
CHAPTER III

MODELLING HEAVY-ION COLLISIONS

QCD, or Quantum Chromodynamics has limitations when it comes to describ-

ing the exact solution of quark and gluon dynamics and particle production within the

heavy-ion collisions. For example, due to the asymptotic freedom (Gross and Wilczek,

1973) the perturbative QCD is not allowed and only feasible at higher energies (Politzer,

1973). In addition, in the heavy-ion collisions, the system needs to account for an enor-

mous many-body problem and with different degrees of freedom at that, from parton

to hadron. This makes the ųrst-principle calculations practically impossible for a com-

plete dynamical picture of the whole evolution.

However, one can still calculate these dynamics with an innovative approach

like lattice QCD simulations (Borsanyi et al., 2014) for the non-perturbative QCD. These

methods, however, have their own limitations in terms of computational complex-

ity and reliable results are currently limited to relatively low net-baryon densities,

µB/T≤ π (Allton et al., 2005; Aoki et al., 2006; de Forcrand and Philipsen, 2010; Bazavov

et al., 2012; Vovchenko et al., 2018b; Philipsen, 2021). Hence, theoretical models are re-

quired for further development in terms of empirical models and/or phenomenological

approaches.

Especially with the hunts for the critical point and the Equation of State (EoS)

toward lower energy heavy-ion collisions, these studies are driven forces for even more

rigorous improvement of these models. One of the alternative approaches, to describe

the many-body behavior of the Quark-Gluon Plasma (QGP) and/or the hadronic inter-

actions in heavy-ion collisions, is to look into the kinetic theory. This leads to the

development of both transport models and hydrodynamics models.

Transport models rely on a microscopic description, treating each hadron in-

dividually via interactions and scattering processes. Hydrodynamics models, on the

other hand, adopt a macroscopic viewpoint, treating the whole system as a Ŵuid char-

acterized by bulk properties like pressure, temperature, and density proųle as well as

transport coefųcients. The EoS plays an important role in dictating the dynamics based

on the relationship between these thermodynamic quantities. Both approaches have

their own advantages and limitations.



19

In this chapter, we brieŴy review transport models with a special focus on the

Ultra-relativistic transport model (UrQMD) and the hybrid model which combine the

hydrodynamical description at the earlier state with the transport model by following

the explanation in Ref. (Bratskovkaya, 2019a; Bratskovkaya, 2019b; Xu, 2019; Wolter

et al., 2022; Sorensen et al., 2024).

3.1 Transport models

Every transport model for heavy-ion collisions begins with the kinetic theory

that describes the time evolution of the N-body phase-space distribution function ρ

by N-body Hamiltonian. Derived from the conservation law of the phase-space density
dρ
dt

= 0, we can get the continuity equation or namely the Liouville equation reads

as,
∂ρ

∂t
= {H, ρ} . (3.1)

This equation describes the free streaming of a single or N-body density according to

the Hamiltonian H with {·} is the Poisson bracket. However, the dynamics in the

heavy-ion collisions are far more complex, not only we have a huge multiplicity of the

different particle species but they can also interact quantum mechanically, e.g. elastic

collisions, inelastic collisions, and decays. Deųning this N-body phase-space density is

challenging and their interactions will appear as a gain and loss term for the phase-

space density. Thus we need to derive the equation of motion that incorporate these

quantum effects and express them in terms of quantum operators.

3.2 Boltzmann(Vlasov)-Uehling-Uhlenbeck (B(V)UU) approach

We begin our derivation with the N-body non-relativistic Schrödinger’s equa-

tion describing the total wavefunction Ψ(1, . . ., N; t) with the Hamiltonian operator

HN(1, . . ., N; t) of N-particles,

i
∂

∂t
ΨN(1, . . ., N; t) = HN(1, . . ., N; t)ΨN(1, . . ., N; t) (3.2)

By introducing the N-particle density matrix from the product of N-body wavefunctions,

ρN(1, . . ., N; 1
�, . . ., N�; t, t�) = Ψ

∗
N(1, . . ., N; t)ΨN(1, . . ., N; t), we can write

Eq. 3.2 and its conjugate equation in the density matrix formalism, i.e., i ∂
∂t
ρN = HNρN
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and−i ∂
∂t�

ρN = H�NρN. If we subtract the former with the latter equations and assume

that t = t�, we ųnally arrive at the von-Neumann equation,

i
∂

∂t
ρN − [HN, ρN] = 0 . (3.3)

However, the determination of the N-body density as well as calculating the

equation of motion for each particle is impractical. We need to reduce the N-body

density matrix down to the desirable level. By taking the trace over particle n+ 1th to

Nth of ρN, the n-body density is realized ρn = 1
(N−n)!

