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The space-time picture of the ųreball geometry and (hyper)nuclei formation

in heavy-ion collisions is explored, considering various factors crucial for EoS stud-

ies at lower energies, speciųcally around FAIR and HADES energies, by utilizing the

UrQMD v3.5 transport model. The spatial geometric coalescence model to study

(anti)deuteron formation is improved and used to extract the (anti)nucleon source radii

by ųtting the (anti)deuteron formation rate with the available coalescence parameter

data B2(B2). The ųndings suggest potential critical behavior on the emission source at√
sNN = 27 GeV. The antinucleon distributions from UrQMD support the presence of

an annihilation region at the core of the emission source for all energies. The effects of

a phase transition from cascade, hard, soft and chiral mean ųeld EoS on the emission

source are investigated by two-pion HBT interferometry. The chiral mean ųeld with a

phase transition (CMF_PT2) EoS exhibits critical behavior in RO/RS and R2O−R2S as well as

a prolongation of the freeze-out time distribution of π− from UrQMD simulations, show-

ing good agreement with the experimental data. The analyses from both RO − RS and

the time distribution indicate that only the phase transition from the CMF_PT2 occurs,

while the phase transition from the CMF_PT3 is never reached. Thus, according to their

density-dependent nature, we conclude that the nuclear density ρB is around 2 − 3

times the saturation density ρ0 at
√

sNN ≈ 4 GeV. We further propose corrections to

the measurement of the coalescence parameter BA for lower energies with the proper

formula for estimating primordial protons and neutrons based on the isospin equilibra-

tion in the system. As expected, the collision energy dependence of the corrected BA
at low energies aligns well with HBT predictions. Cluster formation mechanisms are

analyzed utilizing the different space-time pictures. The isospin triggering is proposed

to solve the tension between the thermal emission at the chemical freeze-out and the

coalescence at kinetic freeze-out. A dependence on ∆Y = Yπ− − Yπ+ is expected

if the clusters are formed by coalescence. The observed maxima of d, t, and 3He with

respect to ∆Y from the UrQMD box coalescence model agree with our theoretical as-

sumptions and provide an experimental method to distinguish coalescence
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4.1.1 Mrówcyńzski Density Function . . . . . . . . . . . 38

4.2 Energy Dependence of Formation Geometry . . . . . . . . . 40

4.3 Validation with UrQMD . . . . . . . . . . . . . . . . . . 43

4.4 HBT Correlation . . . . . . . . . . . . . . . . . . . . . 47

 



VIII

CONTENTS (Continued)

Page

4.4.1 Two-Particle Correlations . . . . . . . . . . . . . 48

4.5 Simulation set-ups and EoS . . . . . . . . . . . . . . . . 52

4.6 Two-Pion HBT Analysis . . . . . . . . . . . . . . . . . . 54

4.7 Effect of the EoS with Phase Transition . . . . . . . . . . . 57

4.8 Space-time Structure from HBT radii . . . . . . . . . . . . 58

V REVIEWS ON (HYPER) (LIGHT) NUCLEI . . . . . . . . . . . . . . 64

5.1 Role of (Hyper)Nuclei Formation . . . . . . . . . . . . . . 64

5.1.1 Hypernuclei . . . . . . . . . . . . . . . . . . 68

5.2 Cluster Formation Mechanisms . . . . . . . . . . . . . . . 69

5.2.1 Thermal productions . . . . . . . . . . . . . . . 69

5.2.2 Coalescence Model . . . . . . . . . . . . . . . 72

Simple Momentum Coalescence . . . . . . . . . . 73

Analytic Coalescence Models . . . . . . . . . . . 76

Wigner’s Function . . . . . . . . . . . . . . . . 78

5.2.3 Dynamical Model . . . . . . . . . . . . . . . . 79

5.2.4 Multifragmentation . . . . . . . . . . . . . . . 82

VI CORRECTING BA COALESCENCE FACTOR . . . . . . . . . . . . . 85

6.1 Problems with BA . . . . . . . . . . . . . . . . . . . . 86

6.2 Reconstructing Primordial Protons and Neutrons . . . . . . . 87

6.2.1 Rapidity Distribution . . . . . . . . . . . . . . . 87

6.2.2 pT Distribution . . . . . . . . . . . . . . . . . 90

6.2.3 Estimating B2 and B3 . . . . . . . . . . . . . . . 93

VII INVESTIGATING CLUSTER PRODUCTION MECHANISMS . . . . . . . 99

7.1 Thermal vs Coalescence . . . . . . . . . . . . . . . . . 99

7.2 Isospin triggering . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Simple estimates . . . . . . . . . . . . . . . . 101

7.3 Qualitative Estimates . . . . . . . . . . . . . . . . . . . 103

7.3.1 Freeze-out time distributions . . . . . . . . . . . 104

7.4 Light cluster yields versus isospin Ŵuctuation . . . . . . . . . 105

 



IX

CONTENTS (Continued)

Page

VIII RESULTS IN PION INDUCED REACTIONS . . . . . . . . . . . . . . 109

8.1 The needs and potential of small collision systems . . . . . . 109

8.2 Model Setup . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Proton and Λ Baryon Production . . . . . . . . . . . . . . 113

8.4 (Light) Nuclei distributions . . . . . . . . . . . . . . . . . 118

8.5 (Hyper) Nuclei distribution . . . . . . . . . . . . . . . . . 123

8.6 Fragments of larger mass numbers . . . . . . . . . . . . . 125

IX SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . 130

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . 170

 



