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นางสาวอุบล สุริพล: การศึกษาเชิงทฤษฎีของการเกิดแสงเซ็คกันฮารโมนิคตามแนวสะทอนจาก
ผลึกแอมโมเนียมไดไฮโดรเจนฟอสเฟต (.^Q_9Q.DN->$ ).%;A$ _7$ 9Q7>QN.Q;
)QN_F;J^-9!_FDN$ `QFQ9-.D_F$ DF$ -!!_FD%!$ ;D^A;9_`QF
4^_)4^-.Q$T-;4V$N9A).->) อ. ที่ปรึกษา: ศ. ดร. วุฑฒิ พันธุมนาวิน, 75 หนา.
D)EF$$GHIJHKLGJLMJM

วิทยานิพนธน้ีเปนการศึกษาเชิงทฤษฏีของการเกิดแสงเซ็คกันฮารโมนิคตามแนวสะทอน

จากผลึก ADP ซึ่งวางตัวอยูในของเหลว วัน-โบรโมแนฟธาลีน ที่มีคาดัชนีหักเหมากกวาผลึก โดย

อาศัยแสงเลเซอรแบบชวงสั้นมากที่ความยาวคลื่น 900 นาโนเมตรเปนตัวกระตุนใหเกิด ความเขม

ของแสงเซ็คกันฮารโมนิคจะถูกค ํานวณโดยโปรแกรมคอมพวิเตอร C++ ทั้งนี้โดยใชทฤษฎีของ

Bloembergem และ Pershan (1962) เปนพื้นฐาน ไดมีการพบวาความเขมของแสงเซ็คกันฮารโมนิค

ในแนวสะทอนมีคามากที่มุมตกกระทบวิกฤตภายใตสภาวะเฟสแมชชิง (phase-matching) และใน

ทางตรงกันขาม มีการพบวาการเกิดแสงเซ็คกันฮารโมนิคในแนวสะทอนมีคานอยที่สุดที่สภาวะมุม

นอนลเินียรบริวสเตอร (Nonlinear Brewster angle) โดยในการศึกษาการเกิดมุมนอนลิเนียรบริวส

เตอรไดกํ าหนดลักษณะการวางตัวของผลึกโดยใหแกนออพติคของผลึกทํ ามุมกับผิวตกกระทบของ

ผลึกในแบบตางๆ เชน 42.68°, 30°, 90° และ 0° ซ่ึงพบวามุมนอนลิเนียรบริวสเตอร มีคาเทากับ

42.02°, 52.60°, 0° และ 69.93° ตามล ําดับ จากผลทางทฤษฎีแสดงใหเห็นวามุมนอนลิเนียรบริวส

เตอรสามารถเกิดไดหลายคาในผลึกเดียวกัน ทั้งนี้ขึ้นกับลักษณะการวางตัวของผลึก
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Chapter I

Introduction

1.1 Introduction:Literature Review

The field of nonlinear optics is the study of the interactions of laser light with

matter when the response of material system to an applied electromagnetic field is

nonlinear. The beginning of nonlinear optics took place with the first observation of

second harmonic light of the ruby laser in quartz crystal (Franken, Hill, Peters, and

Weinreich, 1961). It has been rapidly growing since the early 1960s soon after the

invention of the laser (Maiman, 1960). The high intens ity of laser light was utilized as

a coherent light source making available experimental observations of nonlinear

optical phenomena which cannot occur in conventional (linear) optics. The most

interesting of such phenomena is second harmonic generation in which the light wave

of frequency ω propagating through a crystal lacking inversion symmetry is converted

to light wave at 2ω. Second harmonic generation in transmission was first discovered

by Franken et al. (1961) by focusing the red light (λ = 694 nm) from ruby laser onto

the quartz crystal, resulting in the blue light (λ = 347 nm) generated at a second

harmonic frequency. However, the conversion efficiency from ω to 2ω was relatively

small. The achievement of maximum intensity of transmitted second harmonic

generation can be performed by phase-matching technique (Maker, Terhune,

Nisenoff, and Savage, 1962; Giordmaine, 1962; Ashkin, Boyd, and Dziedzic, 1963;

Boyd, Ashkin, Dziedzic, and Kleinman, 1965; Bhanthumnavin and Lee, 1994).
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Bloembergen and Pershan (1962) first theoretically demonstrated the behavior

of second harmonic wave such as the refraction and reflection, at the boundary of a

nonlinear media. Their work also included the generalized Snell’s law, which showed

the relation between the incident, reflected and transmitted angles of both

fundamental beam and second harmonic beams. The analysis of total reflection and

Brewster angle phenomena were given as well. In 1963, Ducuing and Bloembergen

(1963) performed an experimental verification of the law for second harmonic light in

reflection. Many aspects of the Bloembergen and Pershan (BP) theory have been

verified in different experimental situations. The most important aspects of BP theory

were concerned with primary beam incidents from an optically denser medium to a

lesser dense nonlinear medium. In this case, total reflection of primary beam and

second harmonic beam will occur, as demonstrated by Bloembergen, Simon, and Lee

(1969) in particular, for non-phase-matched second harmonic at total reflection. The

phase-matched second harmonic at total reflection leads to enhancement of the

reflected second-harmonic intensity at critical angle (Bloembergen and Lee, 1967;

Lee and Bhanthumnavin, 1976; Bhanthumnavin and Lee, 1994). In addition, there is

an interesting phenomenon, which occurs when the primary beam is incident upon a

nonlinear medium at particular angle of incident called nonlinear Brewster angle. At

this angle, the reflected second harmonic intensity vanishes. This phenomenon was

first experimentally demonstrated by Chang and Bloembergen (1966) in GaAs crystal

for opaque medium in which the vanishing of reflected second harmonic light could

not be observed clearly. Later Lee and Bhanthumnavin (1976) first observed the

nonlinear Brewster angle in transparent medium KDP crystal. In 1994,

Bhanthumnavin and Lee (1994) performed experimental observations of the nonlinear
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Brewster angle and the phase matched second harmonic at total reflection of KDP

crystal by using a mode-locked neodymium glass laser. However, the nonlinear

Brewster angle can occur at other crystallographic orientations of the crystal because

the occurrence of nonlinear Brewster angle depends on the inclination of nonlinear

polarization )2( ωNLSP , which lies in the plane of incidence. The theoretical

prediction of nonlinear Brewster angle in ADP crystal immersed in the optically

denser liquid 1-Bromonapthalehe by using the Nd:YAG laser of λ = 1064 nm as a

fundamental beam was reported by Bhanthumnavin and Ampole (1990) also for KDP

crystal reported by Suripon and Bhanthumnavin (1999). Besides the null intensity of

second harmonic in reflection, the null intensity in transmission, which does not occur

in linear optic, has also been observed (Bhanthumnavin and Lee, 1994; Dürr,

Hildebrandt, Marowsky, and Stolle, 1997).

1.2 Objective

In order to extend the field of nonlinear optics, especially in the area of second

harmonic generation in reflection, this thesis is devoted to the theoretical investigation

of reflected second harmonic intensity generated from ADP crystal. The ultrashort

pulse laser at wavelength λ =900 nm with high peak power output will be utilized as

the fundamental beam. The maximum and minimum intensity of reflected second

harmonic lights are obtained through phase matching technique, and for the condition

of nonlinear Brewster angle, respectively. Such intensity is calculated by computer

simulation (using C++program) based on the theory of Bloembergen and Pershan

(1962). Different crystallographic orientations of the ADP crystal will be used to
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determine the intensity of reflected second harmonic generation under ultrashort laser

pulse excitation. The nonlinear Brewster angle dependence on the crystalloghapic

orientation will be investigated. Unlike the previous studies, in which the

crystallographic orientation of the crystals either had their optic axis ( )2( ωNLSP )

inclining with respect to their incident surface at 82° (GaAs crystal by Chang and

Bloembergen, 1966); 42.05°(ADP crystal by Bhanthumnavin and Ampole, 1990);

41.2° (KDP crystal by Bhanthumnavin and Lee, 1994); or 30° (KDP crystal by

Suripon and Bhanthumnavin, 1999), the crystallographic cuts used in the thesis are

42.68°, 30°, 0° and 90°.

1.3 Hypothesis

Under the newly proposed crystal orientation cuts, it is expected to achieve the

condition of nonlinear Brewster angle and phase matching condition at total reflection

by using ultrashort pulse laser at λ =900 nm. Unlike the linear case, the nonlinear

Brewster angle dependence on crystallographic orientations is not unique. The test of

hypothesis can be done by comparing our result with the previous studies in which the

nonlinear medium has same crystal class as KDP and ADP crystals.

1.4 Organization of the Thesis

This paper is organized as follows.