Trn+1,. . .,N (ρN). This reduced

density matrix method leads to the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hi-

erarchy (Boercker and Dufty, 1979). This hierarchy provide a set of coupled equations

to recursively determine the dynamics of the reduced n-body density matrices using

the (n+1)-body density. The BBGKY hierarchy reads,

i
∂

∂t
ρn − [

n�

i

H0
i , ρn] = [

n−1�

i<j

Vij, ρn] + Trn+1

	
[

n�

i=1

Vi(n+1), ρn+1]



.

(3.4)

H0
i is the Hamiltonian of free n-particles (propagate within an external ųeld). The second

term represents the mutual interactions between particle ith and others in the system.

The third term is accounting for the correlations controlled by another (n+1)-particle.

The ųrst two levels for the hierarchy equations read as,

i
∂

∂t
ρ1 − [H0

1, ρ1] = Tr2 ([V12, ρ2]) (3.5)

i
∂

∂t
ρ2 − [H0

1 + H0
2, ρ1] = [V12, ρ2] + Tr3 ([V12 + V13, ρ3]) (3.6)

The calculation of the 2-body density matrix ρ2 in the last term of Eq. 3.5 will be

evaluated by the next hierarchy (n = 2) in Eq. 3.6 which in turn also needs 3-

body density ρ3 from the next hierarchy, and so on. However, one can do some

approximation to truncate the 2- or 3-body density down to the product of single-

particle densities and close the set of equations. The different truncation schemes will

lead to the different single-density equations of motions as shown in Ref. (Aichelin,

1991)

Time-Dependent Hartree-Fock (TDHF) approach: For instance, the Time-
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Dependent Hartree-Fock (TDHF) approach for simple two-body density truncation which

is limited to the effective in-medium mean ųeld interactions. The 2-body density can

be reduced into a product of antisymmetric product of single-particle density (fermion),

ρ2(1, 2; 1
�, 2�; t) ≈ A12ρ1(1, 1

�; t)ρ1(2, 2
�; t),

where Aij is the permutation operator. By substitute this back to Eq. 3.5, we obtain,

i
∂

∂t
ρ1(1, 1

�; t)− [T01 − T01�]ρ1(1, 1
�; t) + [V01 − V01�]ρ1(1, 1

�; t)

= Tr2 ([V
F
12A12 − VF1�2�A1�2�]) ρ1(1, 1

�; t)ρ1(2, 2
�; t) (3.7)

From the formula, a single-particle ith dynamics within TDHF approximation can be un-

derstood as a single-particle propagation with the kinetic T0i under a direct inŴuence

within the medium (external ųelds and/or other nucleons). This interaction is deter-

mined from a self-generated local mean-ųeld potential called Hartree term V0i or VHi .

Finally, a time-dependent exchange or non-local mean-ųeld potential, called Fock po-

tential VFi , accounts for the Pauli principle.

In order to draw any further meaningful interpretation from the density matrix

ρ, we need to derive the proper phase-space distribution function f(�r,�p). Hence, we
will perform the Wigner transformation which is a Fourier transform on a single-particle

wavefunction or single-particle density matrix (Hillery et al., 1984) with new variable

�s ≡�x1 − �x�1 and�r ≡ (�x1 +�x�1)/2 which reads,

f(�r,�p, t) =

�
d3s exp

�−i�p ·�s�
ρ(�r +�s/2,�r −�s/2) (3.8)

For simplicity, we will determine the phase-space distribution from TDHF approach

within the diluted gas limit, i.e., neglecting the Fock time-dependent exchange term.
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Under the Wigner transformation, Eq. 3.7 becomes,

i
∂

∂t

�
d3s exp

�−i�p ·�s�
ρ(�r +�s/2,�r −�s/2)

