

0.2

0.4

0.6

0.8

1
ω

p
êω

po

0 0.5 1 1.5 2
qêkF

0

0.5

1

1.5

2

2.5

ω
p
êω

po

 
 
 

0 0.5 1 1.5 2
qêkF

0

0.5

1

1.5

2

2.5

ω
p
êω

po

0 0.5 1 1.5 2
qêkF

0

0.5

1

1.5

2

2.5

ω
p
êω

po

 
 
 

0 0.5 1 1.5 2
qêkF

0

0.5

1

1.5

2

2.5

ω
p
êω

po

0 0.5 1 1.5 2
qêkF

0

0.5

1

1.5

2

2.5

ω
p
êω

po

 
 
Figure 3. 3 Layer plasmon dispersion as         

given by Eq. (3. 30) for which: 

( a ) containing only the first term 

( b ) with the second term at t = 0 

( c )-( f ) with the second term at various 

 small t               
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t = 0.1 t = 0.05 

( a ) ( b ) 

( c ) ( d ) 

( e ) ( f ) 

                  zq L 0=  
                  zq L /10= π  
                  zq L / 5= π  
                   zq L / 2= π  
                   zq L = π  

 



CHAPTER IV 

FULL TEMPERATURE, FREQUENCY AND WAVE 

VECTOR DEPENDENCE OF DIELECTRIC FUNCTION 

IN LAYERED SUPERCONDUCTORS 

 

4.1 Screening of the Coulomb interaction 

 It is known that the bare Coulomb interaction, ( ) 2 2V q 4 e / q= π , is not the actual 

interaction between any two electrons. In fact, the interaction between any two 

electrons will be far weaker because all of the other electrons will act to screen the 

Coulomb interaction. The correct strategy for dealing with electrons with Coulomb 

interaction is to do perturbation theory in the screened Coulomb interaction. In a 

metal, the screening is complete; the bare Coulomb potential is modified into a 

screened Coulomb potential with the following peculiar properties: (i) The screened 

Coulomb field is cut off at a characteristic distance of the order of 1
Fk− . (ii) Weakly 

decaying long-range oscillations of electron density occur (Friedel oscillations). (iii) 

The change of electron density must be finite at the origin. 

 To understand qualitatively the highly effective shielding in metals, the Thomas-

Fermi model has been used. This simple model illustrates the basic physics in the low 

q,ω  limit and explains quite well the exponential screening at intermediate distance. 

It fails in predicting finite induced charge at the origin and long-range oscillations. To  
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understand the physics at Fq 2k→ , we have to use more sophisticate approximations 

such as the RPA.  

 In the Thomas-Fermi model, the bare Coulomb interaction has been replaced by 

a screened Coulomb interaction:      

                            
2 2

2 2 2
TF

4 e 4 e
q q k
π π

→
+

                                                            (4.1) 

or                                     
TFk r1 e

r r

−

→                                                                   (4.2) 

Thus, the bare long-range Coulomb interaction 2e / r is transformed into an exponenti - 

ally damped interaction with screening length TF1/ k , where TFk is the inverse of the  

Thomas-Fermi screening length. For a free-electron gas, one has 

                                 2 F
TF

B

k4k
a

=
π

                                                                 (4.3) 

where 2 2
Ba / me= = is the Bohr radius. The static dielectric function ( ) ( )q, 0 qε ω = ≡ε , 

which is known as the Thomas-Fermi dielectric function has the form 

                                         ( )
2
TF
2

kq 1
q

ε = +                                                                (4.4) 

However, the Thomas-Fermi dielectric screening needs improvements to provide the 

correct behaviour of the induced electron charge density at small and large distances.       

A more refined result may be obtained by replacing the bare Coulomb interaction    by 

the sum of the bubble diagrams, known as the RPA approximation. The effective 

interaction, ( )RPA
effV q,ω  is 
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      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )RPA
effV q, V q V q q, V q V q q, V q q, V qω = + ∏ ω + ∏ ω ∏ ω +…    

                        ( )
( ) ( )
V q

1 q, V q
=

−∏ ω
                                                                       (4.5) 

where  ( )q,∏ ω  is the particle-hole bubble. For small q and 0ω = , 

          ( )
2

RPA
eff 2 2

TF

4 eV q, 0
q q

π
ω = =

+
                                                                (4.6) 

which is the same as the Thomas-Fermi result and the dielectric function is given by 

Eq. (4.4). However, for 0ω≠ , the RPA result contains additional information about 

the dynamics of the electrons. Also, for q 2k→ , the RPA result contains information 

about the Fermi surface. For 0ω ≠  and Fq 2k→ , the RPA approximation can be call- 

ed into question. 

 The dynamic ( )0ω ≠  dielectric function for q = 0 is given by 

                  ( )
2
p
20, 1

ω
ε ω = +

ω
                                                                        (4.7) 

where  2 2
p 4 ne / mω = π  is the plasma frequency and the dynamic dielectric function is 

exact in the limit q = 0 and 0ω> ( Nozie re` and Pines, 1989). Eq. (4.7) can be recogn- 

ized as the Drude model for the dielectric function of a free-electron gas.  

 Screening of the Coulomb interaction takes very different forms in layered con- 

doctors and 3D isotropic metals. The description of layered conductors can be ma-     

de by neglecting the small interlayer hopping in a first approximation. On the other 

hand, it is essential to take into account the screened interlayer Coulomb interaction 

which has an important dynamic part. It is known that for usual 3D materials this 
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interaction can be consider in the static limit since electronic collective modes are 

very high in energy of the optical plasmon energies of the order 5-30 eV in metals. 

Such high energies imply a perfect, instantaneous screening of the Coulomb interac- 

tion. Therefore, the Coulomb repulsion enters the conventional theory of supercon- 

ductivity as a single static pseudopotential ∗µ . 

 The situation is very different in layered conductors. Layered conductors have a 

structure of the plasmon spectrum that differ fundamentally from 3D metals. In addi- 

tion to the high energy optical plasmon mode, the spectrum contains also on important 

low-frequency part or the acoustic plasmons. The screening of the Coulomb interac- 

tion is incomplete which is a result from the layered structure. The dynamic nature of 

the Coulomb interaction becomes important since the response to a charge fluctuation 

is time dependent and hence the frequency dependence of the screened Coulomb 

interaction. As a result, the interplay between the attractive interaction and the Cou- 

lomb part is more subtle than introduced in the conventional theory of superconducti-

vity. The dynamic screening in layered systems can lead to a Coulomb-induced en- 

hancement of the superconducting pairing and might be an essential addition to the 

usual electron-phonon contribution.  

 The electronic screening of the Coulomb interaction in the layered conductors is 

described by the dielectric function ( )z nq,q , ,Tε ω  written in its most general form as 

              ( ) ( ) ( )z n c z nq,q , ,T 1 V q,q q, ,Tε ω = − ∏ ω                                        (4.8) 

where                    ( ) ( )
2

c z z
M

2 eV q,q R q,q
q
π

=
ε

                                                    (4.9)  
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                               ( ) ( )
( ) ( )z

z

sinh qL
R q,q

cosh qL cos q L
=

−
                                      (4.10) 

and                      ( )
( )

( ) ( )
( )

2

n 2
n p q p

f p q f pd pq, ,T 2
i2 +

+ −
∏ ω = −

ω − ε − επ∫ G G G

G G G

=
  (4.11) 

q is the in-plane wave vector, zq is the wave vector perpendicular to the plane and two 

conducting planes are separated by spacer with dielectric constant Mε  and L is the 

interlayer distance. This model of the layered conductor has been shown in Figure 3.1. 

The layer form factor ( )zR q,q has a characteristic curve as shown in Figure 3.2. To 

study the impact of dynamic screening on superconducting state we need to calcu-late 

the dielectric function, Eq. (4.8) which contains the polarization ( )z nq,q ,∏ ω . To 

obtain cT  we have to determine these functions at finite temperatures. In general, the  

proper account of dynamic screening requires to consider all three parameters of the 

polarization. 

 In this chapter we will consider the static polarization separately from the dyna- 

mic one. Numerical results will be reported and the analytical limits will be discussed.   