Chapter 1: Introduction. This chapter presents the background and reviews the

history of second-harmonic generation. The research objective and hypothesis are also

given.
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Chapter 2: Theory of Second-harmonic generation. This chapter will focus on

second-harmonic generation in reflection. The concept of both phase-matching at total

reflection and nonlinear Brewster angle are discussed.

Chapter 3: Procedure. The chapter is for the theoretical preparation of ADP

crystal cut and selection of optically denser fluid in order to enable for total reflection.

The computer C++ program used for the theoretical calculation of relative reflected

second-harmonic intensity will be discussed as well.

Chapter 4: Results and Discussion. In this chapter, results of second-harmonic

harmonic generation via phase-matched technique as well as ADP crystallographic

cuts in order to obtain nonlinear Brewster angles are well described, analyzed and

plotted in semi-logarithmic scale.

Chapters 5 conclusions of the results as well as suggestion for future research

are presented.



Chapter II

Theory of Second-harmonic Generation

2.1 Introduction

In this chapter, the theory of optical second-harmonic generation will be

presented.  The propagation of second-harmonic waves governed by Maxwell’s

equations with the incorporation of nonlinear polarization is described by the

Bloembergen and Pershan (1962) theory. The general law of refraction and reflection

which gives the direction of the harmonic waves that emanate form the boundary of

nonlinear medium are derived. The intensity of second-harmonic in reflection

described by the nonlinear Fresnel factor that actually depends on the incident angle

of the fundamental beam is demonstrated. The achievement of both maximum and

minimum of reflected second harmonic intensity via phase-matching and nonlinear

Breswter angle, respectively, are also theoretically carried out.

 2.2 Second-harmonic Generation

One type of the interaction of light wave with matter is the effect of electric

field on the polarization (P
v

) or dipole moment per unit volume within a material. In

case of linear optics, the induced polarization depends linearly on the applied electric

field, which can be described by the relationship
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EP
vv

)1(χ= , (2.1)

where the constant of proportionality )1(χ is known as the linear susceptibility. This

induced polarization acts as the source of new electromagnetic wave radiating in both

transmitted and reflected direction, with same characteristic as the applied field as

shown in Figure 2.1. Linear optical phenomena, such as the refraction, reflection,

dispersion, as well as birefringence of light propagation in a medium are based on this

relation.

However, Linear optical interaction is only applicable for low applied electric field

strengths. The existence of nonlinear optical phenomena in materials should occur

when a high electric field is applied. The nonlinear optics concepts can be found in

several textbooks (Bloembergen, 1965; Butcher and Cotter, 1990; Prasad and

Williams, 1990; Mills, 1991; Boyd, 1992; Newell and Moloney, 1992; He and Liu,

1999). The induced nonlinear polarization within material can be expressed as the

power series of the applied electric field

Figure 2.1. The geometric situation of linear optical
interaction.
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χχ , (2.2)

where )2(χ  known as the second order susceptibility, a tensor quantity the whose

components provide the response for a given orientation of the crystallographic axes

relative to the incident field. The second order nonlinear polarization results in optical

nonlinear phenomena, such as second-harmonic generation (SHG), sum - frequency

generation (SFG) and difference frequency generation (DFG). Here, we will

concentrate in detail only on second-harmonic generation, where a coherent optical

wave of frequency ω can induce a new coherent wave radiation at frequency 2ω in

noncentrosymmetric crystal. Figure 2.2 shows the process of second-harmonic

generation. The induced nonlinear polarization consists of the second-harmonic of ω,

fundamental frequency (ω) and an average (dc) term.

Figure 2.2. The geometric situation of second-harmonic
generation based on the nonlinear optical interaction.
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For second harmonic generation, the nonlinear polarization can be rewritten in vector

notation by

)()(:)2( )2( ωωχω EEP NLS
vvv

= , (2.3)

or in the matrix form of a third order tensor (that )2(
ijkχ  has 3×6 =18 elements)
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

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
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z
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, (2.4)

or, equivalently,

)()()2( )2(

,

ωωχω kjijk
kj

NLS
i EEP

vvv
∑= , (2.5)

where zyx ,,  are of a cartesian coordinate system; )(),2( ωω x
NLS

x EP , etc., are the

components of the vectors )2( ωNLSP
v

and )(ωE
v

, respectively. Here ω is actually a

parameter rather than an argument showing a true functional dependence. It is clear

that )2( ωNLS
zP will be induced along z -axis inside the medium if the fundamental

field is polarized along the xy -plane ( 0)( =ωzE ). It is important to note that the

second-harmonic can be generated from only noncentrosymmetric crystal in which its

crystal structure lacking inversion symmetry, such as GaAs, CdTe, KDP, ADP

crystals.

2.2.1 Wave equations in nonlinear medium

The behavior of the reflection and transmission waves, at the boundary of

nonlinear medium has been treated theoretically (Armstrong, Bloembergen, Ducuing,
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and Pershan, 1962; Bloembergen and Preshan, 1962). In this section, the derivation of

the wave equations of the monochromatic electric field of frequency ω1 in a nonlinear

medium will be discussed. Restricts us to a transverse plane wave, in the lossless,

nonlinear dielectric material. Maxwell equations for the medium with the

incorporation of the nonlinear source term NLSP  (Armstrong et al., 1962; Bloembergen

and Pershan, 1962), were given as

t

H

c
E

∂
∂−=×∇

v
v µ1 ,  (2.6)

t

P

ct

E

c
H

NLS

∂
∂+

∂
∂=×∇

vv
v πε 4)(1

,  (2.7)

where E
v

 is the electric field, with components ( E x, E y, E z), and H
v

is the magnetic

field, with components ( H x, H y, H z); µ  and ε  are the permeability and

permittivity, respectively, of the medium in which the wave is propagating; and c  is

the velocity of propagation in vacuum. E
v

, H
v

, and NLSP
v

 are functions of both position

),,( zyx  and time t .

If the medium is nonmagnetic and homogeneous (constant ε), 1=µ  and ε

will be taken as a scalar quantity. Combining the Maxwell’ s equations. (2.6) and

(2.7) leads to a wave equation contained with a nonlinear polarization source

2

2

22

2

2

4
t

P

ct

E

c
E

NLS

∂
∂−=

∂
∂+×∇×∇

vv
v πε

.              (2.8)

The wave at second-harmonic frequency ω2 = 2ω1 generated by NLSP
r

within the

medium will obey this equation. Choose the coordinate system in such a way that the

boundary is given by z  = 0, the plane of incidence (that plane which contains both

the incident, refracted and reflected wave vectors) given by xz -plane. The wave
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vectors ik1  and tk1 are incident and refracted ray, respectively. The time-space function

of the induced nonlinear source term at second-harmonic frequency is given by

),2(exp:)2(

)2(ˆ

1111

1

ωωχ

ω

−⋅=

=

rkiEE

PpP
stt

NLSNLS

vvvv

v

(2.9)

where tE1 is the amplitude of the refracted ray at the fundamental frequency and p̂ is a

nonlinear polarization unit vector. The wave vector of the nonlinear source term is

twice the wave vector of the refracted fundamental ray, ts kk 12
vv

= . It is meaningful to

write the Maxwell’s equation for second-harmonic wave as

2
1

2

22
2

2

2
1

2
2 )2(4)2(

t

P

ct

E

c
E

NLS

∂
∂=

∂
∂−∇ ωπωε

vv
v

. (2.10)

This is an inhomogeneous differential equation, whose general solution consists of the

homogeneous equation plus one particular solution of the inhomogeneous equation,

),2(exp
)(

)ˆ(ˆ

)()(
)4(4

)2(expˆ

12
2

22
2

22
1

1222

trki
k

pkk
p

kk

cP
trkiEeE

s

T

ss

sT

NLS
TT

T
T

ω

ωπω

−⋅






 ⋅−×

−
−−⋅=

vv
vv

vvv

(2.11)

).2(exp)ˆ(
2)()(

)4(4

)2(exp)ˆ(
2

1
1

22
2

22
1

1222
1

2

trkipk
c

kk

cP

trkiEek
c

H

ss

sT

NLS

TT
T

TT

ω
ω

ωπ

ω
ω

−⋅×
−

−

−⋅×=

vvv

vvvv

(2.12)

These expressions represent the time-space function of the second-harmonic field

inside the nonlinear medium. The reflected second-harmonic wave can be obtained

from the homogeneous differential equation, normally it is the plane wave that

propagates in free space,

)2(expˆ 1222 trkiEeE RR
T

R ω−⋅= vvv
, (2.13)
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).2(exp)ˆ(
2 1222

1
2 trkiEek

c
H RR

T
RR ω

ω
−⋅×= vvvv

(2.14)

Applying the boundary conditions, one can resolve the magnitude of the transmitted

TE2 and reflected RE2  amplitudes and the direction of wave vectors of the

homogeneous transmitted wave Tk2

v
 and the reflected wave Rk 2

v
, as well as the

polarization unit vectors Tê and Rê . It is evident that the nonlinear source term emits

the second-harmonic wave in both reflected and transmitted directions, particularly in

the anisotropic case there are two transmitted beams, while the linear polarization

radiates the fundamental reflected and transmitted beams. Figure 2.3 shows the

geometry of wave at the interface of vacuum and ADP crystal.