=
2

2m

�
d3s exp

�−i�p ·�s�
[∇2

�r+�s/2 − ∇2
�r+�s/2]ρ(�r +�s/2,�r −�s/2)

+

�
d3s exp

�−i�p ·�s�
[V0(�r +�s/2)− V0(�r −�s/2)]ρ(�r +�s/2,�r −�s/2)

(3.9)

Then we can simplify the second term with [�∇
2
�r+�s/2 − �∇

2
�r+�s/2] = 2�∇r · �∇s, and

the third term by the Taylor expansion around�s → 0 of self-consistent mean-ųeld

potentials lim
�s → 0

[V0(�r +�s/2)− V0(�r −�s/2)] ≈ s�∇rV
0 = s�∇rU. Finally, The Vlasov

equation is obtained,

∂f

∂t
+
�p

m
�∇rf + �∇rU · �∇pf = 0 . (3.10)

The equation describes a free propagation of a single-particle phase-space distribution

f(�r,�p) in the self-generated Hartree mean-ųeld potential U or UH. The right hand side

of the Vlasov equation can be non-zero, if we introduce the quantum effect corrections,

e.g., Fock exchange potential or the collision term
�
∂f
∂t

�

coll
.

Vlasov-Uehling-Uhlenbeck (VUU) approach: If one wants to include the

potential from the realistic interaction between particles instead of the effective mean-

ųeld potential. We need to evaluate the dynamics of a single-particle from, at least, a

truncation of the 3-body density matrices. The coupling term with a second particle is

responsible for the collision with the ųrst particle. While the third particle will generate

an external ųeld to correlate with the ųrst two particles. However, this requires lengthy

mathematics calculations where one needs to discuss not only the reduction of the

density but also the calculation that arises from the trace terms, e.g., Pauli-blocking

and G-matrix, which is not really inline with our focus in this thesis. Hence, we will only

discuss how to derive the VUU equation with the collision term from the 2-body level

density or second hierarchy of the BBGKY equation n = 2.

The 2-body density can be reduced into single-particle densities while non-

zero two-body correlations are still kept into account. The 2-body density matrix be-
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comes,

ρ2(1, 2; 1
�, 2�; t) ≈ A12ρ1(1, 1

�; t)ρ1(2, 2
�; t) + c2(1, 2; 1

�, 2�; t) .

Substitute this reduced density into the BBGKY second hierarchy Eq. 3.6, we get a similar

result to the TDHF approach with an additional trace term of c12,

TDHF-Vlasov� �� �
i
∂

∂t
ρ1(1, 1

�; t)− [H0
1 − H1�]ρ1(1, 1

�; t) = Tr2 ([V12 − V1�2�]) c2(1, 2; 1
�, 2�; t)

� �� �
Collision term + Pauli exchange

(3.11)

Finally, we perform the Wigner transformation to express the equation in terms of

physical phase-space distribution. This equation of motion is called “VUU” or “BUU”

equation;
∂f

∂t
+
�p

m
�∇r f − �∇r U · �∇p f = Icoll[f1, . . . , fN] . (3.12)

The left hand side is equivalent to the Vlasov equation describing the free propagation

within the mean-ųeld where U is a self-consistent potential. On the right hand side, Icoll
represents the collision integral arising from the trace term with the correlation matrix

density. This term is connected to the transition rates from various contributed collision

processes which reads,

Icoll =
1

(2π)3

�
d3�p2d

3�p3dΩ|v12|
�

dσ

dΩ

�

12 → 34

δ
3(�p1 +�p2 −�p3 −�p4)

×[f3f4(1 − f1)(1 − f2)� �� �
Gain term: 3+4 → 1+2

− f1f2(1 − f3)(1 − f4)� �� �
Loss term: 1+2 → 3+4

]. (3.13)

Several BUU-based transport models have been developed to simulate

heavy-ion collisions, e.g., GiBUU (The Giessen BUU model) (Buss et al., 2012), PHSD (The

Parton-Hadron-String Dynamics model) which includes both hadronic and partonic de-

gree of freedom (Linnyk et al., 2016), and SMASH (The Simulating Many Accelerated

Strongly-interacting Hadrons model) (Weil et al., 2016). In BUU transport models, the

phase-space distribution function is often represented using test particles (Wong, 1982).