LIST OF TABLES

Table Page

3.1 Table of Baryons. . . . . . . . . . . . . . . . . . . . . 28

3.2 Table of Mesons. . . . . . . . . . . . . . . . . . . . . 28

3.3 The numerical coalescence parameters of UrQMD v3.5. . . . . 30

6.1 The B2 values calculated ųnal state protons and both primor-

dial protons and neutrons at pT/A = 0.0 GeV at midrapidity

|y| ≤ 0.5. The calculatation is extracted from 0 − 10% central

Au+Au collisions at kinetic beam energies from Ebeam = 0.3A to

40A GeV. . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 The B3 values calculated ųnal state protons and both primor-

dial protons and neutrons at pT/A = 0.0 GeV at midrapidity

|y| ≤ 0.5. The calculatation is extracted from 0 − 10% central

Au+Au collisions at kinetic beam energies from Ebeam = 0.3A to

40A GeV. . . . . . . . . . . . . . . . . . . . . . . . . 96

 



LIST OF FIGURES

Figure Page

2.1 The compilation of the predicted location of the QCD critical

point from various models, mainly chiral models and lattice

QCD (Stephanov, 2006). Black points represent chiral model

predictions. Green points indicate lattice predictions. The two

dashed lines are the slopes corresponding to dT/dµ2
B of the tran-

sition line at µB = 0. The red circles denote the freeze-out

points for heavy ion collisions at corresponding center-of-mass

energies in GeV per nucleon. . . . . . . . . . . . . . . . 12

2.2 QCD diagram with BES program and various facilities (Collabora-

tion, 2014). . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Space-Time Evolution (Braun-Munzinger and Dönigus, 2019). . . 16

4.1 The schematic picture of the geometric coalescence model

for (anti)deuteron formation if the two (anti)nucleons are close

enough in phase-space. Ap and AT are the incoming projectile

and target nucleons and X represents the particles that carry the

rest momenta of the system. (Left) The nucleon emission source

is a whole spherical with radius r0. (Right) the survived antinu-

cleons are emitted only on a spherical shell radius r0 as the NN

annihilations destroy most of the antinucleon at the center radius r∗. 38

4.2 The antideuteron formation according to the source bulk radius

r0 with varying suppression radii r∗. . . . . . . . . . . . . . 41

4.3 The energy dependence coalescence parameters B2 for

deuterons (left) and B2 antideuterons (right) from various experi-

ments ranging from
√

sNN = 4.7 − 200 GeV. The black lines

show the B2 and B2 ųts using the extracted radii r0 and r∗ according

to the formation rate in Eq. (4.7) . . . . . . . . . . . . . . 41

4.4 The emission source radius r0 of deuteron (solid black lines) and

the suppression region of antideuteron source r∗ (dash-dotted

line) as a function of energy . . . . . . . . . . . . . . . . 42

 



XII

LIST OF FIGURES (Continued)

Figure Page

4.5 The normalised (anti)nucleon distribution in transverse plane rT
at
√

sNN = 11.5 GeV (left panel) and
√

sNN = 200 GeV (right

panel). The black solid line represents the nucleon distribution

and antinucleon distribution is depicted with the dotted line. . 44

4.6 The energy dependence of the ųtted (anti)nucleon source radii is

illustrated. The solid circles represent the whole nucleon source

radius r0. The extracted source radii of antinucleons are depicted

with square symbols. The outer source radius of antinucleons r0
is represented by the full symbols, while the inner source radius

of the suppression region r∗ is indicated by the open symbols. . 45

4.7 The energy dependence of the r∗/r0 ratio of antinucleon source
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CHAPTER I

INTRODUCTION

Heavy-ion collisions offer a unique testing ground for studying the properties

of nuclear matter under various conditions. Advancements in theory and experiment

over several decades have led more research areas to converge on a few, or perhaps

even a single, fundamental truth about the universe. The acquired knowledge and

interdependent knowledge are intertwined between various ųelds of physics research

especially between nuclear physics and astrophysics. As various puzzles from astro-

physics can be solved by testing on Earth within the heavy-ion collision facilities and

the nuclear physics puzzles can also be tested with observable stellar objects, e.g.,

neutron stars and binary neutron mergers, dark matter, and others. This leads the

heavy-ion collision facilities all over the world to move their focus toward the lower

energy collisions, low temperature with extreme density, in order to probe various sce-

narios within the QCD phase diagram especially for the existence of the critical end

point and the Equation of state (EoS) which is a direct connection between the nuclear

properties and the compact stellar objects like neutron stars. The Beam Energy Scan

(BES) program initiated by RHIC, and upcoming experiments GSI-FAIR and HADES that

are joining the efforts, are particularly designed for low energy regimes.

During this PhD studies, our colleges and me have been investigated the

dynamics of the heavy-ion collisions particularly focusing on its space-time dynamics

ranging from the initial stage to the ųnal stage of the heavy-ion collisions. Together, we

have published the following papers:

1. Kittiratpattana, A., Reichert, T., Steinheimer, J., Herold, C., Limphirat, A., Yan,

Y., and Bleicher, M. (2022). Correcting the BA coalescence factor at energies

relevant for the GSI-HADES experiment and the RHIC Beam Energy Scan. Phys.
Rev. C, 106(4):044905 (Kittiratpattana et al., 2022)

2. Reichert, T., Kittiratpattana, A., Li, P., Steinheimer, J., and Bleicher, M. (2023a).

Probing system size dependence at high baryon density by systematic com-

parison of Ag+Ag and Au+Au reactions at 1.23A GeV. J. Phys. G, 50(2):025104
(Reichert et al., 2023a)
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3. Li, P., Steinheimer, J., Reichert, T., Kittiratpattana, A., Bleicher, M., and Li, Q.