Figure 2.3. The incident, reflected and refracted wave vectors at
the fundamental and second-harmonic frequencies at the
boundary between vacuum and ADP crystal.
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There is no dispersion in vacuum, so that the reflected second-harmonic wave goes in

the same direction as the reflected fundamental wave. Since ts kk 12
vv

= , the refracted

fundamental wave and the inhomogeneous source wave go in the same direction,

whereas the homogeneous transmitted second-harmonic wave goes in different

direction.

2.2.2 Generalized Snell’s law

As shown in Figure 2.3, the incident, refracted, and reflected angles of the

fundamental and second-harmonic frequencies lie in the plane of incidence. They are

related by the generalized Snell’s law. The generalized Snell’s law was theoretically

demonstrated by Bloembergen and Pershan (1962) and was verified experimentally

by Ducuing and Bloembergen (1963). The derivation of generalized Snell’s law based

on Bloembergen and Pershan theory will be discussed in the following.

Consider the boundary between a linear and nonlinear medium with two plane

waves, )(exp 111 trkiE i ω−⋅ v
vv

 and )(exp 222 trkiE i ω−⋅ v
vv

 incident from the nonlinear

medium as illustrated in Figure 2.4. Letter “i” and “R” indicates the incident and

reflected wave at the side of linear medium, respectively, and “T” and “t” indicates

the transmitted wave at sum frequency 213 ωωω += and transmitted wave at

frequencies 1ω and 2ω  inside nonlinear medium, respectively. The incident angle of

two planes wave are i
1θ and i

2θ : their plane of incident make an angle ϕ  with each

other.

The proper choice of coordinate system is x  and y  direction such that

i
y

i
y kk 21 −= .
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At planar interface (z = 0), there is the conservation of the tangential momentum

components,

,2121333
i

x
i
x

t
x

t
x

S
x

T
x

R
x kkkkkkk +=+===

(2.15)

02121333 =+=+=== i
y

i
y

t
y

t
y

S
y

T
y

R
y kkkkkkk . (2.16)

These relations show that the inhomogeneous source wave, the homogeneous and

reflected waves at the sum frequency and the interface normal are all lie in the

Figure 2.4. Schematic representation of two incident waves at
frequencies 1ω and 2ω traveling from a linear medium induces a
reflected wave, a homogeneous and inhomogeneous transmitted
wave at the sum frequency 213 ωωω += .
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 xz -plane. Since the propagation of inhomogeneous wave,

{ }trkki tt )()(exp 2121 ωω +−⋅+ vvv
 is proportional to )( 3ωNLSP . Its angle with the face

normal s
3θ  is determined by

ttt
x

t
x

s kkkk 21213sin
vv

++=θ . (2.17)

The wave vectors tk1

v
and tk 2

v
can be obtained by Snell’s law for refraction as in the

linear case. Making use of trigonometric relations, one can find

.cossinsin2

sinsin

sinsin

2121

2
2

21
22

1

3
22

33
22

3

ϕθθ

θθ

θθ

iiii

iiii

RRTT

kk

kk

kk

+

+=

=

(2.18)

By substituting the magnitude of wave vector εω
c

k = , equation (2.18) can be

rewritten as

.cossinsin2

sinsin

sinsin

212121

2
22

221
22

11

3
22

333
22

33

ϕθθωωεε

θωεθωε

θωεθωε

iiRR

iRiR

RRTT

+

+=

=

(2.19)

In the special case that the planes of incidence coincide ( 0=ϕ ), a relationship will

become as,

.sinsinsin 113333
iRRRTT θεθεθε == (2.20)

Another conditions so that conserved tangential momentum components exists in

equation (2.15) is

RRssTT kkk 333333 sinsinsin θθθ ==
vv

, (2.21)

or, alternatively,

.sinsinsin 3
2

33
2

33
2

3
RRssTT θεθεθε == (2.22)
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Finally, we get

ssTTRRiR
33333311 sinsinsinsin θεθεθεθε === , (2.23)

or, equivalently, in terms of refractive index by,

ssTTRRiR nnnn 33333311 sinsinsinsin θθθθ === . (2.24)

These are known as general laws of reflection and refraction.

2.2.3 Polarization and intensity of the reflected second-harmonic

wave

The calculations of the polarization and intensity of the reflected wave at the

sum frequency 213 ωωω +=  is presented in this section. We restrict our attention to

the reflected wave at 3ω  with the electric field vector parallel to the plane of

incidence, for second-harmonic generation where ωωω == 21 . Therefore,

ωω 23 = . This second-harmonic wave is created by the x  and z  components of

nonlinear polarization ( )2(0)2( ωω y
NLS

y EP == ). Let NLSP // denote the magnitude of

the nonlinear polarization in the plane of reflection, α  be the angle between the

propagation direction of the source sk
v

and the direction of nonlinear polarization as

illustrated in Figure 2.5.

The continuity of tangential components of electric E
v

 and magnetic H
v

 field is

required for the calculation of the amplitude of the reflected second-harmonic wave.

As evident from the solution of Maxwell’s equations for nonlinear medium, one can

find
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,
sincos4cossin4

coscos

////

////

T

s
NLS

Ts

s
NLS

T
T

R
R

x

PP

EEE

ε
θαπ

εε
θαπ

θθ

−
−

+

=−=

(2.25)

Ts

NLS

s
T

T
R

Ry

P
EEH

εε
απ

εεε
−

−−=−=
sin4 //

//// . (2.26)

By substituting TE // in equation (2.26) into equation (2.25), the amplitude of reflected

second-harmonic wave is obtained as

Figure 2.5. The second-harmonic wave with the
electric field vector parallel to the plane of incidence

.

Nonlinear
Linear

K (ω)
E (ω )i

θi
i

Z

X

K  (2 ω)

E  (2  ω )

.β

T

E  (2  ω )

αSθTθ

H  (2  ω )
T T K (2ω )

T

S

N L SP  (2  ω )

E  (2  ω ) K   (2 ω)R R

θ R H  (2  ω )R



18
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 (2.27)

Applying equation (2.23), the reflected second-harmonic amplitude can be rewritten

as

)sin()cos()sin(sin)2(

)sin(sinsin4 2
//

//
STRTRTRR

STTS
NLS

R
P

E
θθθθθθθωε

θθαθθπ
+−+

++
= , (2.28)

or

NL
R

NLSR FPE //,//// 4π= , (2.29)

where 

)sin()cos()sin(sin)2(

)sin(sinsin 2

//,
STRTRTRR

STTSNL
RF

θθθθθθθωε
θθαθθ

+−+
++

= . (2.30)

The intensity of reflected second-harmonic wave is given by the real part of Poynting

vector times the cross-section area RA :

R
R

RR AE
c

I
2

// )2(
8

)2( ωε
π

ω = , (2.31)

where iRR ddA θθ cos/cos′= and dd ′ is the area of the rectangular slit which defines

the beam profile of the incident laser.

  2.2.4 Second-harmonic generation at total reflection 

The total reflection phenomenon of second-harmonic wave, included in the

theory of Bloembergen and Pershan (1962), was experimentally observed for the first

time by Bloembergen and Lee (1967) and later by Bloembergen, Simon, and Lee
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(1969). This phenomenon remains the same as for linear case it can occur when the

light incidents from a optically denser linear medium to nonlinear medium of lower

refractive index. The geometrical situation just before total reflection of second-

harmonic wave occurs is shown in Figure 2.6.The transmitted fundamental beam

)(ωtk
v

, goes in same direction as induced nonlinear polarization wave sk
v

, the

homogeneous transmitted wave Tk
v

goes in somewhere different direction. The effect

of dispersion causes the reflected fundamental wave )(ωrk
v

goes in a different

direction with the reflected second-harmonic wave. There are two transmitted

harmonic beams in nonlinear medium possessing the birefringence. As the angle of

incident iθ increases both beam with wave vectors sk
v

 and tk
v

 will disappear

simultaneously, while the transmitted harmonic wave will still remain. For large angle

of incidence only the reflected harmonic beam persists The angle of harmonic

reflection Rθ , transmission source sθ , and homogeneous harmonic transmission Tθ

are related by generalized Snell’s law

TSRliqiliq nnnn θωθωθωθω sin)2(sin)(sin)2(sin)( === . (2.32)

The indices of refraction are corresponded to the dielectric constants in the notation of

Bloembergen and Pershan theory (equation. 2.23) by ),(),2( ωεωε nn sliqR ==

and )2( ωε nT = . The indices without subscripts refer to the ADP crystal. The critical

angles for total reflection of the transmitted source and transmitted homogeneous

wave are given by

( ))()(sin)( 1 ωωωθ liqcr nn−= (2.33)

and
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( ))()2(sin)2( 1 ωωωθ liqcr nn−= , (2.34)

respectively.