 4.2 Static polarization 

 The static polarization corresponds to the term n = 0 in Eq. (4.11), i.e.,  

                      ( ) ( )
( )

( ) ( )2

n 2
p p q

f p q f pd pq, 0,T q,T 2
2 +

+ −
∏ ω = ≡ ∏ = −

ε − επ∫ G G G

G G G
                 (4.12) 

By transformation p q k+ →
GG G  for ( )f p q+G G  and p q+εG G  and the transformation p p→−

G G  

for ( )f pG  and pεG , using the fact that p p−ε = εG G  and ( ) ( )f p f p− =
G G , then 
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                      ( )
( )

( )2
2

p p q

f p4q,T d p
2 −

∏ =
ε − επ ∫ G G G

G
 

                                   ( )
2

2 2
0 0

2m dpf p dp
q 2pcos q

∞ π θ
=

π θ−∫ ∫=
                                      (4.13) 

Consider the angular integral 

                    ( )
2 2

o 0

d 1 dI
2pcos q q a cos 1

π πθ θ
θ = =

θ− θ−∫ ∫  

where a 2p / q= . Now, let  iz e θ=  and 1 1cos z
2 z
⎛ ⎞θ = +⎜ ⎟
⎝ ⎠

, it follows that 

                             ( )
2

1 dzI a aiq z z
2 2

θ =
− +

∫v  

                              2
z 1

2

2i dz
aq 1 1z 1

a a
=

= −
⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫v  

 It is easily seen that the poles of the integral are at the point  

                       
1/ 2

2

1 1z i 1
a a

⎛ ⎞= ± −⎜ ⎟
⎝ ⎠

                      for    2a 1>  

                          
1/ 2

2

1 1 1
a a

⎛ ⎞= ± −⎜ ⎟
⎝ ⎠

                       for      2a 1<                              

For 2a 1> , the residue ( )Res 1+  for ( )1/ 22z 1/ a i 1 1/ a= + −  is ( )1/ 21/ 2i 1 1/ a−  whereas  

 the residue ( )Res 1−  for ( ) ( )1/ 22z 1/ a i 1 1/ a Res 1+= − − = − . Since the sum of the re- 

sidue is zero then there is no contribution to the integration from 2a 1> . 
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 Now, for 2a 1< , the poles are at ( )1/ 22
1,2z 1/ a 1/ a 1= −∓ . Since 1 2z .z 1= , only the 

pole 1z  lies inside the unit circle z 1= and the maximum value of a is unity. It follows  

that the upper limit of the p-integration of Eq. (4.13) is q/2. Also, since the residue for   

1z is equal to ( )1/ 221/ 2 1/ a 1− − , then the value of ( )I θ is equal to 2 /− π 2 2(q 4p− 1/ 2)  

and Eq. (4.13) becomes 

                             ( ) ( )
( )

q / 2

1/ 22 2 2
0

p f p dp4mq,T
q q 4p

−
∏ =

π −
∫=

                                               (4.14) 

As before, it is simpler to scale the parameter at finite temperatures as follows: 

    Fx p / k= ,     Fy q / k= ,      Ft T / T=     and     1/ tln e 1⎡ ⎤α = βµ = −⎣ ⎦  

 The static polarization, then, becomes 

                   ( ) ( )
( )

y / 2

1/ 22 2 2
0

x f x dx4my, t
q y 4x

−
∏ =

π −
∫=

                                                   (4.15) 

where                               ( ) ( )2x / tf x 1/ e 1−α= +                                                     (4.16) 

The variation of ( )y, t∏  for various y and t is shown in Figure 4.1 where the unit that 

2 2m 1= ==  and 2e 2=  have been used. 
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               Figure 4. 1 Variation of static polarizability with Fy q / k=  for various Ft T / T= . At  t = 0, it is constant of the value  
               -0.159 up to y = 2 and drastically change to zero for large y. At higher temperatures they tend to be a function of t  
 alone for small y and a function of y alone for large y.  
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 Since the static polarization is a function of scaled wave vector y and the scaled 

temperature t, we will consider 4 limits of this function 

 a. Low temperature, small y limit 

 b. Low temperature, large y limit 

 c. High temperature, small y limit, and 

 d. High temperature, large y limit 

 4.2.1. Low temperature, small y limit 

 Let 2x / t z=  and the Fermi function can be split to 

                                                 z z

1 11
e 1 e 1−α α−= −

+ +
 

and with the unit 2 2m 1= ==  and 2e 2=  then Eq. (4.15) becomes 

                         ( )
2 2 1/ 2y / 4t y / 4t

z 2
0 0

t dz 1y, t dz
y e 1 y 4tzα−

⎡ ⎤ ⎛ ⎞−
∏ = −⎢ ⎥ ⎜ ⎟π + −⎢ ⎥ ⎝ ⎠⎣ ⎦

∫ ∫  

At low temperature the second integral can be approximated to y / 2t eα  and 1/ tα ∼ , 

thus it can be approximate to zero, while the first integral gives the value y / 2t . Hence 

the polarization in this limit will be 

                         ( )
t 0
y 0

1y, t 0.159
2→

→

−
≡ −

π∏ ∼                                                            (4.17) 

 4.2.2. Low temperature, large y limit 

 For small t and large y, the upper limit of the integration, 2y / 4t , can be appro - 

ximated to ∞ . Thus 
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                           ( )
( )( )1/ 2z 2

0

t dzy, t
y e 1 y 4tz

∞

−α

−
∏

π + −
∫∼  

 The integral can be carried out by using the Sommerfeld method (Sommerfeld 

and Bethe, 1933) and has the value:  

                      ( ) ( ) ( )2

0 z

dg zty, t g z dz higher term
y 6 dz

α

=α

⎡ ⎤− π
∏ = + +⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫  

                                    ( ) ( )
2

2
3/ 22

t 1 ty 4 y
y 2t 3 y 4

⎡ ⎤− π⎢ ⎥− − − +
⎢ ⎥π −⎣ ⎦

∼  

where ( ) ( )1/ 22g z 1/ y 4tz= − . The second term in the bracket goes to zero for small t 

and large y. Thus, 

                    ( ) ( )2
2

t 0
y

1 1y, t 1 1 4 / y
2 y→

→∞

− − − ≈ −
π π∏ ∼                                        (4.18) 

which is a function of y only. 

 4.2.3. High temperature, small y limit 

 In the high temperature limit the Fermi function can be approximated by the 

Boltzmann distribution function, i. e., 

                   ( ) ( )2 2x / t x / t1f x 1/ e 1 e
t

−α −= + ∼          where        e 1/ tα ∼  

The polarization in this limit becomes 

                     ( )
( )

2y / 2 x / t

1/ 22 2 2
0

2 x e dxy, t
y t 1 4x / y

−−
∏

π −
∫∼  
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Let 2x / y u≡  and expanding the exponential value as 

                            
2 2

2 2 2 4
y u / 4t

2

y u y ue 1
4t 32t

− = − + −"  

                                          
2 2y u1
4t

−∼  

The polarization in this limit then becomes 

                             ( )
1 12 3

2 2
0 0

1 u du y u duy, t
2 t 4t1 u 1 u

⎡ ⎤−
∏ −⎢ ⎥π − −⎣ ⎦

∫ ∫∼  

                                          
21 y1

2 t 6t
⎡ ⎤−

= −⎢ ⎥π ⎣ ⎦
 

∴                    ( )
t
y 0

1y, t
2 t→∞

→

−
π∏ ∼                                                                           (4.19) 

which is approximately a function of temperature alone. 

 4.2.4. High temperature and large y limit 

 Similarly to the case (4.2.3), we have 

                         ( )
( )

2 21 y u / 4t

1/ 22
0

1 u e duy, t
2 t 1 u

−−
∏ =

π −
∫  

Since                ( )1/ 22 211/ 1 u 1 u
2

− +∼          , then 

                       ( ) 2 2 2 2
1 1

y u / 4t 3 y u / 4t

0 0

1 1y, t u e du u e du
2 t 2

− −⎡ ⎤−
∏ +⎢ ⎥π ⎣ ⎦

∫ ∫∼    

                                   ( ) ( )2 2 2
2

y / 4t y / 4t y / 4t
2 2 4

1 2t t 4te 1 e e 1
2 t y y y

− − −⎡ ⎤− −
= − − − −⎢ ⎥π ⎣ ⎦
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2y / 4t

2

1 31 e
y 2

−− ⎛ ⎞≈ −⎜ ⎟π ⎝ ⎠
 

∴                ( ) 2

t
y

y, t 1/ y
→∞
→∞

− π∏ ∼                                                                         (4.20) 

 It is to be noted from Eqs. (4.18) and (4.20) that as y →∞ , the value of the pola- 

rization can be approximated to be a function of y only and goes to zero slowly for  

large y. Thus, the values in the two limits are almost flat which can be seen from 

Figure 4.1. 