(2023). Effects of a phase transition on two-pion interferometry in heavy ion

collisions at
√

sNN = 2.4 − 7.7 GeV. Sci. China Phys. Mech. Astron.,
66(3):232011 (Li et al., 2023)

4. Kittiratpattana, A., Reichert, T., Li, P., Limphirat, A., Herold, C., Steinheimer, J.,

and Bleicher, M. (2023). Investigating the cluster production mechanism with

isospin triggering: Thermal models versus coalescence models. Phys. Rev. C,
107(4):044911 (Kittiratpattana et al., 2023)

5. Reichert, T., Savchuk, O., Kittiratpattana, A., Li, P., Steinheimer, J., Gorenstein,

M., and Bleicher, M. (2023b). Decoding the Ŵow evolution in Au+Au reactions

at 1.23A GeV using hadron Ŵow correlations and dileptons. Phys. Lett. B,
841:137947 (Reichert et al., 2023b)

6. Kittiratpattana, A., Reichert, T., Buyukcizmeci, N., Botvina, A., Limphirat, A.,

Herold, C., Steinheimer, J., and Bleicher, M. (2024). Production of nuclei and

hypernuclei in pion-induced reactions near threshold energies. Phys. Rev. C,
109(4):044913 (Kittiratpattana et al., 2024)

However, the scope of this thesis will be on the exploration and demonstra-

tion of the dynamics of heavy-ion collisions, with a particular emphasis on the interplay

and the utilization between (hyper)nuclei formation and space-time evolution of the

created ųreball, considering the various dependencies that inŴuence them especially

toward lower energies, e.g., the beam energy, EoS, formation mechanisms, stopping

power, and system size. These studies are essential to the study of QCD matter, the

critical behavior, and potentially to constrain the EoS. They are reported in the following

papers:

• Kittiratpattana, A., Reichert, T., Steinheimer, J., Herold, C., Limphirat, A., Yan,

Y., and Bleicher, M. (2022). Correcting the BA coalescence factor at energies

relevant for the GSI-HADES experiment and the RHIC Beam Energy Scan. Phys.
Rev. C, 106(4):044905 (Kittiratpattana et al., 2022)

• Li, P., Steinheimer, J., Reichert, T., Kittiratpattana, A., Bleicher, M., and Li, Q.

(2023). Effects of a phase transition on two-pion interferometry in heavy ion
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collisions at
√

sNN = 2.4 − 7.7 GeV. Sci. China Phys. Mech. Astron.,
66(3):232011 (Li et al., 2023)

• Kittiratpattana, A., Reichert, T., Li, P., Limphirat, A., Herold, C., Steinheimer, J.,

and Bleicher, M. (2023). Investigating the cluster production mechanism with

isospin triggering: Thermal models versus coalescence models. Phys. Rev. C,
107(4):044911 (Kittiratpattana et al., 2023)

• Kittiratpattana, A., Reichert, T., Buyukcizmeci, N., Botvina, A., Limphirat, A.,

Herold, C., Steinheimer, J., and Bleicher, M. (2024). Production of nuclei and

hypernuclei in pion-induced reactions near threshold energies. Phys. Rev. C,
109(4):044913 (Kittiratpattana et al., 2024)

To achieve these goals, both theoretical and simulation models are indis-

pensable because ųrst principle QCD calculations are computationally too expensive.

These models help us understand the origin of particle formations and the space-time

evolution of the systems, as well as help us interpret experimental data. This thesis

employs the UrQMD v3.5 transport model for event simulations and comparing the re-

sults with ųndings from our assumptions and/or other models. The importance on the

understanding of space-time picture of the heavy-ion collisions and the development

of theoretical models as well as other prospects are introduced and discussed in Chap-

ter II. Chapter III focuses on developments and core assumptions of various simulation

models.

Ch. IV points out our aims by demonstrating the utilization of the space-time

structure of the ųreball and the inŴuences from the beam energies and the EoS. The

space-time dynamics in the context of beam energies are explored based on the clus-

ter formations in Sec. 4.1. The spatial geometric coalescence model is adopted and

improved to estimate the (anti)deuteron productions and to extract the space-time

structure of (anti)nucleon source. The (anti)nucleon source geometries will also be

tested and conųrmed with the UrQMD simulation. The extracted source geometries

might help in revealing the presence of critical behavior on the beam energy spectrum

and provide a proper explanation for the space-time structure of nucleon and antinu-

cleon source geometries. Additionally, the space-time structure of the ųreball is further

investigated on various EoS with different phase transition scenarios from the standard

UrQMD EoS to the chiral mean ųeld EoS with and without phase transition. Sec. 4.4

will illustrate not only the energy-dependence but also the density-dependent nature
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of the emission source geometry. The distinct critical behaviors from HBT radii and the

UrQMD freeze-out time are expected and the corresponding critical density could be

extracted.

The cluster formations, e.g. (anti)deuteron, from the previous chapter, have

displayed some of their inŴuences on the emission source structure which may poten-

tially lead to the possible critical behavior of the ųreball. As ųnal stage observables,

these clusters, in fact, can be also inŴuenced by many more factors since the early

stage ranging from the strangeness enhancement, the Ŵuctuations, correlations, and

initial collision geometries which all are as sensitive to the EoS and the critical behav-

ior. They also have a direct implication for the astrophysics subjects like the neutron

star structure, the early universe, and dark matter. Moreover, different assumptions on

their formation mechanisms could also result in different outcomes and interpretations.

Thus, all of these topics will be reviewed in detail in Ch. V.

Due to the maximum Ŵuctuations and correlations of conserved quantities as

well as the prolonging of the relaxation time, the critical behavior could be manifested

by the cluster formations, particularly within the coalescence picture. The coalescence

parameter reŴects the emission volume with an inverse proportional relation. How-

ever, this volume is not the same as the (charged) volume from the thermal picture

which scales monotonic exponentially with the beam energies. Instead, it is similar to

the homogeneity volume of the HBT emission source. However, at low energies, the

experimental data of B2 and B3 from various experiments indicate that this emission

source volume behaves like the thermal volume which is unlikely. Ch. VI will address

the discrepancy in coalescence parameter BA measurements by proposing a corrected

formula to account for primordial nucleons. The correction is expected to bring co-

alescence parameters to align with HBT predictions as a support the validity of our

approach providing a consistent space-time picture.