Referring to equation (2.4), by substituting the second order nonlinear

susceptibility tensor )2(
ijkχ  for 42m crystal class (Prasad and Williams, 1990) of ADP

crystal, the nonlinear polarization components )2( ωNLSP  within the ADP crystal, is

given as

Figure 2.6. The incident, reflected and transmitted rays at
fundamental and second-harmonic frequencies in the vicinity
of critical angle.
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 (2.35)

Assume that the fundamental field is polarized perpendicular to the plane of incidence

or is polarized among the x  and – y  directions with respect to the crystallographic

axes of the ADP. In this case the nonlinear source inside the crystal will be along the

z  direction and its amplitude is given in terms of the transmitted fundamental field

components by

)()()2( 36 ωωχω T
y

T
x

NLNLS
z EEP = ,                          (2.36)

 where NL
36χ  is the nonlinear susceptibility of ADP crystal which give rise to a

polarization at the harmonic frequencies. The amplitude of nonlinear polarization

)2( ωNLSP  can be expressed in terms of the amplitude οE  of the incident fundamental

wave by

 2
36 )()2( οηχω EFP

L

T
NLNLS

z = , (2.37)

where η is the geometrical factor, which depends on the orientation of the

fundamental vector and the nonlinear polarization component with respect to the

crystallographic axis of the nonlinear crystal. The linear Fresnel factor L
TF describes

the change in amplitude of the fundamental wave on the transmission wave. In case of

the laser polarization perpendicular to the plane of incident it is

 
Scri

iL

TF
θωθθ

θ
cos)(sincos

cos2
+

=  .  (2.38)
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 The electric field amplitude of reflected second-harmonic wave is given by

     πω 4)2( =RE NL
R

NLS FP //, .   (2.39)

For the case of nonlinear polarization parallel to the plane of incident, the nonlinear

Fresnel factor NL
RF //, , according to the Bloembergen and Pershan theory is given by

     
)sin()cos()sin(sin)2(

)sin(sinsin 2

//,
STRTRTRR

STTSNL
RF

θθθθθθθωε
θθαθθ

+−+
++

= .  (2.30)

Here α is the angle between the nonlinear polarization in the plane of incidence and

direction of source vector Sk .

The intensity of reflected harmonic wave is

12422
36

42/1 )(coscos)4(
8

)2( −′= iR
NL

R
L

T
NL

RR FFddE
c

I θθηπχε
π

ω ο , (2.40)

 where iRdd θθ cos/cos′  is the area of  incident laser beam profile. Since

22
36

42/1 )4(
8

ηπχε
π ο

NL
R ddE

c ′ is constant, we can write )2( ωRI  in relative units as

(2.41)

In the study, ADP crystal is the negative  ( en  < on ) uniaxial crystal and its

extraordinary refractive index )(2 θω
en depends on the angle θ  between the

propagation direction and the crystal optic axis. The value of )(2 θω
en  can be obtained

from the equation of the index ellipsoid as

[ ] [ ] [ ]2
2

2

22

2

22 )2(

)(sin)(cos

)(

1

π
θθ

θ ωωω
eoe nnn

+= . (2.42)

   )2( ωRI  ∝ 124
)(coscos −

iR
NL

R
L

T FF θθ .
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ω
on and ω

en are the ordinary and extraordinary refractive indices for the laser light and

ω2
on and )(2 θω

en are the corresponding quantities for the second-harmonic frequency.

2.2.5 Phase-matching in second-harmonic generation

According to the out put intensity of second-harmonic generation, which is

proportional to the phase factor (Yariv, 1991):

)2( ωI  ∝   
2

2
4

0 )2/(
)2/(sin

kl

kl
E

∆
∆

,         (2.43)

with l  being  the optical path length. The crucial parameter that controls the intensity

of the second-harmonic generation is k∆ , which is given by,

)()2( 2 ωω kkk −=∆ ,          (2.44)

where 
c

nk
ωωω )()( =  is the wave vector of fundamental  beam and 

c
nk

ωωω 2
)2()2( =

is the second-harmonic wave vector. When the condition 0=∆k  is achieved, the

interaction that leads to second-harmonic generation is said to be phase-matched

(Maker et. al., 1962; Goidmaine, 1962). For dielectric material, the dielectric constant

always proportional to the frequency, so it cannot achieve phase-matching. However,

for birefringence crystals such as KDP, ADP, and RDP, it is possible to achieve

phase-matching, since there is the ordinary wave with index of refraction on  and the

extraordinary wave with index of refraction )(θen  that depend on the angleθ

between direction of propagation and the optic axis. Let mθ be the angle between the

optic axis and the direction of wave propagation which phase-matching is achieved

( 0=∆k , or )()2( )( ωω θ ome nn = ). Therefore if the fundamental beam is launched along
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mθ  as an ordinary ray, the second-harmonic beam will be generated along the same

direction as extraordinary ray. The situation is illustrated by Figure 2.7.

The angle mθ where )(
0

)2( )( ωω θ nn me = can be obtained by

[ ] [ ] [ ] [ ]22
2

2

22

2

22

1

)2(

)(sin)(cos

)(

1
ωωωω π

θθ

θ oe

m

o

m

e nnnn
=+= ,  (2.45)

 Solving for mθ , we get

2/1
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 (2.46)

Figure 2.7. The refractive index for ordinary and extraordinary rays in a
negative uniaxial crystal. The condition of phase-matching is satisfied
at mθ .
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Normally, the phase-matched second-harmonic generation can be performed in

transmission geometry (Giordmaine, 1962; Maker, Terhune, Nissenoff, and Savage,

1965; Boyd, Askin, Dziedzic, and Kleinman, 1965; Bhanthumnavin and Lee, 1994).

In fact, phase-matched second-harmonic can be observed in reflection geometry as

well (Bloembergen and Lee, 1967; Lee and Bhanthumnavin, 1976; Bhanthumnavin

and Lee, 1994).

2.2.6 Nonlinear Brewster angle

 For the nonlinear crystal of 42m point group, such as ADP, KDP and RDP,

when the incident laser beam is polarized with the electric field oE  perpendicular to

the plane of incident, the nonlinear polarization is parallel to the optic axis of crystal

( −z axis). The reflected second-harmonic will lie in the plane of incidence. At the

nonlinear Brewster angle, the reflected second-harmonic wave completely vanishes.

This phenomenon was theoretically predicted by Bloembergen and Pershan (1962)

and was firstly observed by Chang and Bloembergen (1966) in GaAs, Lee and

Bhanthumnavin (1976) in KDP and was theoretically predicted in ADP by

Bhanthumnavin and Ampole (1990). The physical interpretation of nonlinear

Brewster’s angle is shown in Figure 2.8.

When the angle of incidence reaches the nonlinear Brewster angle, the

fundamental beam will induce a nonlinear polarization inside the medium in direction

of the reflected second-harmonic ray. According to the classical dipole radiation

theory, the polarization cannot radiate in this direction. Therefore the intensity of

reflected harmonic wave must vanish,
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 0)2( ==ωRI . (2.47)

It is clear that )2( ωRI is zero when the nonlinear Fresnel factor NL
llRF ,  equals to zero,

which leads to

             0)sin( ==++++ TS θθα  (2.48)

or

 ,...2,,0 ππθθα ==++++ TS      (2.49)

Figure 2.8. The physical interpretation of nonlinear Brewster angle.
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Chapter III

Procedure

3.1 Introduction

In the study, the ultrashort pulse laser at λ = 900 nm is utilized as a

fundamental beam in order to generate the second-harmonic light beam from the ADP

crystal. The polarization of this fundamental field is set to be perpendicular with the

plane of incidence or in [11 0] direction with respect to the crystallographic axes of

the ADP crystal. Under this situation, the nonlinear polarization that is the source of

second-harmonic field will be induced along the optic axes of the crystal or in [0 0 1]

direction as indicated in Figure 3.1.

