TABLE OF CONTENTS

				Page
A	BSTR	ACT IN	THAI	
			ENGLISH	
			GEMENTS	
			SEVIEW	
			ES	
			RES	
			REVIATIONS	
	HAP		L VIATIONS	
ı			CTION	1
•			round	
		•	rch objectives	
II			RE REVIEW	
	2.1		abis sativa	
		2.1.1	Taxonomy and Classification	
			Growth Habits	
		2.1.3	Morphology	
		2.1.4	Flowers and inflorescences	
		2.1.5	Factors affecting growth and morphology	
		2.1.6	Adaptability and Varieties	7
		2.1.7	Chemical Composition	6
		2.1.8	Uses and Applications	9
	2.2	Resid	ues in cannabis and other crops cultivation	11
	2.3	Plant	Growth-Promoting Microorganisms (PGPM)	13
		2.3.1	Bacterial PGPM	14
		2.3.2	Fungal PGPM	16
		2.3.3	Mechanisms of Plant Growth Promotion by PGPM	16

TABLE OF CONTENTS (Continued)

				Page
			2.3.3.1 Direct Mechanisms	16
			2.3.3.2 Indirect Mechanisms	17
		2.3.4	Applications of PGPM in Agriculture	17
			2.3.4.1 Biofertilizers	17
			2.3.4.2 Biocontrol	17
			2.3.4.3 Stress Management	18
	2.4	Plant	growth-promoting bacteria (PGPBs)	18
		2.4.1	Benefits of Plant Growth-Promoting Bacteria (PGPBs) in	
			Cannabis and Other Crops	19
		2.4.2	Mechanisms of Action of Plant Growth-Promoting Bacteria (PGPBs)21
		2.4.3	Application of PGPBs	23
		2.4.4	Strain Selection for Plant Growth-Promoting Bacteria (PGPBs)	24
		2.4.5	Regulations for the Use of Plant Growth-Promoting Bacteria (PGPE	3s)26
	2.5	Bacill	us velezensis	27
	2.6	Sustai	nable agriculture	29
Ш	MA	TERIAL	_S AND METHODS	31
	3.1	Ethica	l Compliance Statement	31
	3.2	Bacte	rial Strains and Growth Conditions	31
	3.3	Canno	abis Sativa Strain Utilized in This Study	32
	3.4	Exami	nation of Plant Growth Promotion	32
	3.5	Assess	sment of Chlorophyll Content and Health Index (HI) in Cannabis	35
	3.6	RNA a	nd DNA Extraction	35
	3.7	Seque	encing Analysis	35
	3.8	Gene	Expression Analysis by Quantitative Real-Time PCR (qRT-PCR)	36
	3.9	Quant	tification of Endophytic S141 in Various Plant Tissues	37
	3.10) Asses	sment of cannabis growth profiles following Inoculation	
		with E	Bacillus velezensis S141 mutants	39
	3.11	l Statis	tical Analysis	39

TABLE OF CONTENT (Continued)

	Page
IV RESULTS	40
4.1 Colonization of Bacillus velezensis S141 in Cannabis After Inoculation	40
4.2 Enhanced Growth Performance of Cannabis Inoculated with <i>Bacillus</i>	
velezensis S141: Laboratory Conditions	41
4.3 Enhanced Growth Performance of Cannabis Inoculated with <i>Bacillus</i>	
velezensis S141: Greenhouse Conditions	43
4.4 Transcriptomic Analysis, GO Terms, and KEGG Pathways	45
4.5 Gene Expression Assessment by qRT-PCR	47
4.6 Impact of Bacillus velezensis S141 Mutants on the Growth of the	
Foi Thong Suranaree 1 Cannabis Strain Under Controlled Laboratory	50
V DISCUSSION	53
VI CONCLUSION	59
REFERENCES	56
RIOGRAPHY	75

LIST OF TABLES

Table		Page
1.	Plant growth-promoting bacterial strains are utilized as biocontrol	
	agents to combat pathogenic microbes	14
2.	Plant growth-promoting fungal strains are utilized as Biocontrol	
	agents to combat pathogenic microbes	16
3.	Bacterial strains used in this study	32
4.	Elemental analysis of planting material	33
5.	The greenhouse experimental conditions	34
6.	Summary of primers for qRT-PCR used in this study	38
7.	Sequencing data analysis RNA sequencing (RNA-Seq) was and indicated	
	of percent of GC, Q20 and Q30 of each sample	47

LIST OF FIGURES

Figu	igure F	
1.	Characteristics of <i>Cannabis sativa</i> L	5
2.	The structure of cannabinoids presents in Cannabis	
3.	Residues associated with the agricultural practices of cannabis and	
	various crops	13
4.	The impact of Plant Growth-Promoting Microorganisms (PGPM) on	
	plant growth. Types of Plant Growth-Promoting Microorganisms (PGPM)	14
5.	Plant growth-promoting bacteria (PGPB)	19
6.	Beneficial activities performed by plant growth-promoting bacteria	
	(PGPB) to promote optimal plant growth and fitness	21
7.	Mechanisms of PGPB, both direct and indirect, that contribute to plant	
	development	23
8.	Localization of S141 in cannabis after inoculation with <i>B. velezensis</i> S141	40
9.	Evaluation of cannabis growth profiles after inoculation with	
	B. velezensis S141 under laboratory conditions	42
10.	Assessment of cannabis growth patterns following inoculation with	
	B. velezensis S141 in a greenhouse environment.	44
11.	Transcriptomic analysis of S141-inoculated and non-inoculated cannabis	46
12.	The qRT-PCR analysis of differentially expressed genes obtained from	
	RNA-seq	49
13.	Examination of cannabis growth profiles following inoculation with	
	B. velezensis S141 mutants	51
14.	Schematic overview of mechanisms of cannabis growth promotion	
	by B. velezensis S141	56

LIST OF ABBREVIATIONS

°C = Degree celsius

 μ = Micro

cDNA = Complementary DNA

CFU = Colony forming unit

DEPC = Diethyl pyrocarbonate

DNA = Deoxyribonucleic acid

DAI = Days post-inoculation

gDNA = Genomic DNA

g = Gram

h = Hour

GO = Gene Ontology

KEGG = Kyoto encyclopedia of genes and genomes

l = Liter

m = Milli

min = Minute
ml = Milliliter

n = Nano

NaCl = Normal saline

pH = Potential of hydrogen ion

q = Quantitative

RNA = Ribonucleic acid

SD = Standard deviation

Seq = Sequencing

v/v = Volume per volume

w/v = Weight per volume

% = Percent