 We then conclude that in the low temperature limit ( )t 0→ , the polarization is 

approximately constant with the value of -0. 159. This constant agrees quite well with 

that calculated by the previous work (Maldague, 1978) or the recent work (Bill et al., 

2003). The values are drastically change for y 2�  and go to zero as y →∞ . If one 

evaluate the dielectric function, ( )q, 0ε ω = , by using Lindhard’s formula, then it is  

found that the behaviours of 2D case is quite different from 3D case. In 2D case, the 

polarization is exactly constant at T = 0 up to Fq 2k=  whereas it has a logarithmic 

slope at Fq k=  in 3D case (Ziman, 1964). In the low temperature limit, the polari- 

zation decrease as 21/ q in 2D case but it is proportion to 21/ q for Fq k�  in 3D case. At 

higher temperature the curves converge slowly in 2D case and the sharpness near 

Fq 2k=  is disappears.   

4.3 Dynamic polarization  

 The dynamic polarization corresponds to the term n 0≠  in Eq. (4.11). It must be 

noted that the name is correct only for T = 0. At finite temperature the frequencies nω  



 66

     are related withβ , however, we still use the same name. From Eq. (4.11), we have 

     ( )
( )

( ) ( )
( )

2

n 2
n p q p

f p q f pd pq, ,T 2
i2 +

+ −
∏ ω = −

ω − ε − επ∫ G G G

G G G

=
       

                         
( )

( ) ( ) ( )
2

2
n p q p n p p q

2 1 1d p f p
i i2 + +

⎡ ⎤−
= −⎢ ⎥

ω + ε − ε ω + ε − επ ⎢ ⎥⎣ ⎦
∫ G G G G G G= =

 

                         ( )
( ) ( )

2

2 22 2
0 0 n

1 2m q 2pcospf p dp d
q q 2pcos 2m / q

∞ π + θ
= − θ

π + θ + ω∫ ∫= =
  

                         ( ) ( ) ( )
2

2 2
n0 0

m 1dp pf p d cc.
q q 2pcos i 2m / q

∞ π ⎡ ⎤−
= θ +⎢ ⎥π + θ + ω⎣ ⎦

∫ ∫= =
    (4.21) 

where cc denotes its complex conjugate. 

 Consider the angular integral, 

               ( ) ( )
2

1
1 n

0

I q 2pcos i 2m / q d
π

−
θ = + θ+ ω θ⎡ ⎤⎣ ⎦∫ =  

                                ( )
2

1

0

1 A cos d
2p

π
−= + θ θ∫  

where                  nA q / 2p im / pq= + ω =  

 Let   iz e θ=    and   ( )1cos z 1/ z
2

θ = + ,  then 

                                        ( ) ( ) 12
1

z 1

1I z 2Az 1 dz
ip

−

=

θ = + +∫v  

There are two poles at ( )1/ 22
1,2z A A 1= − ± − . Since 1 2z .z 1= , one root  1z A= − +  

( )1/ 22A 1− must be inside the unit circle z 1= , while the other root 2z  be outside the 
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 unit circle. Hence  

               ( ) ( )( ) ( ) 1/ 21 2
1 1 2

2

1 1 2 iI z z z z dz A 1
ip ip z z p

−− π π
θ = − − = = −⎡ ⎤⎣ ⎦ −∫v  

Similarly for its complex conjugate denoted by ( )2I θ , 

                                 ( ) ( ) 1/ 22
2I A 1

p
−∗π

θ = −   

where                                     nA q / 2p im / pq∗ = − ω =    

The total angular integration then becomes 

                  ( ) ( ) ( )1 2I I Iθ = θ + θ  

                          
( ) ( )
( )( )

1/ 2 1/ 22 2

1/ 22 2

A 1 A 1
p A 1 A 1

∗

∗

⎧ ⎫− + −π ⎪ ⎪= ⎨ ⎬
⎡ ⎤− −⎪ ⎪⎣ ⎦⎩ ⎭

 

Now, let 

 ( ) ( )2 22 2 i2 2
n nA 1 R e q / 2p m / pq 1 im / pφ− = = − ω − + ω= =  

        ( ) ( )2 22 2 i2 2
n nA 1 R e q / 2p m / pq 1 im / p∗ − φ− = = − ω − − ω= =  

where    ( ) ( ){ } ( )
1/ 22 22 22 2

n nR q / 2p m / pq 1 m / p⎡ ⎤= − ω − + ω⎢ ⎥⎣ ⎦
= =  

( ) ( ) ( )1/ 2 1/ 22 2 i iA 1 A 1 R e e 2R cos∗ φ − φ∴ − + − = + = φ  

                                          ( )( ) 1/ 22 2 2A 1 A 1 R∗⎡ ⎤− − =⎣ ⎦  

where   ( ) ( ) ( )2 22
n ntan 2 m / p / q / 2p m / pq 1⎡ ⎤φ = ω − ω −⎣ ⎦= =  
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Finally, the angular integral becomes 

       ( ) ( ) ( )
1/ 422 2 2 2 2 2 2 2 2

n nI 4 cos / q 4p 4m / q 16m /⎡ ⎤θ = π φ − − ω + ω⎢ ⎥⎣ ⎦
= =  

and the dynamic polarization reduces to 

   ( ) ( )

( ) ( )
n 1/ 42 22 2 2 2 2 2 2 2 20

n n

p f p cos dp4mq, ,T
q q 4p 4m / q 16m /

∞ φ−
∏ ω =

π ⎡ ⎤− + ω + ω⎢ ⎥⎣ ⎦

∫= = =
          (4.22) 

Again, with the same notation as before; 

    1/ t
F F Fx p / k , y q / k , t T / T , ln e 1⎡ ⎤= = = α = βµ = −⎣ ⎦   and  n 2 n /ω = π β= , 

Also together with unit 2 2m 1= ==  has been used, then the dynamic polarization in 

convenient form for numerical evaluation is  

     ( ) ( )

( ) ( )
1/ 42 24 2 2 2 2 2 20

x f x cos dx2y,n, t
y 4x y 4n t 4n ty

∞ φ
∏ =−

π ⎡ ⎤− − π + π⎢ ⎥⎣ ⎦

∫                    (4.23)  

where     
2

4 2 2 2 2 2

4n tytan 2
y 4x y 4n t

π
φ =

− − π
                                                             (4.24) 

                  ( ) 2x / t

1f x
e 1−α

=
+

                                                                               (4.25) 

 Note that the upper limit of the p-integration is ∞  in contrast to the value y/2 for 

the case of static polarization. Both of the polarizations are the function of y and t but 

independent of the density of electron gas. 

 Graphs of  ( )y, n, t∏  versus y for different values of n and some fixed t values 

are shown in Figure 4.2 ( a )-( j ). It is equal to zero at y = 0 for all temperatures and 

n’s which can be proved as follow. By geometry and Eq. (4.24) we have 
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( ) ( )

4 2 2 2 2 2

1/ 22 24 2 2 2 2 2 2

y 4x y 4n tcos 2
y 4x y 4n t 4n ty

− − π
φ =

⎡ ⎤− − π + π⎢ ⎥⎣ ⎦

                                 (4.26) 

At y = 0, cos 2 1φ= −  or cos 0φ= , then the polarization given by Eq. (4.23) is equal to 

zero. 

 At very low temperature ( )t 0.01∼  it abruptly increases (negative side) with y 

to different values for different n up to y 2∼ , and then decreases rapidly to zero for 

y 2� . The behaviour of the polarization for y 2�  at fixed t for different values of n 

is identical. At high temperatures, the sharpness of the curves around y 2∼  are 

broaden and the peaks are shifted to higher values of y.  
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As before, we will consider four limits of the dynamic polarization. 