To accurately estimate and interpret the ųnal-stage cluster spectra from ex-

periments, an understanding of their space-time origin and formation mechanisms is

needed. There are tensions on the origin of these clusters from the two most common

mechanisms, i.e., the thermal and coalescence model. A key distinction between them

is the difference in space-time pictures of their occurrences. That is, the thermal model

directly produces and emits clusters from the hot ųreball at the chemical freeze-out

together with all other particle species, while the coalescence model happens during

the ųnal stage of the collisions, kinetic freeze-out. Given our focus on the space-time
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dynamics of collisions, we leverage this difference and aim to resolve this tension. In

Ch. VII will demonstrate how these clusters experienced the isospin equilibration from

the chemical freeze-out. The isospin exchange should lead to the Ŵuctuations of the

available nucleons to coalesce in the system. Due to this, the district maxima behaviors

of clusters could be expected while the grand-canonical thermal model will average

out all the Ŵuctuation and only show constant thermal yields. This will be a clear indi-

cation that the clusters must be formed later at kinetic freeze-out with the coalescence

picture.

The solutions for such debate can also be investigated at different collision

systems via the hypernuclei formations. The coalescence models predict a stronger

suppression on the system size-dependence of the hypertrition yield ratio 3
ΛH/Λ when

compared with the thermal model’s. This raises the need for data at smaller system

sizes. These data will not only help to pin down the cluster mechanisms between

the thermal and coalescence models but also be crucial for the hypernuclei internal

interactions which have a direct implication on constraining the neutrons star EoS. The

investigation in Ch. VIII will provide another coalescence prediction for hypertrition yield

ratio at even lower energies and smaller system sizes and point out the potential ad-

vantages of pion-induced reactions at HADES experiments for studying (hyper)nuclei

formations. The UrQMD and the Statistical Multifragmentation Model (SMM) will be

employed to show that (hyper)nuclei abundances in these reactions are comparable

or could even be higher than those at high-energy facilities. Since the environments

provided by the pion beam at HADES is conductive for (hyper)nuclei formation due to

a stronger stopping power than other collision systems.

 



CHAPTER II

PROSPECTS OF HEAVY-ION COLLISIONS

The ultimate goal for nuclear physicists is to understand QCD matter and

its governing Equation of State (EoS). In order to study this strongly interacting matter,

we need sufųcient energy to tear the nucleus apart, generating conditions where the

“strong force” is dominant. Hence, we need heavy-ion collisions. In this chapter, we

introduce the concepts and goals of heavy-ion collisions.

2.1 Exploring the QCD Phase Diagram

2.1.1 The Development of Models and Equation of State

Early theoretical prediction for a new state of nuclear matter was done in

the 1970s by Ref. (Fritzsch et al., 1973; Freedman and McLerran, 1977; Shuryak, 1978;

McLerran, 1986) regarding nuclear matter under extreme conditions leading to the so-

called “Quark Gluon Plasma (QGP)”. Naturally, one expects an accompanying phase

transition between two different states in the phase diagram. A type of transition is

dictated by the order parameter or a relation between thermodynamic properties, e.g.,

pressure, energy density, chemical potential, and temperature. This relation is known as

“Equation of State (EoS)”. Ref. (Cabibbo and Parisi, 1975) reported that there could be

many kinds of orders of phase transitions in the QCD phase diagram. A smooth second-

order phase transition or a crossover at high temperatures with low baryochemical

potential is expected from the earlier theoretical calculation either by chiral model or

lattice QCD (see below). Then there should be a ųrst-order phase transition line with

a critical end point where the thermodynamic changes are abruptly strong and even

diverge. However, since then, there is still no clear experimental evidence to prove the

existence of this critical point.

During this period, Ref. (Johnson, 1975) has proposed an empirical approach

to explain the physical behaviors that could provide the EoS with the ųrst-order phase

transition as well as a critical end point. This model is called the MIT Bag Model.

Only until 1990s, the ųrst principle non-perturbative QCD calculation could

be successfully published. The approach is known as “lattice QCD”. It is based on the
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discretizing the space-time grid, allowing for numerical simulation processes (Karsch,

2002; Fodor and Katz, 2002). After a decade, this approach has become one of the

most basis for the simulation comparison due to its fundamental nature. The devel-

opment of the lattice QCD is now focusing on extending its computational ability via

complex numerical techniques for simulating the QCD matter at the larger chemical

potential. Currently, the lattice QCD could provide the reliable EoS and conųrm the

smooth crossover phase transition at the region µB/T ≤ π (no critical point has been

found) (Allton et al., 2005; Aoki et al., 2006; Vovchenko et al., 2018b).

Another important theoretical development was the introduction of the chi-

ral models (Brown and Rho, 1996; Berges and Rajagopal, 1999; Alford et al., 1999). The

chiral model could also provide a similar physical description of the two major phases,

the chiral symmetry restored phase and the chiral spontaneously breaking phase, which

is comparable to the de-conųnement phase at QGP conditions and the conųnement

phase at low temperature and baryochemical potential where quarks are bound into

normal hadrons, respectively. Despite arising from the same origin, some simple chiral

models provide only a ųrst-order phase transition (Koch, 1997), while some models

could suggest a critical end point. However, the speciųc details remain under investi-

gation.