Figure 3.1. Geometry illustrates the crystallographic axes system ( zyx ,, )

P
ADP crystal

NLS(2ω)

E (ω)i

[11 0]

(optic-axis)

[11 0]

X

Y

Z

[0 01]
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The study of nonlinear Brewster angle phenomenon or the vanishing of the p-

polarized second-harmonic intensity in reflection at particular angle of incidence can

be done by using the crystal orientation as shown in Figure 3.1. The theory of

Bloembergen and Pershan given in previous chapter is employed for the theoretical

calculation of the relative reflected second-harmonic intensity. Before calculating

second-harmonic intensity (SHI) in reflection, involved parameters need to be known.

Therefore, this chapter is about some properties and quantities of parameters involved

in the theoretical study of reflected second-harmonic generation. Furthermore, the

algorithm of theoretical calculation of reflected second harmonic intensity by program

C++ is also described.

3.2 Ultrashort pulse laser

As ultrashort laser pulse is utilized as the fundamental field in order to induce

the nonlinear polarization )2( ωNLSP  that acts as the source of optical second-

harmonic field. According to the intensity of reflected second harmonic as described

in previous chapter, it is clear that the high intensity of second-harmonic depends on

the fourth power of the applied fundamental electric field, )(0 ωE . Therefore, the

ultrashort pulse laser is suitable to be used in the study because its peak power is

rather high (≥ 1 MW) and its energy is relatively small (∼1 nJ) and can be

concentrated in a very short temporal interval (∼ 10 –15 s). Due to high peak power

pulse and small energy, the crystal can tolerate the excitation without damage.
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3.3 ADP crystal

The nonlinear crystal used in our study is ammonium dihydrogen phosphate

(ADP). ADP is a crystal of the42m point group as mentioned in section 2.2.4. The

transparency range of ADP crystal is 184-1500 nm, so that the fundamental (900nm)

and the second harmonic (450 nm) waves can not be absorbed in the crystal. The

crystal is suitable for the study, because its surface damage threshold is very high.

Moreover, its linear index of reflection is relatively low. Therefore it will allow us to

perform phase matched second harmonic generation at total reflection via 1-

bromonaphthalene which has larger indices of reflection than the crystal at both the

fundamental and second harmonic frequency. The refractive indices of the ADP

crystal at the fundamental wavelength of 900 nm measured by Zernike (1964) are

,5120.1=ω
on

4709.1)( 2 =πω
en .

The refractive indices of ADP at the second harmonic wavelength of 450 nm can be

obtained by the dispersion relations (Dmitriev, Gurzadyan and Nikogosyan, 1991)

( ) ,
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102464.15
013253659.0
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01298912.0
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+=
λ

λ
λ

π
en ,

where the unit of the wavelength λ is in µm. Substituting the second harmonic wave

length of λ = 0.450 µm yields

,53426.12 =ω
on

4870.1)( 2
2 =πω
en .
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Now the phase-matching angle given in equation (2.46) can be evaluated as

.68.42
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3.4 Liquid 1-bromonaphthalene

In order to achieve the occurrence of total reflection of the second harmonic

beam, the optically denser fluid 1-bromonaphthalene, whose indices of refraction is

higher than the crystal at both the fundamental and second harmonic frequency, is the

proper choice of the linear medium. The fluid has transparency range at 400-1600 nm

(Bhanthumnavin and Lee, 1994), therefore the absorption of the reflected wave at

both fundamental and second harmonic frequency will occur. Furthermore, since the

chemical property of 1-bromonaphthalene is relative inertness, it is good for practical

study, because of the deterioration of ADP crystal by electrochemical process will not

occur. Interpolating by means of the Cauchy dispersion relation (Jenkins and White,

1976) as shown in the Appendix A gives

.6952.1)2(

6335.1)(

=

=

ω

ω

liq

liq

n

n

3.5 Computation of Relative Reflected Second-harmonic

Intensity by using C++ Program

The theoretical calculation of reflected second harmonic intensity based on

Bloembergen and Pershan theory (1962) was performed by C++ version 3. The results
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were stored in text file and then plotted by using Microsoft Excel version 7. The steps

of evaluation are indicated in Figure 3.2. Although the reflected second harmonic

intensity is as a function of incident angle iθ , the step starts with the assigning of

transmitted angle Tθ as input instead of iθ .

As depicted in Figure 3.2 the calculation procedure consists of two major steps as

follows

  

START

 n   (2ω)  (2ω)e

 Reflected  SHI

Stored data

STOP

 Figure 3.2. Flowchart for theoretical calculation of SHI in reflection

θθT(ending),θθT(starting),

θθ T(increasing)

Computing
process

image(θΤ(staring))  >= 90-θΤ(ending)
F

T
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3.5.1 The calculation of refractive indices of extraordinary ray,

)(2 θθωω
en

Since )(2 θω
en varies with the angle θ  between optic axis of nonlinear crystal

and the propagation vector Tk as depicted in Figure 3.3, it can be obtained by the

equation of the index ellipsoid as

[ ] [ ] [ ]2
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22 )2(

)(sin)(cos

)(

1

π
θθ

θ ωωω
eoe nnn

+=              (2.42)

or

2
2

2

2

22
0

2
2

))((
sin

)(
cos

1
)(

πωω

ω

θθ
θ

e

e

nn

n

+
= . (3.1)

As shown in Figure 3.3, the angle θcan be written in term of the transmitted angle Tθ

as

Tθγθ +−°= 90 . (3.2)

n (2ω)P K (2ω)
K (2ω)

K (2ω)K  (ω)
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θ
i

R
θ

e
(2ω)

R

i

.

(optic-axis)

γ .θ

Figure 3.3. The variation of )(2 θω
en as a function of θ
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Here γ is the angle between optic axis ( )2( ωNLSP ) of the crystal and the incident

surface, which depends on the crystallographic cut of the crystal. Thus the value of

)(2 θω
en at any θcan be written in terms of the angle of transmission Tθ as

2
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+
+−°

=+−° .     (3.3)

The angle γ can be easily known when the nonlinear crystal was assigned and the

orientation of )2( ωNLSP was known.

3.5.2 The calculation of relative reflected second-harmonic intensity

(SHI)

After calculating )(2 θω
en , it is now time to obtain the values of Ri θθ ,  and sθ

via generalized Snell’s law by
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(3.4)

The relative magnitude of reflected SHI depends on ,L
TF  and NL

RF //,  as

)2( ωRI  ≅ 124
)(coscos −

iR
NL

R
L

T FF θθ ,

as shown in Figure 3.4, since the factor

and
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Figure 3.4. Process for computing of SHI in reflection
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depends on the crystallographic cut of the crystal. According to the geometry used in

the study (see figure 3.3) it is clear that

γθα +°=+ 270S , (3.5)

because Sθα + is the angle between the face normal direction and the optic axis. Thus

the factor NL
RF //,  can be rewritten as

)sin()cos()sin(sin

)270sin(sinsin 2

//,
STRTRTR

TTSNL
RF

θθθθθθθ
θγθθ

+−+
++°

= . (3.6)

Here the term of )2( ωεR  has been taken as a constant.

The detail of computer program C++ is available in the Appendix B. The

program used to calculate the reflected SHI in previous work of Bhanthumnavin and

Lee (1994). The simulated results are exactly correct to those previous results. This

means that the program is acceptable be use of the thesis.



Chapter IV

Results and Discussions

4.1 Introduction

In this chapter the results from theoretical investigation of SHI in reflection

from ADP crystal using ultrashort laser pulse of 900nm as an excitation source are

analyzed and explained. It is shown that this study agrees well to the hypothesis,

especially for the prediction of nonlinear Brewster angles.

4.2 Phase-matched Second-harmonic Generation

The reflected second-harmonic generation, under phase matching at total

reflection has been theoretically described in chapter 2. In our study, ADP is set up

with its optic axis inclining at °= 68.42mθ  (see for calculation in sec. 3.3) from the

incident surface, in order to facilitate a phase matching condition. At the critical

angle, the harmonic waves vector sk and Tk go in same direction along the interface,

This situation leads to the enhancement of the reflected second-harmonic intensity, as

evidence from the nonlinear Fresnel Factor

)sin()cos()sin(sin)2(
)sin(sinsin 2

//,
STRTRTRR

STTSNL
RF

θθθθθθθωε
θθαθθ

+−+
++= . (2.30)

When °== 90ST θθ , then

∞→NLS
RF //, .
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Also for reflected second-harmonic intensity,

∞→)2( ωRI .

Simulation by varying the angle of incidence iθ from 55°-75° is provided in

Figure 4.1. Figure 4.1 shows that the intensity increases nearly at eight orders of

magnitude at critical angle
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Comparing these results with previous work of Bhanthumnavin and Lee (1990,1994),

finds that both of them are alike. In addition, the theoretical result agrees well with the

prediction of Bloembergen and Pershan(1962). Because the nonlinear crystals used in

the previous works carry the same point-group as those in this study, one can deduce

that under the new proposed crystallographic orientation, the phase-matched second-

harmonic generation at total reflection can be achieved as proposed.