 4.3.1 Low temperature, small y limit  

 At low temperature and small y, cos 2φ  given by Eq. (4.26) can be approximated 

to  

                  
( )

( ) ( )

2 2 2 2 2

1/ 22 22 2 2 2 2 2

4x y 4n t
cos 2

4x y 4n t 4n ty

− + π
φ ≈

⎡ ⎤+ π + π⎢ ⎥⎣ ⎦

 

                                       
( )

2 2 2 4

22 2 2 2 2

1 n t y1
2 x y n t

π
≈ − +

+ π
 

and since             2cos 2 2cos 1φ = φ− , then 

                              ( )
2

2 2 2 2 21 ycos 1/ 1 x y / n t
2 n t

⎡ ⎤φ = + π⎣ ⎦π
 

The dynamic polarization, therefore, reduces to 

          ( ) ( )
1/ 22 2 2 2 2

0

x f x cos dx2y,n, t
4x y 4n t

∞ φ
∏ ≈ −

π ⎡ ⎤+ π⎣ ⎦
∫  

                                   ( )
( )

2

3/ 22
0

x f x dx1 y
2 n t 1 xy / n t

∞⎛ ⎞= − ⎜ ⎟π π⎝ ⎠ ⎡ ⎤+ π⎣ ⎦
∫  

Let  2 2 2 2x / t z , a y / n t= = π   then 

       ( ) ( )
z

0

g z dzay,n, t
4 e 1

∞

−α∏ = −
π +∫  

where  ( ) ( ) 3/ 2g z 1 az −= + . Using Sommerfeld approximation 
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∴           ( ) ( ) ( )2

0 z

dg zay,n, t g z dz
4 6 dz

α

=α

⎡ ⎤− π
∏ +⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫∼  

                                ( ) ( )
2 2

1/ 2 5/ 21 a1 1 a 1 a
2 8

− −⎡ ⎤− π
= − + α + + α⎢ ⎥π ⎣ ⎦

 

                                 ( ){ } 1/ 221 1 1 y / n t
2

−− ⎡ ⎤= − + π⎢ ⎥π ⎣ ⎦
 

∴          ( ) ( ){ } 1/ 22

y 0
t 0

1y,n, t 1 1 y / n t
2

−

→
→

− ⎡ ⎤≈ − + π⎢ ⎥π ⎣ ⎦∏  (4.27) 

 Note that the polarization is also dependent on n, and if n = 0 it reduces to the 

value 1/ 2− π  of the static case. 

      4.3.2 Low temperature, large y limit 

 In this limit cos 2φ  can be approximated as 

           ( ) ( ) ( )
1/ 22 24 2 2 2 2 2 2 2 2 2cos 2 y 4x y / y y 4x 4n t / y 4n t⎡ ⎤φ ≈ − − − π + π⎢ ⎥⎣ ⎦

 

                               1≈  

or    cos 1φ ∼ , then the polarization becomes 

          ( ) ( )
( )1/ 24 2 2

0

x f x dx2y,n, t
y 4x y

∞

∏ ≈ −
π −
∫  

Let   2x / t z=  and using Sommerfeld expansion, we have 

                   ( ) ( ) ( )2

2
0 z

dg zty,n, t g z dz
y 6 dz

α

=α

⎡ ⎤− π
∏ = +⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫  
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where                   ( ) ( ) 1/ 22g z 1 4tz / y
−

= −  

Finally, we get 

         ( ) ( )1/ 22 2

t 0
y

1y,n, t 1 1 4 / y 1/ y
2→

→∞

− ⎡ ⎤− − − π⎢ ⎥⎣ ⎦π∏ ∼ ∼                                 (4.28) 

which is independent of integer n as we expect and has the same form with Eq. (4.18) 

of the static case. 

 4.3.3 High temperature, small y limit 

 The value of   cos 2φ  in this limit can be approximated as 

          ( ) ( ) ( )
1/ 22 22 2 2 2 2 2 2 2 2 2 2cos 2 4n t 4x y / 4n t 4x y 4n ty⎡ ⎤φ ≈ − π + π + + π⎢ ⎥⎣ ⎦

 

                               ( )22 2 2 4 2 2 2 2 21 n t y / 2 x y n t= − + π + π  

or                  ( ) ( )
122cos y / 2n t 1 xy / n t
−

⎡ ⎤φ = π + π⎣ ⎦  

The polarization becomes 

              ( ) ( )
1/ 22 2 2 2 2

0

x f x cos dx2y,n, t
4x y 4n t

∞ φ
∏ ≈ −

π ⎡ ⎤+ π⎣ ⎦
∫  

At high temperature, the Fermi function   ( ) 2x / t1f x e
t

−∼  

∴                    ( )
( )

22 x / t

3/ 22 3 3 2
0

y x e dxy,n, t
2n t 1 xy / n t

∞ −−
∏ ≈

π ⎡ ⎤+ π⎣ ⎦
∫  

                                          
2 2

2 3 3 2 2

y t 3y
2n t 2 4n

⎛ ⎞−
≈ −⎜ ⎟π π⎝ ⎠

 



 78

or                  ( ) 2 2 3 2

t
y 0

y, n, t y / 4n t
→∞
→

− π∏ ∼                                                             (4.29) 

 4.3.4 High temperature, large y limit 

 Since cos 2 0φ ∼  or cos 1/ 2φ ∼  and ( ) 2x / t1f x e
t

−∼ , then 

                  ( ) ( )
( )1/ 2

0

x f x cos dx2y,n, t
2y n t

∞ φ
∏ −

π π∫∼  

or                    ( ) ( )1/ 2

t
y

y, n, t 1 / 2 y 2n t
→∞
→∞

− π π∏ ∼                                                   (4.30) 

which is a very small quantity 

4.4 Evaluation of the dielectric function in its full form 

 To study the impact of static and dynamic screening in the layered system we 

need to calculate the dielectric function given by Eq. (4.8). In particular, to obtain cT  

of HTS we have to determine these functions at finite temperatures. Since the inverse 

( )1
zq,q , n, t−ε  of the dielectric function is the quantity that enters the vertex    cΓ =  

( ) ( )c z zV q,q / q,q , n, tε  the result of this quantity is shown separately between the sta- 

tic and dynamic cases.     

         4.4.1 Static case 

 The static polarization, which enters in the static case of the dielectric function 

is given by Eq. (4.15). The result is shown in Figure 4.3 for the same values of para - 

meters as in Figure 4.2 
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  4.4.2 Dynamic screening 

 The dynamic polarization given by Eq. (4.23) is used for the evaluation of the 

dielectric function necessary to study the dynamic screening. The inverse  

( )1
z nq,q , ,T−ε ω  of the dielectric function as a function of Fy q / k=  at various t and n 

is shown in Figure 4.4. Note the strong q and nω  dependence of the function at finite 

temperatures. This shows the necessity to consider the dielectric function in its full 

form to study the dynamical screening of the Coulomb interaction. Also note that the 

inverse dielectric function is zero (perfect screening) only in the static limit 
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     A few important properties of the inverse dielectric function will be pointed out. 

The function is bounded for all q and nω . For high frequencies and / or large wave 

vectors, the inverse dielectric function goes to1. This means that the Coulomb interac- 

tion is unscreened and thus long-range in these limits. However, the unscreened li- 

mits are shifted to larger wave vectors with the increasing of frequencies and tempera- 

tures. At sufficiently high frequencies, the inverse dielectric function takes the form 

             ( )
n

2
p1

z n 2
n

lim q,q , ,T 1−

ω →∞

ω
ε ω ≈ −

ω
                                                        (4.31) 

which  is  the  so-called  Drude  limit  ( Nozie res`  and  Pines, 1989)   where   2
pω =   

( )2
zq 0,q 0ω = = is the usual 3D optical plasmon. It is only at zero frequency or in the 

static case (n = 0) that the Coulomb interaction is perfectly screened and the inverse 

dielectric function takes the form of the Thomas-Fermi type. 

                     ( )
121 2

z n TF zq,q , 0,T 1 k / q,q
−

− ⎡ ⎤ε ω = = +⎣ ⎦                                       (4.32) 

Where TFk  is the Thomas-Fermi screening wave vector which is given by 2 2
TF nk m /= ω  

22=  for the layered system.  

 The full temperature, frequency and wave-vector dependence of the dielectric 

function describing the screening in layered superconductors will be useful to study 

the effect on cT . The additional impact of dynamic screening on pairing in layered 

superconductors had been discussed (Bill et al., 2003). Three classes of layered super- 

conductors had been studied: metal-intercalated halide nitrides, layered organic ma- 

terials and high- cT oxides. They showed that  the  plasmon contribution is dominant in 
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 the first class of layered materials. They obtained cT 24.5K≈  which is very close to 

the observed value cT 25.5K= . In the absence of the plasmon contribution they ob- 

tained ph
cT 1K� . For the layered organic superconductors, they obtained cT 10.4K=  

while in the absence of acoustic plasmons they obtain ph
cT 6.3K= . Therefore, 40% of 

the value of cT is due to the pairing of electrons via the exchange of acoustic plasmon. 