Aside from the theoretical developments, the advancement of heavy-ion col-

lision facilities also plays an important role in nuclear physics. The very ųrst announce-

ment for the existence of QGP was presented by CERN Super Proton Synchrotron (SPS)

with several collaborations in the 1990s (Heinz and Jacob, 2000). Since the ųrst heavy-

ion collision experiments from Bevalac to the Large Hadron Collider (LHC) at CERN, the

data collected over the years are immersed and further conųrms the existence of the

QGP deųnitively with a multitude of observables, such as strangeness enhancement

K/π, the J/Ψ suppression (Matsui and Satz, 1986; Wiedemann, 2010), the collective

Ŵow (Muller et al., 2012).

Despitemassive evidence of the new phase of nuclear matter QGP, the explo-

ration of the QCD phase diagram still remains being an active research (Collaboration,

2014) in order to study the physical behavior of the phase transition and locate the

critical end point (if exists). Over the past decades with theoretical and experimental

developments, there seem to be more than two phases of QCD matters, e.g., Color-

Glass superconductor (CGC) phase at low temperature but very high baryochemical

potential, as well as the connection between nuclear physics and the very dense/com-
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pact stellar objects, like neutron stars, i.e., the EoS. Thus, future efforts will likely focus

on the lower energies but extremely dense conditions for extracting the EoS as well

as studying the critical behavior of the QCD matter undergoing the phase transition (as

well as the critical point).

The equation of state describes the relation between the thermodynamic

quantities. These quantities can be obtained from the partition function of any equi-

librium system parametrized by the volume V, temperature T, and chemical potential

µ. For instance, in the grand-canonical picture of monotonic gas we have,

Z(T, V, µ) = Tr
�
exp

−(Ĥ−µN̂)/T
�
, (2.1)

Ω(T, V, µ) = −TlnZ . (2.2)

Z(T, V, µ) is the grand-canonical partition function with Ω(T, V, µ) as a grand po-

tential. Here Ĥ and N̂ are the Hamiltonian operator and the number operator. The

thermodynamic relations is

Ω(T, V, µ) = E − TS − µN , (2.3)

dΩ(T, V, µ) = −SdT − pdV − Ndµ , (2.4)

where S is the average entropy. Oftentimes, the thermodynamic quantities are ex-

pressed in terms of density,

−P = �− Ts − µn , (2.5)

dP = sdT + ndµ , (2.6)

d� = Tds + µdn . (2.7)

The following relations are also useful:

� =
T

V

�
∂lnZ

∂lnT
+

∂lnZ

∂lnµ

�
, (2.8)

P = T
∂lnZ

∂V
. (2.9)

We now have all of the connections required to create the equation of state.

Non-interacting relativistic particles: The grand-canonical partition function
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for non-interacting massive particles is given by,

Z(T, V, µ) =
�

k

	 ∞�

σ

e−σ(E(k)−µ)/T


d

=
�

k

�
1 ± e−(E(k)−µ)/T

�±d

.

The partition function is expressed as the production of a single momentum state,

which is a sum over all possible same occupying states, i.e., the occupation number

σ. For bosons, they can take any state up to the inųnite number σ = 0, 1, 2, 3, ...,
while fermions can only take the same state up to σ = 0, 1 due to Pauli’s exclusion.

The d is the degeneracy factor accounting for all possible spin states.

In an extreme case like the early universe QGP, we expect a very high tem-

perature with µ → 0. Under these conditions, the system is approximately at the chiral

limit, where the bare quarks are massless. The system can be described with massless

Goldstone boson gas. The grand potential density or pressure of massless boson gas

reads as,

P =






for bosons;

d

�
d3k

(2π3)
Tln

�
1 − e−E(k)/T

�
= d

π
2

90
T4 .

for fermions;

−d

�
d3k

(2π3)
Tln

�
1 + e−E(k)/T

�
= d

7

8

π
2

90
T4 .

(2.10)

The degeneracy factor of pion arises from the isospin state; we have dπ = 3

(for both Nf = 2 or 3 (Yagi et al., 2005)). This description can be used to describe the

system at LHC or ALICE energies, where the pion dominates the medium.

MIT Bag Model

The MIT Bag Model describes the conųning of quarks inside the bag, forming a

hadrons (Johnson, 1975; DeTar and Donoghue, 1983) where the strong force is described

by the empirical bag pressure. At high temperatures and density, the pressure inside

the hadron bag becomes very strong, leading the bag to expand and eventually break

down. This breakdown is similar to the abrupt change nature of the ųrst-order phase
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transition, resulting in the hadron bag to de-conųne and achieving the de-conųnement

state, or QGP phase.

Bag Model EoS: The nature of phase transition is dictated by the EoS. Here,

the thermal properties of the non-interacting relativistic gases of QGP and pion are

connected and serve as a governing EoS,

PQGP =dQGP

π
2

90
T4 − B , (2.11)

�QGP =3dQGP

π
2

90
T4 + B , (2.12)

sQGP =4dQGP

π
2

90
T3 . (2.13)

B is the bag parameter whose purpose is similar to the binding energy,

dQGP(dq, dg) is the effective degeneracy factor for quarks and gluons. The main feature

of the bag model is the strong ųrst order phase transition. In addition, we can use the

bag model equation of state to extract the critical temperature for ųrst-order phase

transition using the boundary conditions, PH(Tc) = PQGP(Tc).

Lattice QCD

One of the most important features of QCD is asymptotic freedom (Gross and

Wilczek, 1973). While, the coupling constant between quarks and gluons in the normal

hadron gas condition is very strong, leading to the quark conųnement phase. However,

when the energy and density of the system increase, the coupling constant between

constituents becomes smaller. The quarks and gluons become asymptotically free in-

side a soup of QGP. The problem arises when one needs to describe the phase transition

between these two phases for the EoS from the ųrst principle QCD Lagrangian. Thus,

the perturbative approach is not allowed in this case (Politzer, 1973). Furthermore,

due to the many-interacting-body problems between the quarks, gluons, and bound

state hadrons, the analytic solution for such dynamics is extremely computationally

expensive and deemed almost impossible.