This method discretizes the continuous distribution function into a large number of test
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particles, each representing a small fraction of the system:

fi(r, p, t) ∼
1

Ntp

�

i

g(r − ri(t)g(p − pi(t)) (3.14)

Here, Ntp is the number of the test particles and the g is the sharp function, e.g., the

delta function. These test particles are generated for every time step and averaged over

all events. Also, the mean-ųeld potential is also updated according to the one-body

test particles. However, this method reduces the ability to generate realistic 2-body

correlations in each time step as well as the event-by-event Ŵuctuations. These issues

are, however, not a problem with the QMD approach which we will discuss later.

3.3 Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

model

In contrast to BUU models, Quantum Molecular Dynamics (QMD) approaches

simulate the system using classical equations of motion for quasi-particles (Aichelin,

1991). Instead of using the test particles, each particle is represented as a Gaussian

wave packet (Ono et al., 1992a), and their dynamics are governed by mutual 2-body

interactions through effective potentials and realistic binary particle collisions. Thus

the QMD approach (Hartnack et al., 1989; Ono et al., 1992a; Bass et al., 1998; Bleicher

et al., 1999; Nara et al., 2000; Aichelin et al., 2020) could directly provide many-body

correlations and Ŵuctuations. It has recently extended its capabilities to describe larger

clusters and even hyperclusters. In this thesis, we utilize the latest version of the UrQMD

transport model (UrQMD v3.5). The UrQMD will be brieŴy introduced in this section.

3.3.1 Initialization

QMD approach initializes the particles with the explicit N-body nuclear wave-

fuction which can be approximated with a simple product of single-particle wavefunc-

tion, Ψ(�r; t) =
�N

i ψi(�r,�ri; t). Note that, in UrQMD, we can neglect the Slater

determination for the antisymmetrization from the Pauli in exchange for the compu-

tational time. However, the nature of the two-body correlation will arise from the

effective Pauli potential which will be discussed below. However, a few QMD models

attempt to initialize with real antisymmetric wavefunction, e.g., Antisymmetrized Molec-

ular Dynamics (AMD) model (Ono et al., 1992b) and the Fermionic Molecular Dynamics
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(FMD) model (Feldmeier, 1990). In UrQMD, the single-particle wavefunction is assumed

as a Gaussian wave packet,

ψ i(�r,�ri; t) =

�
1

2πL

�4/3

exp

�
−(�r −�ri(t))

2

4L
− i�pi(t)·�r

�
. (3.15)

L is the width of the Gaussian wave packet in coordinate space. Then, we apply the

Wigner transform in a similar fashion from Eq. 3.8. The phase-space density of particle

ith reads,

fi(�r,�p; t) =

�
1

π

�3

exp

�
−(�r −�ri(t))

2

2L
− 2L(�p − �pi(t))

�
. (3.16)

The equation of motion in the QMD approach is derived from the Euler-Lagrange. The

generalized Lagrangian function is given by,

L =

�
d3r1 . . . d

3rNΨ
∗
�
−i

∂

∂t
− H

�
Ψ, (3.17)

L =

	
d�ri
dt
·�pi − Ti −

�

j

"Vtotij # − 3

8mL



. (3.18)

The N-body Hamiltonian is deųned as H =
�
i

Ti +
�
j�=i

Vtotij where the ki-

netic energy and the total potential energy of the particle ith are Ti and Vtotij with

"Vtotij # =
�
d3rid

3pi
�
d3r�j d

3p�j fi(�r,�p)Vijfj(�r
�, �p�). The total 2-body interactions involved
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in the propagation are the following:

VSkyrme = α

�
ρ

ρ0

�
+ β

�
ρ

ρ0

�γ

, (3.19)

VYukawa = Cyuk

exp (−µ|�ri −�rj|)
|�ri −�rj|

, (3.20)

VCoul =
ZiZje

2

|�ri −�rj|
, (3.21)

VMD = t4 ln [t5(�pi −�pj)
2 + 1] δ(�ri −�rj) , (3.22)

VPauli =
Cpauli

(q0p0)3
exp

�
−(�ri −�rj)

2

2q2
0

− (�pi − �rpj)
2

2p2
0

�
. (3.23)