In the case of high- cT  oxides they obtained cT 36.5K=  which is close to the experi- 

mental value cT 38K= . In the absence of the screened Coulomb interaction they ob- 

tained ph
cT 30K= , thus about 20% of the observed value of cT is due to acoustic plas- 

mons. Thus the dynamically screened interlayer Coulomb interaction has been shown 

to be important for superconductivity in the cuprates. 

 In the next chapter the evaluation of the cT of these materials will be considered.  

 



CHAPTER V 

CALCULATION OF CRITICAL TEMPERATURE OF 

LAYERED SUPERCONDUCTORS  

 

5.1 Strong-coupled superconductors 

 The BCS theory provides a complete though approximate theory of both thermal 

as well as dynamic properties of superconductors in the weak coupling limit. Accord- 

ing to the BCS theory, the transition temperature cT  depends upon the product 

                                            ( )N 0 Vλ =                                                       (5.1) 

of the single spin density of states at the Fermi surface N (0) with the pairing potential 

V, and a cutoff frequency of order the Debye frequency Dθ . When λ  is small, in prac- 

tice less than 0.25, the BCS theory predicts that  

                                        ( )c DT 1.14 exp 1/= θ − λ     (5.2) 

In this same weak-coupling limit, the gap at zero temperature is given by  

                                            ( ) B c2 0 / k T 3.53∆ =  (5.3) 

which is frequently used as a test for the applicability of the BCS model. 

 Generalizations of the BCS treatment concentrate on two main problems:  

(1) inclusion of the repulsive Coulomb interaction between the electrons, and  

(2) extension of the BCS theory to the situation with arbitrarily large electron-phonon 

coupling by generalizing the treatment of normal metals, with electron-lattice interac- 



 90

tions incorporated in a systematic fashion. Both of these factors have been included in 

the  Eliashberg approach to superconductivity (Eliashberg, 1966). 

 The Coulomb repulsive interaction reduces the effective attractive interaction 

between the electrons, so that instead of Eq. (5.2) one obtains in the BCS approxima-

tion 

                                        c D
1T 1.14 exp ∗

⎛ ⎞
= θ −⎜ ⎟λ −µ⎝ ⎠

 (5.4) 

where ∗µ  is the so-called pseudo-Coulomb potential (Morel and Anderson, 1962). 

The Eliashberg correction to the BCS theory must be evaluated numerically. Exten-

ding this idea so that comparison to experiments could be made, Mc Millan (1968) 

calculated the self-energies of normal and paired electrons and used a dimensionless 

electron-phonon coupling parameter, 

                             ( ) ( )
max

2

0

d2 F
ω ω

λ ≡ α ω ω
ω∫  (5.5) 

where  ( )2α ω  is the average electron-phonon interaction at frequencyω , ( )F ω  is the 

phonon density of states, and maxω  is the maximum phonon frequency. (Note: this 2α   

has nothing to do with theα  associated with the isotope effect). Equation (5.5) should 

be general and apply for any boson–mediated pairing, not just phonon-mediated pai- 

ring. The 1−ω  in λ  increases the importance of the low-frequency bosons with respect 

to those at higher frequency. He numerically solved the finite temperature, nonlinear 

Eliashberg equations finding cT for various classes of strong-coupled superconductors. 

From these solutions, he constructed an approximate equation that relates cT  to a small 

number of parameters by the form 
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                      ( )
( )

D
c

1.04 1
T exp

1.45 1 0.62∗

⎡ ⎤+ λθ
= −⎢ ⎥λ −µ + λ⎣ ⎦

 (5.6) 

The most interesting feature of McMillan’s expression is the fact that the phonon 

contribution is effectively reduced by 0.62 ∗µ λ . This arises because the time correla-

tion between paired electrons are distorted by the repulsive Coulomb interaction so 

that in the presence of the Coulomb interaction a member of a pair cannot take full 

advantage of the attractive lattice polarization produced by its partner. 

 Due to the screening by the other electrons, the effective Coulomb repulsion ∗µ  

differs from the instantaneous Coulomb repulsion µ  by the relation 

                          el

ph

1 1 ln∗

⎛ ⎞ω
= + ⎜ ⎟⎜ ⎟µ µ ω⎝ ⎠

 (5.7)  

where elω  can be taken as the plasma frequency pω , or the Fermi energy Fε , whereas 

phω  corresponds to the high-frequency cutoff of the phonons or Debye frequency. 

Usually ∗µ is in range 0 – 0.2 and 0.1∗µ ≈  being the typical value for most super- 

conductors.  

 One should mention a very important feature of the phonon-mediated electron 

pairing. Namely; the transition temperature is proportional to the Debye temperature 

Dθ . Hence, cT  given by Eq. (5.4) depends on the mass M of the atoms composing the 

lattice. In the simplest situation we expect that 1/ 2
cT M−≈ . If the Coulomb repulsion 

between electrons is taken into account, then the relation is cT M−α≈ whereα  is obtai- 

ned by using Eq. (5.6) and was shown by Mc Millan to be 
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                    ( )( )
( ) 2

1 1 0.621 1
2 1 0.62∗

⎧ ⎫+ λ + λ⎪ ⎪α = −⎨ ⎬
⎡ ⎤λ −µ + λ⎪ ⎪⎣ ⎦⎩ ⎭

 (5.8) 

In the strong coupling limit ( )1λ ≥  the exponent α  is largely reduced from its initial 

value of ½. Therefore, if the value of α  is small, one may interpret this fact as either 

the evidence for strong electron-phonon coupling or that a new nonphonon mecha - 

nism is needed to explain superconductivity. 

5.2 Coexistence of the phonon and plasmon mechanisms 

 A simple analytical expression describing cT  for any strength of the electron-

phonon coupling phλ  is derived directly from the Eliashberg equation (Kresin, 1987a). 

It is given by   

                           
eff

c 1/ 22 /

0.25T
e 1λ

ω
=

⎡ ⎤−⎣ ⎦
    (5.9) 

where  
1/ 22ω= ω , ( ) ( )2 2d Fω = ω α ω ω ω∫ , ( )F ω  is the phonon density of states; 

( )2α ω  describes the electron-phonon interaction. The effective interaction strength is  

                              
( )eff 1 2 t

∗

∗ ∗

λ − µ
λ =

+ µ + λµ λ
  (5.10) 

The function ( )t λ  is defined graphically for allλ , but analytically for 1λ≤  and for 

1λ�  only. 

 Let us apply Eq. (5.9) to the La-Sr-Cu-O system in order to estimate the value of 

phλ .  According to data obtained by neutron inelastic spectroscopy, the phonon densi-

ty of states ( )F ω  in the 1.8 0.2 4La Sr CuO  system exhibits two sharp peaks at 1 100Kω �  

and 2 200Kω ≈ . Therefore, it is reasonable to put 150Kω = . Let  0.1∗µ =  and ( )2α ω  
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can be determined by the tunneling spectroscopy technique, then from Eq. (5.9) we 

obtain ph 5λ ≈ . This means that we require very strong electron-phonon coupling to 

account for the experimentally observed cT 40K≈ . However, from measurements of 

the energy gap and the ratio ( ) c2 0 / Tβ = ∆ that depends on the value of phλ shows that 

5β ≤ . This implies that phλ  for the system does not exceed the value phλ = 2, which is 

not sufficient to provide the experimentally observed cT 40K≈ and the corresponding 

value phλ = 5. Hence, we come to the conclusion that the electron-phonon interaction 

plays an important role in the La-Sr-Cu-O system but, nevertheless, there is need for 

an additional mechanism of attraction between the carriers. 

 As mentioned earlier that the electron-plasmon interaction is believed to be an 

additional mechanism which, jointly with the strong electron-phonon coupling, is 

responsible for high- cT  superconductivity. The concept of coexistence means that the 

electron-phonon plays an important role. The Coulomb repulsion is overcome mainly 

by the electron-phonon interaction. As for the plasmon contribution, the electron-

plasmon interaction provides an additional mechanism of electron-electron attraction, 

and in the presence of electron-phonon interaction it leads to an additional increase 

in cT . For a rough estimate the expression for cT  can be written in the form (Kresin, 

1987b):  

                               plph
c c ph

c

T T
T

α
ω⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (5.11) 

where                              pl

pl ph

λ
α =

λ + λ
 (5.12) 



 94

and  ph
cT  is the critical temperature in the absence of the plasmon mechanism. One 

can see that the large value of plasmon energy plω make the plasmon contribution no-

ticeable, even for small plλ . For example, if ph 2λ ≈ (this value corresponds to ( )2 0 /∆  

B ck T 5≈ ) and pl 0.3λ ≈ , pl 60 meVω ≈ , we obtain ph
cT 22K≈  and cT 38K≈ . If we use 

an experimental value of 1eV for the bulk plasmon frequency (Sulewski et al., 1987), 

which is a lower limit for the 3D to 2D crossover, we estimate a pl 0.2λ ≈   for cT ≈  

38K. It is clear that an increase of plω  results in a decrease of plλ . Plasmon –induced 

pairing can, therefore, make a noticeable change in cT  relative to ph
cT  even for small 

values of  plλ  and it arises from the large value of the plasmon frequency.   