However, Ref. (Philipsen, 2006) suggests the numerical technique such that

the ųeld variables of the Lagrangian can be deųned on a discrete space-time lattice.

Despite still being computationally expensive, this method allows us to solve the QCD
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Lagrangian through the ųrst principle at assuming thermal equilibrium.

The EoS in lattice QCD can be derived from the grand canonical partition

function,

Z =

�
DUDψDψe(Sg−Sf) . (2.14)

where the integration is accounting over all U gauge ųelds (gluons) and ψ̄, ψ fermionic

ųelds (quarks) within SU(3) matrices. Sg represents the gauge action while Sf the

fermionic action as the system depends on both gauge and fermionic ųelds. The ex-

pectation values of an observable O can be obtained with

"O# =
1

Z

�
DUDψDψO(U, ψ, ψ)eSg−Sf . (2.15)

These path integrals are evaluated on a discretized space-time grid using Monte Carlo

techniques, i.e., choosing some quark-lattice-sites and gluon-link conųgurations ran-

domly and evaluating the observables on these ųelds.

The lattice QCD results help to conųrm that at the vanishing baryon chemical

potential µB = 0, the QCD transition is a crossover type (Aoki et al., 2006; Bazavov

et al., 2012). Furthermore, at non-vanishing µB although the lattice QCD suffers from

the “sign problem” (de Forcrand, 2009), it was reported that as far as lattice QCD can

go in the QCD phase diagram, there is no expected critical point from µB > 0 until

µB/T 3 (Laermann and Philipsen, 2003; Schmidt, 2006; Bazavov et al., 2019; Borsanyi

et al., 2020).

Chiral Model

The Nambu-Jona-Lasinio (NJL) models (Nambu and Jona-Lasinio, 1961; Vogl

and Weise, 1991; Klevansky, 1992; Hatsuda and Kunihiro, 1994; Buballa, 2005) and other

chiral models (Meisinger and Ogilvie, 1996; Koch, 1997; Meisinger et al., 2002; Meisinger

et al., 2004; Fukushima, 2004; Mocsy et al., 2004; Ratti et al., 2006) are theoretical frame-

works based on the chiral symmetry. Unlike lattice QCD, the chiral models are effective

models aiming to describe the QCD Lagrangian. In the limit where bare quark masses are

zero, mq → 0, QCD Lagrangian is invariant under the SU(Nf)L×SU(Nf)R×U(1)V group.

However, due to the ųnite quark masses in nature, this chiral symmetry is explicitly or

spontaneously broken already in vacuum, leading to the formation of a quark conden-

sate and the emergence of pseudo-Goldstone bosons, such as pions (Koch, 1997).
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Figure 2.1 The compilation of the predicted location of the QCD critical point from

various models, mainly chiral models and lattice QCD (Stephanov, 2006). Black points

represent chiral model predictions. Green points indicate lattice predictions. The two

dashed lines are the slopes corresponding to dT/dµ2
B of the transition line at µB = 0.

The red circles denote the freeze-out points for heavy ion collisions at corresponding

center-of-mass energies in GeV per nucleon.
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The thermodynamical properties of the QCD from the chiral models are de-

termined by the path integral of the effective action of the quark condensate ųeld σ

and π ųeld. Various phase transition scenarios may be feasible via the chiral models,

e.g., a purely crossover or ųrst-order phase transition along with the critical end point.

However, as chiral models are quite model-dependent yet produce powerful

predictions, they are typically used in conjunction with other models and experiments

as a basis, e.g., implementing with lattice QCD (Borsanyi et al., 2020), or with the hydro-

dynamics models (Mishustin and Scavenius, 1999; Nahrgang et al., 2011; Herold et al.,

2019).

Chiral EoS: The chiral model includes all the sets of baryons and the en-

tire multiplets of scalar, pseudo-scalar, vector, and axial-vector mesons. The grand-

canonical potential can then be expressed as

Ω/V = Vmeson − Vvac

− T
�

i∈B

γ i

(2π)3

�
d3k

�
ln

�
1 + e−

1
T [E

∗
i (k)−µ∗

i ]
��

+ T
�

i∈M

γ l

(2π)3

�
d3k

�
ln

�
1 + e−

1
T
[E∗

i (k)−µ∗
i ]
��

. (2.16)

where γB, γM are the baryonic and mesonic spin-isospin degeneracy factors and

E∗B,M(k) =
�

k2 + m∗2
B,M are the single baryon and meson particle energies. The

effective baryon chemical potential µ∗i includes the quark and strange quark chemi-

cal potentials. The term Vvac is the vacuum energy. Here, we include the interaction

between baryons and scalar mesons (BM), the vector mesons (Lvec) and the scalar self-

interactions L0. The scalar meson interaction induces spontaneous symmetry break-

ing of the chiral symmetry (LSB). The effective mesonic potential can be written by

Vmeson = −Lvec − L0 − LSB. Figure 2.1 shows potential critical points have

been reported according to chiral models and lattice calculations, where a detailed

derivation of the chiral equation of state can be found in (Omana Kuttan et al., 2022;

Steinheimer et al., 2022; Omana Kuttan et al., 2023).