4.3 Nonlinear Brewster angle

According to the nonlinear Brewster angle condition, the reflected second-

harmonic intensity will go to zero:

0)2( =ωRI .

The condition for this situation is:

)sin()cos()sin(sin)2(

)sin(sinsin 2

//,
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πθθα nTS =++ ,  n = 0,1,2,… .

This leads to the fact that nonlinear Brewster angle is not unique for a crystal but

depends on the orientation of )2( ωNLSP ) inside the crystal. In the study several

orientation of )2( ωNLSP ) of ADP were studied and the results will now be presented.

4.3.1 Nonlinear Brewster angle of ADP with )2( ωωNLSP  making an

angle °°68.42 from the incident surface

In this case, the crystallographic cut of ADP is same as the case of phase

matching condition, so the condition for nonlinear Brewster angle is

πθθα 2=++ TS .

Here Sθα + is the angle between the face normal and )2( ωNLSP direction and may be

taken as the fixed angle, as show in the inset of Figure 4.2

.68.31268.42270 °=°+°=+ Sθα

Thus the angle of transmission Tθ is easily to known,

 .32.4768.312360 °=°−°=Tθ

The incident angle or nonlinear Brewster angle, which gives, °= 32.47Tθ can be

found by Snell’s law as
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The variation of optical second-harmonic intensity in reflection is given by figure 4.2.

The graph shows that achievement of both maximum and minimum intensity of

reflected second-harmonic depends on satisfaction of the phase-matching condition.

Comparison with those reported by Bhanthumnavin and Ampole (1990) and

Bhanthumnavin and Lee (1994) shows the same feature of )2( ωRI  dependence of iθ .

4.3.2 Nonlinear Brewster angle of ADP with )2( ωωNLSP  making an

angle °°30 from the incident surface

According to the condition of nonlinear Brewster angle, the possibility of

observation of the phenomenon of nonlinear Brewster angle in any nonlinear optical

crystal is not unique as in linear case. The nonlinear Brewster angle depends on the

orientation of the ( )2( ωNLSP ). In order to test this statement, another crystallographic

orientation, in this case the one of its optic axis making 30° from incident surface is

considered. The condition of nonlinear Brewster  for this case is

πθθα 2=++ TS

and

°=+ 300Sθα .

Thus

.60

300360

°=
°−°=Tθ

To know the incident angle, making use of Snell’s law,

TTe
NB
iliq nn θθθω ω sin)2(sin)( 2=

or
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At °= 60.52iθ the reflected second-harmonic intensity is then vanish as show in

Figure 4.3.

4.3.3 Nonlinear Brewster angle of ADP with )2( ωωNLSP is lies along

the face normal

When the optic axis of the crystal lies along the face normal, it means that the

nonlinear Brewster angle corresponds to the condition of

0=++ TS θθα

and

°=== 0TS θθα .

As same as for iθ

°= 0NB
iθ .

This case it seems to be the trivial condition. Normally, one says that the reflected

second-harmonic can be generated as long as laser light passes through the

noncentrosymmetric crystal, but this statements not always true, as can see in Figure

4.4.  Recall linear optics that when the normal incident from air to glass is performed,

we get 4% out of reflected. However, in the nonlinear optical case of SHI in

reflection, it is zero in contrast to the linear case.
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4.3.4 Nonlinear Brewster angle of ADP with at total reflection

In section 4.2.1, one can see that at total reflection the reflected second-

harmonic intensity is vary high. Under the same situation with a different orientation

of the crystal, the minimum intensity of second-harmonic in reflection will occur. By

cutting the crystal in such a way that its optic axis lies along the interface, the

condition for nonlinear Brewster angle will be achieved if

 πθθα =++ TS ,

which

°=+ 90Sθα .

One can find

°= 90Tθ .

As long as the wave Tk reach out from the interface between 1-bromonaphthalene and

ADP crystal, the reflected intensity of second-harmonic will go to zero as shows in

Figure 4.5.

By Snell’s law, the critical angle, which leads to zero intensity at total

reflection, is
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Figure 4.5 shows that at first critical angle °= 76.67)(ωθcr  the intensity trends to be

increase rapidly. For large angle of incident, this second-harmonic intensity

eventually decreases. Until the second critical angle is approached the deepest of
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intensity is occurred. This is due to the fact that nonlinear Brewster phenomenon can

be occurred when a coincidence between )2( ωNLSP and Tk − is accomplished.



Chapter V

Conclusion

The theoretical framework about behavior of optical second-harmonic

generated from ADP in reflection, especially phase-mating at total reflection and the

nonlinear Brewster phenomenon was studied and applied. The relative reflected

second-harmonic intensity was calculated by C++ program. The computer simulation

was taken in two steps, the first being the calculation of refractive index of

extraordinary ray )(2 θω
en  by the equation of index ellipsoid. The second step is

concerned with the calculating of relative reflected second-harmonic intensity

depending on the nonlinear Fresnel factor NL
RF //,  and linear Fresnel factor L

TF . The

results show that under the proposed ADP crystal orientation, the maximum and

minimum of reflected second-harmonic intensity were accomplished and agree well

with previous work of Bloembergen and Lee (1962); Lee and Bhanthumnavin (1976)

and Bhanthumnavin and Lee (1994) of the same crystal point group. Furthermore, the

results from the theoretical calculation also indicate that nonlinear Brewster angle is

not unique and can have many values in a crystal depend on the orientation of

)2( ωNLSP  (see table 5.1).
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Table 5.1. The summarized results of reflected SHI of ADP with different aspect of

crystallographic cuts.

Crystallographic orientation
iθ Tθ )2( ωRI

°=
=

76.67

)2()( ωθωθ crcr

°= 02.42NB
iθ

90° Maximum

°= 60.52NB
iθ 60° Minimum

°= 0NB
iθ 0° Minimum

°=
=

90

)2( ωθθ cr
NB
i

90° Minimum

It is important to note that both of maximum and minimum of second-harmonic

intensity occur at the same orientation of )2( ωNLSP as in the case of phase-matched at

°= 68.42mθ

1-bromonaphthalene

ADP

)2( ωNLSP

30°
1-bromonaphthalene

ADP

)2( ωNLSP

1-bromonaphthalene

ADP

)2( ωNLSP

1-bromonaphthalene

ADP

)2( ωNLSP

47.32° Minimum
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total reflection. This is due to the fact that second-harmonic intensity is depended on

the orientation of crystal.

The results provide theoretical data, which will be served as a background

information for future experimental verification. The suggestion for experimental

verification are as following;

1. In order to observed second harmonic signal clearly, ultrashort pulse of

high peak power should be used to excite the nonlinear crystal.

2. The optically denser liquid 1-bromonapthalene should be used for

achieving total reflection condition and to prevent the deterioration of the

crystal surface

3. The instrument for detecting second-harmonic signal need to be very

sensitive, since it will be involved in detection of very low intensity (in the

case of minimum).

4. The filter, polarizer and analyzer should be used in order to prevent our

second-harmonic signal unwanted signal.
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Appendix A

Derivation of Refractive Indices of 1-bromonaphthalene

The derivation of refractive indices of 1-bromonapthalen based on the

Cauchy’s equation, at both 900nm ( )(ωliqn ) and 450nm( )2( ωliqn ) is given in this

section. Due to the variation of the index of refraction with the wavelength of light

passing through the material leads to the fact that n  is a function of wavelength as

Cauchy has been given mathematically. The refractive indices of 1-bromonaphthalene

at fundamental and second-harmonic wavelength can be obtained by Cuation’s

equation as

42 λλ
CB

An ++= . (A.1)

Where A,B, and C are the constant. In order to find the values of A, B, and C, one

have to know value of n for three different of λ . Then three equations of three

unknowns will be set up as a matrix form
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By using the Cramer’s rule, the constant A, B, and C can be solved as
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Now the value of A, B, and C have been solved, then substitute these values in

equation (A.1) and find the value of indices n at 900nm

42)900( 900900
CB

An ++= , (A.4)

and for 450nm

42)450( 450450
CB

An ++= . (A.5)

In the thesis, four sets of indices n of different wavelength are used for the calculation

of the indices of 1-bromonaphthalene of both fundamental and second-harmonic

frequencies. An acceptable value of liqn  at needed wavelength is the average value.