 Using the plasmon exchange model, the cT  observed in the thallium-based and 

bismuth-based compounds was shown (Bose and Long, 1990) to increase with the 

number of CuO layers per unit cell, which is in agreement with observed result. The 

thallium-based compound with only one CuO layer per cell has a cT  of 80K; with two 

CuO layers its cT  is 105K, whereas with three CuO layers it is raised to 125K. Similar 

conclusions have also been drawn for the bismuth-based compounds.   

 The Eliashberg model, on the basis that the attractive interaction is provided by 

the plasmon mediated effective interaction between charge carriers, has been develop- 

ed (Longe and Bose, 1992a) to calculate the critical temperature in high- cT supercon- 

ductors. The effective interaction between the electrons are described within the RPA. 

This interaction can be written in the standard form 

              ( ) ( ) ( ) ( )
( )

2/ L
p z z

0 z 2 2
p z/ L

2 q,q M q,q
V q, V q 1 dq

q,q

π

−π

⎡ ⎤ω
⎢ ⎥ω = +

ω −ω⎢ ⎥⎣ ⎦
∫   (5.13) 
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where ( ) 2
0 MV q 2 e / q= π ε  is the bare 2D Coulomb interaction, ( )p zq,qω is the plas-

mon frequency and ( ) 2
zM q,q is the square of the electron-plasmon matrix element. 

Indeed, it has been shown (Allen and Dynes, 1975) that if the effective interaction 

between electrons in a superconductor can be written as given by  

Eq. (5.13), then the parameters λ  and 2ω  can be obtained from 

                 ( ) ( )
( )

2
z

p z
FS

2 M q,q
N 0

q,q
λ =

ω
 (5.14) 

and            ( ) ( ) ( )22
z p z

FS
N 0 2 M q,q q,qλ ω = ω  (5.15) 

where ( )N 0 is the density of states of the electrons at the Fermi surface and 
FS

…  

indicated that an average of the expression is taken over the Fermi surface. Hence, the 

frequency ω  is given by the square root of the ratio of (5.15) and (5.14). Equations  

(5.14) and (5.15) had been shown (Longe and Bose, 1992b) to be 

                    ( ) ( )
( )

F

m

2k
0

1/ 22 2
q F

2N 0 V q
dq

4k q
λ =

π −
∫  (5.16) 

and              ( ) ( ) ( )
( )

F

m

2k2
02

1/ 22 2
M q F

2N 0 q V q coth Lq2 ne dq
m 4k q

∗

π
λ ω =

π ε −
∫  (5.17) 

 First it is interesting to note thatλ , as given by Eq. (5.16), does not depend on 

the interlayer distance L. This is due to the analytic properties of the RPA potentials 

given by Eq. (5.13). Another important point has to be noted. The integrals (5.16) and 

(5.17) diverge for small momentum transfers q. The technique to address this difficul- 

ty is to introduce a finite mq (replacing 0) as the lower limit of integration in the two 

equations to obtain finite results. Physically one would expect that the effective range 
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of mq  should be of the order of inverse coherence lengthξ , since charge carriers at 

distances larger thanξ do not contribute significantly to Cooper pairing. Therefore, 

one can write mq 1/= ξ  and thus cT  must obviously depend on the value ofξ . 

 It is also interesting to note that even though integrals (5.16) and (5.17) diverge 

for small mq , but their ratio ( )2i.e. ω however does not. On the other hand, for mq lar-

ge i.e. m Fq 2k→ , 2ω tends rather slowly to the upper limit ( )F F F2k coth 2k L 2kσ σ∼   

where 2
M2 ne / m∗σ = π ε . Hence the range of variation of 2ω  as a function of mq is 

not very extended. This is not the case for λ  which diverges linearly for small mq . 

 As before, it is simpler to scale the parameter, Fy q / k= . Then Eqs. (5.16) and 

(5.17) become 

                ( )
( )F

22

1/ 22
M F 1/ k

2 e 1 dyN 0
k y 1 y / 4ξ

π
λ =

ε π −
∫  (5.18) 

        ( ) ( )
( )F

22
F2

1/ 22
M 1/ k

coth k Ly2 eN 0 dy
1 y / 4ξ

π σ
λ ω =

ε π −
∫  (5.19) 

where        ( ) mN 0
2

∗

=
π

 (5.20) 

                      
2

M

2 e n
m∗

π
σ =

ε
 (5.21) 

and               2
Fk 2 n= π  (5.22) 

 It is seen from Eqs. (5.18) and (5.19) that the two parameters obviously depend 

on the dielectric constant Mε , the effective mass m∗ , the surface number density n of 

the electron gas ( or equivalently the Fermi wave vector Fk  and hence the Fermi ener- 
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gy Fε ) and the coherence length ξ . The Coulomb repulsion parameter ∗µ depends on 

other boson frequencies and like many other investigators its numerical value is cho - 

sen to be 0.1. However, its value is still a matter of discussion and will be a second 

parameter to be varied around 0.1. Substituting these values of  , and ∗ω λ µ  in the Mc 

Millan’s equation and the Kresin’s equation for cT , the critical temperature of the 

cuprate superconductors will be obtained and discussed. 

5.3 Critical temperature of 1.85 0.15 4La Sr CuO  

 In this section we will focus on the 1.85 0.15 4La Sr CuO  for which most parameters 

have been determined and it deserves special attention because of the simplicity of its 

structure. This system plays a role similar to the hydrogen atom in atomic physics. It 

is the best test system for understanding the basic principles of high-temperature 

superconductivity. 

 Followings are the normal state parameters (Bill et al., 2003): 

 the interlayer distance               L 6.5 A= �  

 the Fermi wave-vector             7 1
Fk 3.5 x 10 cm−=    

 the dielectric constant              M 5 10ε −�  

 the effective mass                   em 1.7 m∗ =  

 the coherence length                  35 Aξ = �  

and the Coulomb pseudopotential is taken to be 0.1∗µ =  (here, em  being the mass of 

the bare electron) 
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 Two equations, Mc Millan’s equation and Kresin’s equation, will be used for the 

calculation of cT  of this material. The Mc Millan’s equation for the plasmon exchan-

ge model is similar to Eq. (5.6) and has the form 

                  ( )
( )c

1.04 1
T exp

1.45 1 0.62∗

⎡ ⎤+ λω
= −⎢ ⎥λ −µ + λ⎣ ⎦

 (5.23) 

where the Debye frequency Dθ  is replaced by the average frequency of plasmon, the 

exchange of which is responsible for superconductivity. 

 The Kresin’s equation for the plasmon exchange model to calculate the value of 

cT  is given by Eq. (5.9), i.e., 

                                 
eff

c 1/ 22 /

0.25T
e 1λ

ω
=

⎡ ⎤−⎣ ⎦
   

where the effective interaction strength effλ is given by Eq. (5.10), i.e.  

                                       
( )eff 1 2 t

∗

∗ ∗

λ −µ
λ =

+ µ + λµ λ
 

and the analytical expression for the function ( )t λ is given (Long and Bose, 1992b) by 

                          ( ) ( ) ( )t 0.75 0.8 / 1 0.12 0.5λ = + + λ − λ −  (5.24) 

 The results of cT  obtained by these two equations will be compared with the  

recent work by Bill et al. (2003). We will start with the calculation of λ  and ω  given 

by Eqs. (5.18) and (5.19) respectively.  As can be seen from the given parameters that 

the value of dielectric constant Mε is in range 5-10, and λ and ω  obviously sensitive 

to this choice of Mε . We, therefore, calculate the values ofλ , ω  and then pl
cT  by using 

different values of Mε . The result is shown in Table 5.1. The finite-wave vector 

(higher order in q) effect of plasmon dispersion relation given by Eq. (3.30), which is 
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the term ( ) 2 23 / 4 q / me= , on pl
cT is also shown in the table. It is seen that the values of 

pl
cT  obtained by using Kresin’s equation are higher than that by using McMillan’s 

equation and the finite-wave vector effect enhances the values of pl
cT  significantly. 
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Table 5.1 The calculated values for pl
cT  as obtained from Kresin’s equation ( c1T and c2T ) and from McMillan’s equation ( c3T and c4T ). 

c1T and c3T  are the values without the finite-wave vector effect whereas c2T  and c4T  are the values including that effect.  