2.1.2 Beam Energy Scan and Low Energy Regime

The Beam Energy Scan (BES) program (Collaboration, 2014; Luo, 2016; Bzdak

et al., 2020) plays an important role in the QCD phase diagram exploration. Heavy-ion
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will be collided at various energy ranges, scanning all over the QCD phase diagram, aim-

ing to pinpoint the location of a critical point, if it exists. This critical point is expected

to be located in the environments created by low- to intermediate-energy heavy-ion

collisions. The corresponding trajectories in the QCD phase diagram are shown in Fig-

ure 2.2.

Figure 2.2 QCD diagram with BES program and various facilities (Collaboration, 2014).

• Relativistic Heavy-ion Collider (RHIC): The facility is originally designed for

exploring the QCD at very high energies particularly searching for the existence

of the new phases of QCD matter, QGP. After many updates, it now can

provide a broader range of collision energies from 7.7−200 GeV. This allows

RHIC to initiate the Beam Energy Scan (BES) program (Luo, 2016; Bzdak et al.,

2020; Collaboration, 2014) which most of the heavy-ion collision facilities will

collectively join with the aims for locating the critical point and extracting the

EoS as well as new physics at extremely dense medium.

• Future Facilities (FAIR and HADES): The upcoming Facility for Antiproton and
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Ion Research (FAIR) at GSI will also join the BES effort (Almaalol et al., 2022),

offering a new dimension to the study. FAIR’s energy and intensity (Friman

et al., 2011; Ablyazimov et al., 2017; Durante et al., 2019; Bzdak et al., 2020) al-

low for a boarder range of physics study from nuclear physics to astrophysics.

In terms of heavy-ion physics research, FAIR will extend the BES coverage to

even lower energy ranges
√

sNN < 7.7 GeV and more dense medium allowing

to probe the critical behavior from ųrst-order phase transition, the formation

of rare probes like exotic nuclei and ultimately the EoS (for the neutron stars).

HADES (High Acceptance Di-Electron Spectrometer) is also one of the facil-

ities at GSI focusing on the low energy and dense medium similar to FAIR.

It specializes in the study the rare probes such as dileptons and exotic nu-

clei. Dileptons are a powerful probe for the properties of the QCD matter at

the early stage. While the (exotic) (hyper)nuclei serve as valuable basis for

the EoS of neutron star conditions (Weber, 2005; Lattimer, 2021; Most et al.,

2023). Furthermore, as we will discuss in Ch. VIII, the pion-induced reactions

at HADES also provide a unique opportunity to study these rare probes at

smaller system sizes.

2.2 Space-Time Evolution

One should note the critical importance of understanding the space-time pic-

ture of heavy-ion collisions and their evolution (Shuryak, 1978). To comprehend the

physical signatures (observables) produced in these collisions, we need a detailed un-

derstanding of the medium’s evolution after the impact until the particle free streaming

into the detectors. Figure 2.3 depicts this sequence of events.

When the two Lorentz contracted heavy nuclei collide, a huge amount of

energy and momentum exchange occurs. At the overlapping region, an extremely hot,

dense, and chaotic system is created. This medium is hardly in any equilibrium since

the change is strong and sudden. Numbers of theoretical models (Bravina et al., 1999;

Mishra et al., 2008; Sorensen, 2010a; Sorensen, 2010b; Bally et al., 2022) is trying to

describe this pre-equilibrium stage since realistic initial conditions are essential to any

dynamical evolution. Nevertheless, a clear understanding is still a work in progress.

After some time, this initial chaos settles down, the system approaches a

state of (local) thermal equilibrium allowing for the hydrodynamics description (Yagi

et al., 2005). The matter at this stage is in the QGP state which exhibits properties
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Figure 2.3 Space-Time Evolution (Braun-Munzinger and Dönigus, 2019).

remarkably similar to a perfect Ŵuid due to its high density and asymptotic freedom of

strong interactions between its constituents (Teaney, 2010; Adamczyk et al., 2017).

As the energy density of the medium drops below a critical point, the system

undergoes a phase transition producing a large number of hadrons or fragmentation

occurs (Buyukcizmeci et al., 2020; Botvina et al., 2021; Botvina et al., 2022; Buyukcizmeci

et al., 2023). Until all the partons are bound into hadrons, then the system is considered

entering the hadronic stage. The newly formed hadrons continue to interact and scatter

with each other leading to continuous destruction and creation of new particles. When

a balance in the number (density) of different particle types is achieved, we call this

stage a chemical equilibrium or chemical freeze-out.

Until the system is cool and big enough, these hadrons become too sparse

to interact further. Finally, at the last stage of the space-time evolution, the hadrons

essentially “freeze” in their momentum states and propagate toward the detectors.

This stage is called kinetic freeze-out.

Various theoretical models have already succeeded in describing the dynam-

ics during and after fragmentation/hadronization. Some models, like the thermal mod-

els (Andronic, 2014; Andronic et al., 2018), focus on the macroscopic properties of the
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system, treating hadrons as relativistic gases (at chemical freeze-out). While some other

models, like transport models (Wolter et al., 2022), treat the dynamics of individual

hadron interactions at the microscopic picture.

The dynamics within each stage of this space-time evolution can be linked to

the EoS as it dictates the expansion and cooling rate as well as the critical behavior of

the system. However, the EoS alone could not directly imply a complete set of ųnal

stage observables. The inŴuence from the initial stage has to be considered (Mishra

et al., 2008; Sorensen, 2010a; Sorensen, 2010b; Bally et al., 2022) as well as the in-

terplay between various factors during the evolution. These factors ultimately shape

the ųnal-state observables, e.g., collective Ŵows (Ollitrault, 1992; Reichert et al., 2022),

Ŵuctuations (Skokov et al., 2013; Adare et al., 2016; Luo and Xu, 2017), and etc (Iancu,

2014; Vovchenko et al., 2020; Acharya et al., 2022).