Already from here, one can see the difference between the QMD and BUU for the

treatment of the 2-body (and 3-body) interactions. In QMD, they appear as effective

potential replacing the real part of the transition matrix from the collision term. The

local short-range VSkyrme and and long-range VYukawa potentials are responsible for the

nucleon-nucleon interaction in the nucleus. The parameters α, β, γ are ųxed to mimic

the proper binding energy and the compressibility ruling the stiffness of the density-

dependent equation of state, e.g., soft EoS and hard EoS. The parameter Cyuk is nec-

essary to ensure the nuclear surface properties and its Ŵuctuations. The Coulomb po-

tential VCoul is straightforward and does not need further explanation. The Momentum-

Dependent potential VMD is a small correction for more repulsive nuclear interactions

leading to a small adjustment for the Skyrme’s parameters and the stiffness of the

equation of state. Finally, The Pauli potential is parametrized to prevent fermions from

occupying the same phase-space cell. The last two potentials, although optional, are

important in order to investigate the nuclear properties at low energies where the two-

body or three-body correlations become strong, e.g., collective Ŵow (Steinheimer et al.,

2018; Steinheimer et al., 2022) and Ŵuctuations (Ye et al., 2020).

3.3.2 Propagation and Collision

The propagation of all particles is also based on the non-relativistic Boltzmann

or BUU equations similar to Eq. 3.12 where the time evolution of the momentum and
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coordinate of particle ith is evaluated by the Euler—Lagrange equations,

d�ri
dt

=
∂"H#

∂�pi

, (3.24)

d�pi

dt
=

∂"H#

∂�ri
. (3.25)

However, unlike the BUU approach, UrQMD does not operate with the phase-space

density or test particles but real microscopic n-body (classical-)particles of 70 baryon-

and 39 meson-species (Table 3.1 and 3.2) and their antiparticles. Hence, the scattering

process in the collision (source) term between hadrons will be triggered based on a

geometrical interpretation of elastic and inelastic cross-sections. The collision will occur

once the relative distance between two particles is below d ≤
√

σtot/π.

Furthermore, while two-body or three-body interactions in the BUU approach

are calculated together in the collision term Icoll. It requires tedious calculation for both

the real and imaginary parts of the transition matrix (or the Bruckner g-matrix). However,

in the UrQMD approach, these interactions are expressed in terms of effective potentials

replacing the real part of the transition matrix and leaving only the imaginary part in

the collision terms. The imaginary part of scattering amplitude is modeled via binary

elastic and inelastic collisions and ųtted with the experimental data.

Baryon-Baryon scattering: The cross-section of the BB-scattering is given by,

σ
BB
tot(
√

s) ∝ (2S1 + 1)(2S2 + 1)
"p3,4#

"p1,2#

1

s
|M(m3, m4)|2, (3.26)

where Si is the spin of particle ith. The matrix element |M(m3, m4)| will be taken in

a general form with an adjustable free parameter to ųt with the experiments. Or if the

out-going particles are resonances, the matrix element will be written according to the

mass distributions of Breit-Wigner form and ųt with the decay width and branching ratio

from PDG.

Meson scattering: The scattering processes for the meson are mostly reso-



28

Table 3.1 Table of Baryons.

N ∆ Λ Σ Ξ Ω

N938 ∆1232 Λ1116 Σ1192 Ξ1317 Ω1672

N1440 ∆1600 Λ1405 Σ1385 Ξ1530

N1520 ∆1620 Λ1520 Σ1660 Ξ1690

N1535 ∆1700 Λ1600 Σ1670 Ξ1820

N1650 ∆1900 Λ1670 Σ1750 Ξ1950

N1675 ∆1905 Λ1800 Σ1775 Ξ2025

N1680 ∆1910 Λ1810 Σ1915

N1700 ∆1920 Λ1820 Σ1940

N1710 ∆1930 Λ1830 Σ2030

N1720 ∆1950 Λ1890

N1900 Λ2100

N1990 Λ2110

N2080

N2190

N2200

N2250

Table 3.2 Table of Mesons.