Table A.1 and A. 2 show the sets of wavelength and indices n  which corresponds to

those wavelengths, used for the calculation of )(ωliqn  and )2( ωliqn .
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Table A.1. The sets of wavelength and indices n , used for the calculation of )(ωliqn

Set I Set II Set III Set IV

)(nmλ n )(nmλ n )(nmλ )(nmλ n

1064* 1.6262 1064 1.6262 1064 1.6262 977 1.6340

532* 1.6701 532 1.6701 977** 1.6340 532 1.6701

486.1 1.68173 434 1.7041 532 1.6701 434 1.7041

)(ωliqn = 1.6320 )(ωliqn = 1.631548 )(ωliqn = 1.642057 )(ωliqn = 1.636248

6335.1)( =ωliqn

 * from Bhanthumnavin and Lee (1994)

** from Bloembergen, Simon, and Lee (1969)

Table A.2. The sets of wavelength and indices n , used for the calculation of

)2( ωliqn .

Set I Set II Set III Set IV

)(nmλ n )(nmλ n )(nmλ n )(nmλ n

1064 1.6262 1064 1.6262 1064 1.6262 977 1.6340

532 1.6701 532 1.6701 977 1.6340 532 1.6701

486.1 1.68173 434 1.7041 532 1.6701 488.5* 1.7041

)(ωliqn = 1.6935 )(ωliqn = 1.69669 )(ωliqn = 1.696435 )(ωliqn = 1.694088

6952.1)2( =ωliqn

*  from Bloembergen, Simon, and Lee (1969)



Appendix B

C++ Program for Calculate Relative Reflected SHI

B.1 )2( ωωNLSP  making at °°== 68.42mθθ  with the incident surface

// C++ program for calculation of relative reflected SHI generated from ADP crystal under the

excitation of ultrashort pulse laser of λ = 900nm (optic axis inclining at 42.68° from the

incident surface) //

#include <iostream.h>

#include <math.h>

#include <iomanip.h>

#include <stdio.h>

#include <conio.h>

#include <complex.h>

complex nee(complex);

double ref(complex,complex);

int show(double, complex, double, int);

complex Oig;

void main()

{

float AngS, AngE, AngEE, Add;

complex OiD,OR,Os,OTT,SHI, Degg;

complex nE2, OT, OTD;

double x=0;

const float nO1w=1.5120;

const float nO2w=1.53426;

const float nE2w=1.4870;

const float nL1w=1.6335;

const float nL2w=1.6952;
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const float Pi=3.1415927;

complex O_s, Oi;

clrscr();

FILE *stream;

// FILE *index;

stream=fopen("SHIM.txt","w+");

// index=fopen("nADP.txt", "w+");

cout << "\n\nTransmited Angle: Starting "; cin >> AngS;

cout << "Transmited Angle: Ending "; cin >> AngE;

cout << "Transmited Angle : Increasing ";cin >> Add;

cout << endl << setw(10)<< " Inci(deg) ";

cout << setw(10) << " Tran(deg)";

cout << setw(12) << " index of RDP";

cout << setw(15) << " reflected of SHI" << endl;

OTD = AngS;

AngEE = AngE;

int i=0;

while(imag(OTD) >= 90-AngEE) {

OT=OTD*Pi/180;

nE2=nee(OT);

SHI = ref(OT, nE2);

Degg = real(abs(Oig)*180/Pi);

fprintf(stream, "%6.3lf\t%15.8lg\n", real(Degg), real(SHI));

// fprintf(index, "%7.6lf, %7.3lf\n", nE2, Degg);

// i = show(real(Degg), nE2, real(SHI), i);

if(real(OTD)<90)

{

if(real(OTD) == 89) OTD+=0.001;

else OTD+=Add;

}

else {

if(imag(OTD) > -1) x-=0.001;
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else x-=Add;

OTD=complex(90, x);

}

}

fclose(stream);

// fclose(index);

cout << "Completely Calculating";

getch();

}

complex nee(complex OT)

{

complex O_s,ss, xx;

const float nL1w= 1.6335;

const float nO2w = 1.53426;

const float nE2w = 1.4870;

const float nO1w = 1.5120;

const float pii =3.1415927;

xx=1/sqrt(pow(cos(47.32*pii/180+OT),2)/(nO2w*nO2w)+pow(sin

(47.32*pii/180+OT),2)/(nE2w*nE2w));

complex nE2 = abs(xx);

return nE2;

}

double ref(complex O_t, complex nE2)

{

complex tt;

const float Piii=3.1415927;

const float nO1w=1.5120;

const float nL1w=1.6335;

const float nL2w=1.6952;
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complex ii=nE2*sin(O_t)/nL1w;

complex Oi=asin(ii);

Oig = real(abs(Oi));

Oi = Oig;

complex OR=asin(nL1w*sin(Oi)/nL2w);

complex ss = nL1w*sin(Oi)/nO1w;

complex O_s = asin(ss);

complex crit_w=asin(nO1w/nL1w);

complex FLm =2*cos(Oi)/((sin(crit_w)*cos(O_s))+cos(Oi));

complex FNLm=(sin(O_s)*sin(O_t)*sin(O_t)*sin(O_t+(312.68*Piii/180)))/

(sin(OR)*sin(O_t+OR)*cos(O_t-OR)*sin(O_t+O_s));

double Ir=real(abs(pow(abs(FLm), 4.0)*pow(abs(FNLm), 2.0)*cos(OR)/

cos(Oi)));

return Ir;

}

int show(double Degg, complex nE2, double SHI, int i)

{

printf("%8.3lf |", Degg);

printf("%10.6lf |", real(nE2));

printf("%15.8lg \n",SHI);

if(i>20)

{ i=0;

getch();

}

i++;

return i;

}
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B.2 )2( ωωNLSP  making at °°30  with the incident surface

// C++ program for calculation of relative reflected SHI generated from ADP crystal under the

excitation of ultrashort pulse laser of λ = 900nm (optic axis inclining at 30° from the incident

surface) //

#include <iostream.h>

#include <math.h>

#include <iomanip.h>

#include <stdio.h>

#include <conio.h>

#include <complex.h>

complex nee(complex);

double ref(complex,complex);

int show(double, complex, double, int);

complex Oig;

void main()

{

float AngS, AngE, AngEE, Add;

complex OiD,OR,Os,OTT,SHI, Degg;

complex nE2, OT, OTD;

double x=0;

const float nO1w=1.5120;

const float nO2w=1.53426;

const float nE2w=1.4870;

const float nL1w=1.6335;

const float nL2w=1.6952;

const float Pi=3.1415927;

complex O_s, Oi;

clrscr();

FILE *stream;

// FILE *index;

stream=fopen("SHIM.txt","w+");

// index=fopen("nADP.txt", "w+");
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cout << "\n\nTransmited Angle: Starting "; cin >> AngS;

cout << "Transmited Angle: Ending "; cin >> AngE;

cout << "Transmited Angle : Increasing ";cin >> Add;

cout << endl << setw(10)<< " Inci(deg) ";

cout << setw(10) << " Tran(deg)";

cout << setw(12) << " index of RDP";

cout << setw(15) << " reflected of SHI" << endl;

OTD = AngS;

AngEE = AngE;

int i=0;

while(imag(OTD) >= 90-AngEE) {

OT=OTD*Pi/180;

nE2=nee(OT);

SHI = ref(OT, nE2);

Degg = real(abs(Oig)*180/Pi);

fprintf(stream, "%6.3lf\t%15.8lg\n", real(Degg), real(SHI));

fprintf(index, "%7.6lf, %7.3lf\n", nE2, Degg);

i = show(real(Degg), nE2, real(SHI), i);

if(real(OTD)<90)

{

if(real(OTD) == 89) OTD+=0.001;

else OTD+=Add;

}

else {

if(imag(OTD) > -1) x-=0.001;

else x-=Add;

OTD=complex(90, x);

}

}

fclose(stream);

// fclose(index);

cout << "Completely Calculating";



65

getch();

}

complex nee(complex OT)

{

complex O_s,ss, xx;

const float nL1w= 1.6335;

const float nO2w = 1.53426;

const float nE2w = 1.4870;

const float nO1w = 1.5120;

const float pii =3.1415927;

xx=1/sqrt(pow(cos(60*pii/180+OT),2)/(nO2w*nO2w)+pow(sin

(60*pii/180+OT),2)/(nE2w*nE2w));

complex nE2 = abs(xx);

return nE2;

}

double ref(complex O_t, complex nE2)

{

complex tt;

const float Piii=3.1415927;

const float nO1w=1.5120;

const float nL1w=1.6335;

const float nL2w=1.6952;

complex ii=nE2*sin(O_t)/nL1w;

complex Oi=asin(ii);

Oig = real(abs(Oi));