 

 
By Kresin’s equation By McMillan’s equation 

c1T  c2T  c3T  c4T  

              

Mε  

(eV) ( )K  (eV) ( )K  (eV) ( )K  (eV) ( )K  

5 0.0120175 139.463 136.821 

57.943 

0.0126273 

0.00534767 0.0049338 57.256 

22.978 0.0021207 

130.213 

53.459 

20.279 0.00187163 21.720 

8.377 0.00077320 6.960 0.00064236 7.454 

2.753 0.00025411 2.109 0.00019467 2.259 

6 

7 

8 

9 

10 

0.0117898 

0.004993 

0.00198005 

0.00072192 

0.00023725 

0.00006867 0.797 0.00007355 

146.54 

62.059 

24.610 

8.973 

2.948 

0.854 

0.0112205 

0.00460658 

0.0017475 

0.00059975 

0.00018176 

0.00004722 0.548 0.00005057 0.587 
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 As reported by Bill et al. (2003), the experimental value of cT of 1.85 0.15La Sr  -

4CuO  is exp
cT 38K≈ . Their numerical result is cT 36.5K=  whereas in the absence of 

acoustic plasmon it is ph
cT 30K= . Therefore, the value of  cT  due to acoustic plasmons 

is pl
cT 6.5K= . The expected result (due to acoustic plasmons) to fit the experimental 

value is pl
cT 8K≈ . It is seen from table 5.1 that the expected results correspond to the 

dielectric constant M 8ε = (8.38K and 8.97K by Kresin’s equation, 6.96K and 7.45K 

by Mc Millan’s equation). These results are quite different from the values that cor-

respond to M 7ε =  and M 9ε = . It is, therefore, necessary to obtain pl
cT  that correspond 

to the dielectric constant around M 8ε = . The result is shown in Table 5.2. It is seen 

from Table 5.2 that the appropriated value of the dielectric constant is M 8.0ε �  

for 0.1∗µ = . 
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Table 5.2 The calculated values for pl
cT as obtained from the same process of Table 5.2 with dielectric constant around M 8ε =  

 
 
 

By Kresin’s equation By McMillan’s equation 

c1T  c2T  c3T  c4T  

 

   Mε

(eV) ( )K  (eV) ( )K  (eV) ( )K  (eV) ( )K  

7.5 

7.75 

8 

8.25 

8.5 

0.00120965 

0.00093736 

0.00072192 

0.00055241 

0.00041983 

14.0379 

10.8781 

8.3779 

6.4107 

4.8721 

0.00129557 

0.00100395 

0.00077320 

0.00059165 

0.00044965 

15.0351 

11.6508 

8.9730 

6.8661 

5.2182 

0.00103812 

0.000791967

0.000599759

0.000450694

0.000335921

12.0473 

9.19075 

6.96018 

5.23028 

3.89835 

0.00111186 

0.000848223

0.000642362

0.000482708

0.000359782

12.9031 

9.8436 

7.4545 

5.6018 

4.1752 

 
.   
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Finally, to find the proper value of effective repulsive strength ∗µ  (rather than 0.1) 

that fit the expected result of pl
cT 8K≈ , we use it here as a second parameter varying 

from 0.07 to 0.13 in steps of 0.01. The critical temperature pl
cT  as a function of the 

dielectric constant Mε  for 7 values of ∗µ is shown in Table 5.3 and Figure 5.1. It is 

seen from the figure that the proper value of Mε  and ∗µ  that fit the expected result of  

pl
cT 8K≈  are M 8.0ε = and 0.1∗µ = . 
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Table 5.3 The calculated values for pl
cT (in Kelvin, K) as a function of Mε by using 

Kresin’s equation for various values of effective repulsive strength around 0.1∗µ = . 

The Kresin’s equation without finite-wave vector effect has been used. 

 

Mε   

∗µ  7.5 7.75 8.0 8.25 8.5 

0.07 

0.08 

0.09 

0.10 

0.11 

0.12 

0.13 

32.286 

24.980 

18.940 

14.038 

10.141 

7.116 

4.830 

26.591 

20.211 

15.018 

10.878 

7.654 

5.210 

3.414 

21.845 

16.296 

11.853 

8.378 

5.731 

3.776 

2.381 

17.899 

13.091 

9.310 

6.411 

4.255 

2.706 

1.637 

14.625 

10.477 

7.274 

4.872 

3.131 

1.917 

1.109 

 

 

 



 105 
 
 
 

7 7.2 7.4 7.6 7.8 8 8.2 8.4
εM

0

10

20

30

40

T c
HK
L

 
 

           Figure 5.1 The critical temperature as a function of dielectric constant Mε for seven values of  

           electron-electron repulsive strength ∗µ , varying from 0.07 to 0.13 in steps of 0.01. 

0.09∗µ =  

0.11∗µ =  

8.378 0.13∗µ =  

0.12∗µ =  

0.1∗µ =  

0.08∗µ =  

0.07∗µ =  

 



CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

 The purpose of this research is to study the impact of plasmon exchange mecha-

nism on high temperature superconductivity in layered superconductors. Particular  

emphasis is set on the temperature effect and finite-wave vector (higher order in q) 

effect on plasmon dispersion relation in layered system. The particular emphasis is 

also set on the dynamically screened Coulomb interaction and the calculation of criti-

cal temperature of layered superconductor, i.e., 1.85 0.15 4La Sr CuO . 

 The plasmon exchange model has been proposed and discussed by several 

authors as soon as the high temperature superconductivity were discovered. This is 

because many of the discovered superconducting materials have a layered structure. It 

is believed that the layered nature of the superconducting cuprates which confines the 

collective motion of the electrons predominantly to the planes and leads to the un-

usual features of its plasmon spectra. The spectrum of a layered electron gas contains 

low-energy electronic collective modes called acoustic plasmons with a dispersion 

relation p qω ∝  that differs fundamentally from 3D metals. The screening of the Cou-

lomb interaction in this system is incomplete and the dynamic nature of the interac-

tion becomes important. As a result, the interplay between the attractive interaction 

and the Coulomb term is more subtle than the BCS theory. The electronic screening 

of the Coulomb interaction is described by the dielectric function which contains the 

polarization propagator. To obtain the critical temperature we have to determine these 
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 functions  at finite temperatures.  In  this research,  the static polarization is evaluated  

and analyzed separately from the dynamic one. The inverse of the dielectric function 

is evaluated numerically and the results can be compared with the previous work. 

 The plasmon dispersion relation in the layered superconductor is determined by 

the poles that correspond to the zeros of the real part of dielectric function. The layer 

form factor given by Eq. (3.8) which reflects the layered nature of the system is ap- 

plied only to this layered electron gas model. Other different structures will have 

different form factor. The temperature effect and the finite–wave vector effect comes 

from the 2D nature of the polarization propagator given by Eq. (3.28). Numerical 

result shows that the finite-wave vector effect makes the slope of the dispersion 

relation inc- rease significantly. This effect is, therefore, important at low temperature 

limit.  The temperature effect is quite small and can be negligible in this limit. The 

dispersion relation at high temperature is proved to be valid and comparable with the 

classical limit such as the system of electrons on the surface of liquid helium. 

 The dynamical screening of the Coulomb interaction is an essential feature of 

layered structure that provides for an additional contribution to the pairing. The pola- 

rization that enters in the calculation of the dielectric function has a static characte- 

ristics differ from the dynamic one. The static polarization in the low temperature 

limit is approximately constant with the value of -0.159 and drastically changes to 

zero for Fq 2k≥ . At higher temperature the curve converge slowly and the sharpness 

near Fq 2k= is disappear. The dynamic polarization is equal to zero at y q=  F/ k 0=  

for all temperatures and n’s. At very low temperature it abruptly increase with y up to 

y = 2 and then decreases rapidly to zero for y 2 . At higher temperatu-res, the curves 

are broaden and the peaks are shifted to higher values of y. The different 
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characteristics between static and dynamic polarizations causes the different curves of 

the inverse of dielectric function. The inverse dielectric function is shown to be zero 

only in the sta - tic case which means perfect or complete screening. The dynamic 

polarization leads to strong q and nω  dependence of the inverse dielectric function at 

finite temperatu- res. This is the reason why it is necessary to consider the dielectric 

function in its full form to study the dynamical screening of the Coulomb interaction. 