00− 1−− 0++ 1++

π ρ a0 a1
K K∗ K∗0 K∗1
η ω f0 f1
η
�

φ f∗0 f∗1
1+− 2++ (1−−)∗ (1−−)∗

b1 a2 ρ1450 ρ1700

K1 K∗2 K∗1410 K∗1680
h1 f2 ω1420 ω1662

h�1 f�2 φ1680 φ1900
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nance scattering. For example, the total cross-section for MB-scattering reads,

σ
MB
tot(
√

s) =
�

R=∆,N∗

"jB, mB, jM, mM||JR, MR#
2SR + 1

(2SB + 1)(2SM + 1)

×
π

p2
cm

ΓR→MBΓtot

(MR −
√

s)2 + Γ2/4
(3.27)

where the decay width and branching ratio are obtained from the PDG data. However,

for the unknown cross-sections, e.g., BB, B∗B, YN, M∗B∗, M∗M∗, these processes will

be obtained via detailed balance (Goulianos, 1983) or the Additive Quark Model (AQM)

re-scaling (Danielewicz and Bertsch, 1991). For example,

σ
MM
tot (

√
s > 1.7 GeV) = σ

πp
tot (

√
s)
σ
MM
AQM

σ
πp
AQM

. (3.28)

One also should be noted that the particle productions are not only subjected to the

scattering processes or cross-section calculations. The string excitation, fragmentation,

and coalescence routines are also embedded to the current version of the UrQMD v3.5.

The detailed implementations for the string excitation and the fragmentation can be

found in Ref. (Andersson et al., 1983). While the coalescence routine will be discussed

here.

3.3.3 (Hyper)nuclei Formation Routine

Another remarkable update of the UrQMD v3.5 is a coalescence routine for

the (hyper)cluster formations. The coalescence model states that if two or more con-

stituent particles are close enough in phase-space, they will coalesce and form into

a cluster (see Ch. V for more details). Within UrQMD v3.5, the coalescence model is

applied numerically using a method known as box coalescence.

For each pair of nucleons and/or hyperons, the relative distance in their

center of mass frame is calculated. If their relative distance ∆x = |xn,1− xn,2| is less
than ∆xmax,nn and their relative momentum ∆p = |pn,1−pn,2| is less than ∆pmax,nn,

and if the spin-isospin coupling probabilities are satisųed, a two-body state will form

with combined momentum pnn = pn,1 + pn,2 and position xnn = (xn,1 + xn,2)/2.
The procedure is then extended to form three-body cluster states. The

relative distance within their local rest frame ∆x = |xnn,12 − xn,3| must be
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less than ∆xmax,nnn, and the relative momentum ∆p = |pnn,12 − pn,3| must

be less than ∆pmax,nnn. If these conditions are metand the appropriate spin-isospin

probabilities are satisųed, a three-body cluster will form with combined momentum

pnnn = pnn,12 + pn,3 and position xnnn = (xn,1 + xn,2 + xn,3)/3.
The criteria for forming these clusters are listed in Table ??, where ∆xmax and

∆pmax are determined based on iterative ųts to cluster multiplicity data from various

experiments (see Ref. (Hillmann et al., 2018; Sombun et al., 2019) for light nuclei and

Ref. (Reichert et al., 2023c; Reichert et al., 2023d) for hypernuclei).

Table 3.3 The numerical coalescence parameters of UrQMD v3.5.

Particle ∆x [fm] ∆p [GeV/c] spin-isospin

d 4.0 0.25 3/8

t, 3He 3.5 0.32 1/12
4He 3.5 0.41 1/12

NΞ 9.5 0.15 3/8
3
ΛH 9.5 0.15 1/12

In conclusion, due to the realistic n-body treatments of the UrQMD, the coa-

lescence model will also register two-body correlation effects throughout the evolution

allowing us to better capture the Ŵuctuations, the correlations, and cluster formation

(which may relate to the critical behavior) than other transport approaches. All these

aspects are inline with our following investigations, thus we will use UrQMD v3.5 as our

basis for the event simulations.

3.4 Hydrodynamics Models

The hydrodynamics model offers a comprehensive framework for simulat-

ing the dynamics of heavy-ion collisions, providing insights into the evolution of the

quark-gluon plasma (QGP). One of the key advantages of hydrodynamic models is the

explicit description of the thermodynamic properties of the medium, allowing for a

more accurate incorporation of the equation of state (EoS).