Oi = Oig;

complex OR=asin(nL1w*sin(Oi)/nL2w);

complex ss = nL1w*sin(Oi)/nO1w;

complex O_s = asin(ss);
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complex crit_w=asin(nO1w/nL1w);

complex FLm =2*cos(Oi)/((sin(crit_w)*cos(O_s))+cos(Oi));

complex FNLm=(sin(O_s)*sin(O_t)*sin(O_t)*sin(O_t+(300*Piii/180)))/

(sin(OR)*sin(O_t+OR)*cos(O_t-OR)*sin(O_t+O_s));

double Ir=real(abs(pow(abs(FLm), 4.0)*pow(abs(FNLm), 2.0)*cos(OR)/

cos(Oi)));

return Ir;

}

int show(double Degg, complex nE2, double SHI, int i)

{

printf("%8.3lf |", Degg);

printf("%10.6lf |", real(nE2));

printf("%15.8lg \n",SHI);

if(i>20)

{ i=0;

getch();

}

i++;

return i;

}
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B.3 )2( ωωNLSP making at °°0 with the face normal

// C++ program for calculation of relative reflected SHI generated from ADP crystal under the

excitation of ultrashort pulse laser of λ = 900nm (optic axis inclining at 0° from the face

normal) //

#include <iostream.h>

#include <math.h>

#include <iomanip.h>

#include <stdio.h>

#include <conio.h>

#include <complex.h>

complex nee(complex);

double ref(complex,complex);

int show(double, complex, double, int);

complex Oig;

void main()

{

float AngS, AngE, AngEE, Add;

complex OiD,OR,Os,OTT,SHI, Degg;

complex nE2, OT, OTD;

double x=0;

const float nO1w=1.5120;

const float nO2w=1.53426;

const float nE2w=1.4870;

const float nL1w=1.6335;

const float nL2w=1.6952;

const float Pi=3.1415927;

complex O_s, Oi;

clrscr();

FILE *stream;

FILE *index;

stream=fopen("SHI0.txt","w+");
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index=fopen("nADP.txt", "w+");

cout << "\n\nTransmitted Angle: Starting "; cin >> AngS;

cout << "Transmitted Angle: Ending "; cin >> AngE;

cout << "Transmitted Angle : Increasing ";cin >> Add;

cout << endl << setw(10)<< " Inci(deg) ";

cout << setw(12) << " index of ADP";

cout << setw(15) << " Reflected  SHI" << endl;

OTD = AngS;

AngEE = AngE;

int i=0;

while(imag(OTD) >= 90-AngEE) {

OT=OTD*Pi/180;

nE2=nee(OT);

SHI = ref(OT, nE2);

Degg = real(abs(Oig)*180/Pi);

if(real(OTD) < 0) Degg = -Degg;

fprintf(stream, "%6.3lf\t%15.8lg\n", real(Degg), real(SHI));

fprintf(index, "%7.6lf, %7.3lf\n", nE2, Degg);

 i = show(real(Degg), nE2, real(SHI), i);

if(real(OTD)<90)

{

if(real(OTD) == 89) OTD+=0.01;

else OTD+=Add;

}

else {

if(imag(OTD) > -1) x-=0.01;

else x-=Add;

OTD=complex(90, x);

}

}

fclose(stream);

fclose(index);
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cout << "Completely Calculating";

getch();

}

complex nee(complex OT)

{

complex O_s,ss, xx;

const float nL1w= 1.6335;

const float nO2w = 1.6952;

const float nE2w = 1.4870;

const float nO1w = 1.5120;

const float pii =3.1415927;

xx=1/sqrt(pow(cos(OT),2)/(nO2w*nO2w)+pow(sin(OT),2)/(nE2w*nE2w));

complex nE2 = abs(xx);

return nE2;

}

double ref(complex O_t, complex nE2)

{

complex tt;

const float Piii=3.1415927;

const float nO1w=1.5120;

const float nL1w=1.6335;

const float nL2w=1.6952;

complex ii=nE2*sin(O_t)/nL1w;

complex Oi=asin(ii);

Oig = real(Oi);

Oi = Oig;

complex OR=asin(nL1w*sin(Oi)/nL2w);

complex ss = nL1w*sin(Oi)/nO1w;

complex O_s = asin(ss);

complex crit_w=asin(nO1w/nL1w);
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complex FLm =2*cos(Oi)/((sin(crit_w)*cos(O_s))+cos(Oi));

complex FNLm=(sin(O_s)*sin(O_t)*sin(O_t)*sin(O_t))/

(sin(OR)*sin(O_t+OR)*cos(O_t-OR)*sin(O_t+O_s));

double Ir=real(abs(pow(abs(FLm), 4.0)*pow(abs(FNLm), 2.0)*cos(OR)/

cos(Oi)));

return Ir;

}

int show(double Degg, complex nE2, double SHI, int i)

{

printf("%8.3lf |", Degg);

printf("%10.6lf |", real(nE2));

printf("%15.8lg \n",SHI);

if(i>20)

{ i=0;

getch();

}

i++;

return i;

}
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B.4 )2( ωωNLSP making at °°90 with the face normal

// C++ program for calculation of relative reflected SHI generated from ADP crystal under the

excitation of ultrashort pulse laser of λ = 900nm (optic axis inclining at 90° from the face

normal) //

#include <iostream.h>

#include <math.h>

#include <iomanip.h>

#include <stdio.h>

#include <conio.h>

#include <complex.h>

complex nee(complex);

double ref(complex,complex);

int show(double, complex, double, int);

complex Oig;

void main()

{

float AngS, AngE, AngEE, Add;

complex OiD,OR,Os,OTT,SHI, Degg;

complex nE2, OT, OTD;

double x=0;

const float nO1w=1.5120;

const float nO2w=1.53426;

const float nE2w=1.4870;

const float nL1w=1.6335;

const float nL2w=1.6952;

const float Pi=3.1415927;

complex O_s, Oi;

clrscr();

FILE *stream;

FILE *index;

stream=fopen("SHI90.txt","w+");
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index=fopen("nADP.txt", "w+");

cout << "\n\nTransmitted Angle: Starting "; cin >> AngS;

cout << "Transmitted Angle: Ending "; cin >> AngE;

cout << "Transmitted Angle : Increasing ";cin >> Add;

cout << endl << setw(10)<< " Inci(deg) ";

cout << setw(12) << " index of ADP";

cout << setw(15) << " reflected SHI" << endl;

OTD = AngS;

AngEE = AngE;

int i=0;

while(imag(OTD) >= 90-AngEE) {

OT=OTD*Pi/180;

nE2=nee(OT);

SHI = ref(OT, nE2);

Degg = real(abs(Oig)*180/Pi);

fprintf(stream, "%6.3lf\t%15.8lg\n", real(Degg), real(SHI));

fprintf(index, "%7.6lf, %7.3lf\n", nE2, Degg);

i = show(real(Degg), nE2, real(SHI), i);

if(real(OTD)<90)

{

if(real(OTD) == 89) OTD+=0.001;

else OTD+=Add;

}

else {

if(imag(OTD) > -1) x-=0.001;

else x-=Add;

OTD=complex(90, x);

}

}

fclose(stream);

fclose(index);

cout << "Completely Calculating";
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getch();

}

complex nee(complex OT)

{

complex O_s,ss, xx;

const float nL1w= 1.6335;

const float nO2w = 1.53426;

const float nE2w = 1.4870;

const float nO1w = 1.5120;

const float pii =3.1415927;

xx=1/sqrt(pow(cos(90.00*pii/180-OT),2)/(nO2w*nO2w)+pow(sin

(90.00*pii/180-OT),2)/(nE2w*nE2w));

complex nE2 = abs(xx);

return nE2;

}

double ref(complex O_t, complex nE2)

{

complex tt;

const float Piii=3.1415927;

const float nO1w=1.5087;

const float nL1w=1.6298;

const float nL2w=1.6781;

complex ii=nE2*sin(O_t)/nL1w;

complex Oi=asin(ii);

Oig = real(abs(Oi));

Oi = Oig;

complex OR=asin(nL1w*sin(Oi)/nL2w);

complex ss = nL1w*sin(Oi)/nO1w;

complex O_s = asin(ss);

complex crit_w=asin(nO1w/nL1w);
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complex FLm =2*cos(Oi)/((sin(crit_w)*cos(O_s))+cos(Oi));

complex FNLm=(sin(O_s)*sin(O_t)*sin(O_t)*sin(O_t+(90.00*Piii/180)))/

(sin(OR)*sin(O_t+OR)*cos(O_t-OR)*sin(O_t+O_s));

double Ir=real(abs(pow(abs(FLm), 4.0)*pow(abs(FNLm), 2.0)*cos(OR)/

     cos(Oi)));

return Ir;

}

int show(double Degg, complex nE2, double SHI, int i)

{

printf("%8.3lf |", Degg);

printf("%10.6lf |", real(nE2));

printf("%15.8lg \n",SHI);

if(i>20)

{ i=0;

getch();

}

i++;

return i;

}
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