 Using the plasmon exchange model in the framework of the Eliashberg theory 

for strong coupling superconductors, the plasmon contribution to the critical tempera-

ture pl
cT  could be obtained. In this model the plasmons are assumed to be the attractive 

bosons in the pairing effect. The effective interactions between the electrons are des- 

cribed within the RPA. The electrons interact with each other within the same layer as 

well as from layer to layer via an effective interaction involving plasmon exchanges 

among all layers. Eliashberg’s equation for the calculation of cT has been modified 

into the McMillan’s equation and Kresin’s equation. These two equations contain two 

basic parameters to be evaluated, λ  andω . The quantity λ  represents the attractive 

strength between electrons, which in this model is essentially mediated by plasmons. 

The quantity ω  is the average value of the frequency of the plasmons, the exchange 

of which is responsible for superconductivity. Both λ  andω  obviously depend on the 

dielectric constant Mε , the effective mass m∗ , the Fermi wave-vector Fk , the interlayer 

distance L, and the coherence length ξ  (to specify the lower limit of integration for λ   

andω). The third parameter enters in the two equations for pl
cT  is the Coulomb repul - 

sion strength ∗µ . This parameter is generally not well known, but one knows that it is 
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limited by the condition 0 0.5∗< µ < . Many other investigators take its numerical 

value to be 0.1. In this work, ∗µ is kept as an undefined parameter around 0.1. 

 A specific cuprate superconductor, 1.85 0.15 4La Sr CuO , for which most parameters 

have been determined, is selected for the calculation of pl
cT . Since the experimental 

value of cT of this material is exp
cT 38K≈ and the phonon contribution to the cT is shown 

to be ph
cT 30K= , hence the plasmon contribution should be pl

cT 8K≈ . Indeed the 

critical temperature is sensitively dependent on parameters mentioned above. 

However, only Mε is not known precisely and the value of ∗µ should be tested around 

the value of 0.1. Variation of Mε and ∗µ shows that the proper values of them for 

pl
cT 8K≈ are M 8ε ≈ and 0.1∗µ ≈ . 

 The plasmon exchange model is very simple since the microstructure of the 

superconductors is completely neglected. The model is characterized by four parame-

ters only. For reasonable values of these parameters the calculated value of pl
cT is 

found to be in reasonable agreement with the experimental values of the materials. In 

the case of high-temperature oxides, the contribution of low-energy plasmons to the 

criti- cal temperature is significant but not dominant. The phonon contribution is still 

largest in this model. In some classes of layered superconductors, the acoustic 

plasmon contribution are shown to be dominant or of the same order by phonon 

contribution. 
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APPENDIX 

SOMMERFELD METHOD 

 
 Integrals of the Fermi-Dirac form 

                                   ( ) ( )
z

0

g z
I dz

e 1

∞

−αα =
+∫                                                 (A-1) 

occur throughout the many topics in theoretical physics. For 0α < , integrals of this 

type can usually be evaluated by elementary methods. In case with high degeneracy 

( )0α� and with g (z) slowly varying near z = α  and having a Taylor series expans- 

ion with a reasonable radius of convergence about that point, it is frequently possible 

to use the Sommerfeld method to obtain an asymptotic expansion in ascending powers 

of temperature. 

 The Fermi function ( ) ( )zf z 1/ e 1−α= + can be rewritten as  

                        
z

z z z

1 e 11
e 1 e 1 e 1

α−

−α α− α−= = −
+ + +

 (A-2) 

then Eq. (A-1) becomes 

                ( ) ( ) ( )
z z

0

g z g z
I dz dz

e 1 e 1

α ∞

−α −α
α

α = +
+ +∫ ∫  

                                 ( ) ( ) ( )
z z

0 0

g z g z
g z dz dz dz

e 1 e 1

α α ∞

α− −α
α

= − +
+ +∫ ∫ ∫  (A-3) 

For the second term in (A-3), let 'z z= α − , then 

                ( ) ( ) ( )
' '

' '0
' '

z z z
0 0

g z g zg z
dz dz dz

e 1 e 1 e 1

α α

α−
α

α − α −
= − =

+ + +∫ ∫ ∫
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( ) ( )

' '

' '
' '

z z
0

g z g z
dz dz

e 1 e 1

∞ ∞

α

α − α −
= −

+ +∫ ∫  

For the third term in (A-3), let ''z z= −α , then 

                    ( ) ( )
''

''
''

z z
0

g zg z
dz dz

e 1 e 1

∞ ∞

−α
α

α +
=

+ +∫ ∫  

Using these terms then Eq. (A-3) becomes 

 ( ) ( ) ( ) ( ) ( )
'' ' '

'' ' '
'' ' '

z z z
0 0 0

g z g z g z
I g z dz dz dz dz

e 1 e 1 e 1

α ∞ ∞ ∞

α

α + α − α −
α = + − +

+ + +∫ ∫ ∫ ∫  

          ( ) ( ) ( ) ( )n 1 nz

n 10 0

g z dz dz g z g z 1 e
α ∞

+ −

=

≈ + α + − α − −⎡ ⎤⎣ ⎦ ∑∫ ∫  

where the last integral can be neglected since 0α� . 

Expanding ( ) ( )g z g zα + − α − in Taylor series, then 

 ( ) ( )
( ) ( )
( ) ( )

2m 1
n 1 2m 1 nz

m 0 n 10 0

g
I g z dz 2 1 dz z e

2m 1 !

+α ∞
+ + −

= =

α
α = + −

+∑ ∑∫ ∫  

          ( )
( ) ( )
( ) ( ) ( )n 12m 1

2m 2
m 0 n 10

g 1
g z dz 2 2m 1 !

2m 1 ! n

++α

+
= =

α −
= + +

+∑ ∑∫  

or 

 ( ) ( ) ( ) ( ) ( )
( )

2m 1 2m 2
2m 1

m 1
m 00

2 1
I g z dz 2 g B

2m 2 !

+ +α ∞
+

+
=

− π
α = + α

+∑∫  (A-4) 

where m 1B + is Bernoulli number;  1B 1/ 6= ,  2B 1/ 30= . 

 Equation (A-4) may be rewritten as 

               ( ) ( ) ( )I csc D g zα = π π  (A-5) 

where the operator csc Dπ π indicates the Laurent expansion of the cosecant about zero 

with 
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z

dD
dz =α

=                 and              
0

1 dz
D

α

= ∫  (A-6) 

 Suppose that ( ) 3/ 2g z z= , using Eq. (A-4) we have 

                
3/ 2 2 4 6

3/ 2 1/ 2 3/ 2 7 / 2
z

0 0

z dz 3 7 31z dz
e 1 2 6 960 10752

∞ α
− −

−α

π π π
= + α − α − α −

+∫ ∫ …  

 Occasionally, a calculation at non-zero temperature requires the evaluation of a 

Fermi-Dirac integral, for which the integrand does not satisfy the two conditions men- 

tioned above. For example, g (z) may oscillate rapidly or may have an inopportunely 

situated branch point. In such circumstances, ordinary methods may fail. A useful tec- 

hnique involves converting the real integral into a complex integral by substituting the 

representation for the Fermi function, 

               ( ) ( ) ( )
b i

t z
z

b i

1 1f z csc t e dt
e 1 2 i

+ ∞
α−

−α
− ∞

= = π π
+ π ∫  (A-7) 

where 0 < b < 1. 

 This representation possesses enough algebraic flexibility to permit the reduce- 

tion of Fermi integral to tabulated Laplace transforms and their inverses, or at worst, 

to a tractable exercise in residue theory. In some cases exact evaluation in terms of ta- 

bulated mathematical functions is possible. For example, the familiar integral 

                 ( ) ( ) z
0

1 z dzI
1 e 1

∞ ν

ν −αα =
Γ ν + +∫  (A-8) 

can be expressed in terms of confluent hypergeometric functions. However, this 

common integral satisfies the second condition above and can be evaluated in the high 

degeneracy limit by Eq. (A-5). 
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