The conservation laws of energy-momentum and baryon density form the
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foundation of hydrodynamic models, expressed by the following equations:

∂µT
µν = 0, (Energy-Momentum Conservation)

∂µN
µ = 0, (Baryon Four-Current Conservation)

Here, Tµν represents the energy-momentum tensor, and Nµ denotes the baryon four-

current. These quantities can be expressed in terms of the Ŵuid’s four-velocity uµ and

the thermodynamic state in the local rest frame of the Ŵuid, described by the energy

density �, the pressure p, and the baryon density n:

Tµν = (� + p)uµuν − pgµν, Nµ = nuµ . (3.29)

In addition to the hydrodynamic equations, a speciųc EoS, p = p(�, n), is required
to close these coupling equations.

The standard relativistic hydrodynamics model treats the medium from the

collision as a single Ŵuid (Belenkij and Landau, 1955; Amsden et al., 1975; Wong et al.,

1975; Csernai et al., 1980; Mishustin et al., 1987; Rischke, 1999; Spieles and Bleicher,

2020). However, this simple approach has its limitations, particularly in heavy-ion colli-

sions where the conditions are far from equilibrium (Noronha-Hostler et al., 2016). One

of the major shortcomings of the single Ŵuid model is the assumption of instantaneous

thermalization and inųnite stopping power, which leads to unrealistically rapid thermal

equilibration and excessive energy densities.

To address these issues, three-Ŵuid hydrodynamics models have been pro-

posed (Mishustin et al., 1989; Katscher et al., 1993; Brachmann et al., 1997; Ivanov et al.,

2006; Batyuk et al., 2016; Cimerman et al., 2023). These models aim to parametrize

the projectile, target, and ųreball as separate Ŵuids within the system. This three-Ŵuid

approach allows for a more realistic initialization and handling of the hydrodynamic

expansion stage of the collisions. Each Ŵuid component can permeate and exchange

energy-momentum appropriately, overcoming the limitations of the single-Ŵuid model.

The basic equations of relativistic hydrodynamics for the three-Ŵuid model involve the

conservation of energy-momentum and baryon current for each Ŵuid i:

∂µT
µν
i = Fνi , ∂µj

µ
i = Si (i = 1, 2, 3)

where the source terms Fνi and Si account for the energy-momentum and baryon charge
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exchange between the Ŵuids. The total conservation equations obey
�
i

Fνi = 0 and
�
i

Si = 0. These source terms include frictional forces arising from the relative

motion between Ŵuids, where viscosity could enter the equations (Busza et al., 2018),

inŴuencing the Ŵow dynamics and leading to the development of shear and bulk vis-

cosity effects.

Hydrodynamic models, as macroscopic descriptions, primarily provide macro-

scopic observables or bulk properties of heavy-ion collisions, such as thermodynamic

properties that may not be directly measured, like particle spectra. To translate these

thermodynamic quantities into experimental observables, the freeze-out condition

must be deųned, marking the transition where particles free stream to the detectors.

Deųning the freeze-out condition within hydrodynamic models is not straight-

forward and requires certain assumptions to describe hadronization. The “particliza-

tion” approach, which is adopted from the Cooper-Frye approach, occurs when the

local thermodynamic properties (energy density) of the medium at the freeze-out hy-

persurface fall below a certain threshold. At this point, the Ŵuid elements convert into

hadrons, which subsequently stream freely to the detectors.

However, the criteria for freeze-out are debatable and model-dependent.

This has led to a newly novel approach suggesting a continuous freeze-out during the

evolution instead of a snapshot of the hypersurface at the end of the calculation (Grassi

et al., 1996; Hung and Shuryak, 1998; Akkelin et al., 2008; Knoll, 2009).

Another approach is the hybrid model, where the hydrodynamic model is

integrated into the early stage of a microscopic transport model, often referred to as

an afterburner. This method provides the realistic initial stage and the possible phase

transition from QGP where the partons dominate the system to a hadronic phase as

well as realistic dynamics and kinetic freeze-out during and after the hadronic phase,

e.g., resonances, decays, and re-scattering.

3.5 Hybrid Models

Describing the hadronic freeze-out and extracting secondary particle spectra

presents a challenge for hydrodynamic models. The application of the Cooper-Frye

equation (Cooper and Frye, 1974) is commonly used for this purpose, where the transi-

tion from the Ŵuid to free hadrons occurs instantaneously on a hypersurface of equal

local energy density.
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Pure microscopic models, such as transport models, excel at describing the

hadronic phase of heavy-ion collisions, effectively capturing the non-equilibrium dy-

namics and individual particle interactions. However, they struggle to accurately de-

scribe the QGP or partonic phase and capture the effects of a phase transition in the

thermodynamical perspective which is important for the EoS studies.

Conversely, macroscopic hydrodynamic models are adept at describing the

QGP phase and the collective Ŵow at the early stage of the collisions, assuming local

thermal equilibrium and using EoS to describe the system’s evolution. Yet, they fall

short in describing the hadronic phase, particularly the freeze-out process and subse-

quent particle interactions, due to their reliance on equilibrium assumptions.

The hybrid model aims to combine the strengths of both microscopic trans-

port models and macroscopic hydrodynamic models. By integrating these approaches,

hybrid models provide a comprehensive description of the entire evolution of a heavy-

ion collision, from the initial QGP phase to the ųnal hadronic interactions. In this sec-

tion, we will brieŴy introduce the implementation based on the UrQMD hybrid ap-

proach (Steinheimer et al., 2008; Steinheimer et al., 2012).

The UrQMD hybrid model incorporates the hydrodynamic evolution of the

QGP phase allowing for a more accurate depiction of the transition from (local) equilib-

rium hydro phase to non-equilibrium hadronic phases. The implementation steps are

the following:

• Initial State: The hydrodynamic evolution begins after the two Lorentz-

contracted nuclei have passed through each other, triggering the thermal-

ization. The energy and momentum of the participants are mapped into

hydrodynamic quantities serving as initial conditions (Petersen et al., 2008).

The initial geometry is typically based on the Glauber model.

• Hydrodynamic Evolution and EoS: A (3+1)-dimensional ideal hydrodynamic

evolution is assumed for the early stage collision, where the system is ther-

malized. The chosen EoS guides the Ŵuid’s evolution, determining how the

system transitions from QGP to hadronic matter.

• Final State - Particlization: The change from the hydrodynamic to transport

phase occurs through particlization, where hydrodynamic parameters are con-

verted to hadron distributions using the Cooper-Frye procedure (Cooper and

Frye, 1974). Finally, these particles and their interactions, e.g., scattering and
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resonance decays, are simulated within the UrQMD transport algorithm until

freeze-out.

In addition to the UrQMD hybrid model, several other hybrid models have

been developed, integrating various transport and hydrodynamic approaches:

• Integrated UrQMD 3.3 (Petersen et al., 2008)

• Hadronic Dissipative Effects (Hirano et al., 2006)

• 3-D Hydro + Cascade Model at RHIC (Nonaka and Bass, 2006)

• NeXSpheRIO (Hama et al., 2008)

• EPOS+Hydro+UrQMD at LHC (Werner et al., 2010)

• MUSIC@RHIC and LHC (Schenke et al., 2011)

As mentioned before, particlization in pure hydrodynamics is akin to freeze-

out, where particle spectra are generated from the ųnal stage of the hydrodynamic

evolution. However, in the hybrid model, particlization refers to the mapping of hydro-

dynamic quantities to particle distributions for the transport model. It is important to

note that particlization is neither the hadronization process nor freeze-out but rather

a practice for transitioning between two frameworks while maintaining consistent initial

and freeze-out conditions.

The particlization is implemented numerically with a Monte Carlo based on

the Cooper-Frye equation:

E
dN

dp3
=

�
dσµp

µf(x, p) ≈
�

σ

∆σµp
µf(x, p) , (3.30)

where σµ is a hypersurface element of hydrodynamics. The challenge lies in

determining both the location and the normal direction of these surface elements.

In Eq. (3.30), f(x, p) represents the momentum distribution of hadrons inside the

Ŵuid. The assumptions about the Ŵuid are directly reŴected in the particle distribution
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function. For near-equilibrium Ŵuids, allowing for dissipation (viscous hydrodynamics),

f(x, p) reads:

f(x, p) = fF/B(x, p) + δf
�
C(shear)s , C(bulk)s

�
. (3.31)

This function is simply the density distribution of a fermion/boson gas, fF/B(x, p), plus
terms representing shear and/or bulk viscosities, cs (from dissipating non-equilibrium

effects).