 



CHAPTER III

MODELLING HEAVY-ION COLLISIONS

QCD, or Quantum Chromodynamics has limitations when it comes to describ-

ing the exact solution of quark and gluon dynamics and particle production within the

heavy-ion collisions. For example, due to the asymptotic freedom (Gross and Wilczek,

1973) the perturbative QCD is not allowed and only feasible at higher energies (Politzer,

1973). In addition, in the heavy-ion collisions, the system needs to account for an enor-

mous many-body problem and with different degrees of freedom at that, from parton

to hadron. This makes the ųrst-principle calculations practically impossible for a com-

plete dynamical picture of the whole evolution.

However, one can still calculate these dynamics with an innovative approach

like lattice QCD simulations (Borsanyi et al., 2014) for the non-perturbative QCD. These

methods, however, have their own limitations in terms of computational complex-

ity and reliable results are currently limited to relatively low net-baryon densities,

µB/T≤ π (Allton et al., 2005; Aoki et al., 2006; de Forcrand and Philipsen, 2010; Bazavov

et al., 2012; Vovchenko et al., 2018b; Philipsen, 2021). Hence, theoretical models are re-

quired for further development in terms of empirical models and/or phenomenological

approaches.

Especially with the hunts for the critical point and the Equation of State (EoS)

toward lower energy heavy-ion collisions, these studies are driven forces for even more

rigorous improvement of these models. One of the alternative approaches, to describe

the many-body behavior of the Quark-Gluon Plasma (QGP) and/or the hadronic inter-

actions in heavy-ion collisions, is to look into the kinetic theory. This leads to the

development of both transport models and hydrodynamics models.

Transport models rely on a microscopic description, treating each hadron in-

dividually via interactions and scattering processes. Hydrodynamics models, on the

other hand, adopt a macroscopic viewpoint, treating the whole system as a Ŵuid char-

acterized by bulk properties like pressure, temperature, and density proųle as well as

transport coefųcients. The EoS plays an important role in dictating the dynamics based

on the relationship between these thermodynamic quantities. Both approaches have

their own advantages and limitations.
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In this chapter, we brieŴy review transport models with a special focus on the

Ultra-relativistic transport model (UrQMD) and the hybrid model which combine the

hydrodynamical description at the earlier state with the transport model by following

the explanation in Ref. (Bratskovkaya, 2019a; Bratskovkaya, 2019b; Xu, 2019; Wolter

et al., 2022; Sorensen et al., 2024).

3.1 Transport models

Every transport model for heavy-ion collisions begins with the kinetic theory

that describes the time evolution of the N-body phase-space distribution function ρ

by N-body Hamiltonian. Derived from the conservation law of the phase-space density
dρ
dt

= 0, we can get the continuity equation or namely the Liouville equation reads

as,
∂ρ

∂t
= {H, ρ} . (3.1)

This equation describes the free streaming of a single or N-body density according to

the Hamiltonian H with {·} is the Poisson bracket. However, the dynamics in the

heavy-ion collisions are far more complex, not only we have a huge multiplicity of the

different particle species but they can also interact quantum mechanically, e.g. elastic

collisions, inelastic collisions, and decays. Deųning this N-body phase-space density is

challenging and their interactions will appear as a gain and loss term for the phase-

space density. Thus we need to derive the equation of motion that incorporate these

quantum effects and express them in terms of quantum operators.

3.2 Boltzmann(Vlasov)-Uehling-Uhlenbeck (B(V)UU) approach

We begin our derivation with the N-body non-relativistic Schrödinger’s equa-

tion describing the total wavefunction Ψ(1, . . ., N; t) with the Hamiltonian operator

HN(1, . . ., N; t) of N-particles,

i
∂

∂t
ΨN(1, . . ., N; t) = HN(1, . . ., N; t)ΨN(1, . . ., N; t) (3.2)

By introducing the N-particle density matrix from the product of N-body wavefunctions,

ρN(1, . . ., N; 1
�, . . ., N�; t, t�) = Ψ

∗
N(1, . . ., N; t)ΨN(1, . . ., N; t), we can write

Eq. 3.2 and its conjugate equation in the density matrix formalism, i.e., i ∂
∂t
ρN = HNρN

 



20

and−i ∂
∂t�

ρN = H�NρN. If we subtract the former with the latter equations and assume

that t = t�, we ųnally arrive at the von-Neumann equation,

i
∂

∂t
ρN − [HN, ρN] = 0 . (3.3)

However, the determination of the N-body density as well as calculating the

equation of motion for each particle is impractical. We need to reduce the N-body

density matrix down to the desirable level. By taking the trace over particle n+ 1th to

Nth of ρN, the n-body density is realized ρn = 1
(N−n)!

Trn+1,. . .,N (ρN). This reduced

density matrix method leads to the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hi-

erarchy (Boercker and Dufty, 1979). This hierarchy provide a set of coupled equations

to recursively determine the dynamics of the reduced n-body density matrices using

the (n+1)-body density. The BBGKY hierarchy reads,

i
∂

∂t
ρn − [

n�

i

H0
i , ρn] = [

n−1�

i<j

Vij, ρn] + Trn+1

	
[

n�

i=1

Vi(n+1), ρn+1]



.

(3.4)

H0
i is the Hamiltonian of free n-particles (propagate within an external ųeld). The second

term represents the mutual interactions between particle ith and others in the system.

The third term is accounting for the correlations controlled by another (n+1)-particle.

The ųrst two levels for the hierarchy equations read as,

i
∂

∂t
ρ1 − [H0

1, ρ1] = Tr2 ([V12, ρ2]) (3.5)

i
∂

∂t
ρ2 − [H0

1 + H0
2, ρ1] = [V12, ρ2] + Tr3 ([V12 + V13, ρ3]) (3.6)

The calculation of the 2-body density matrix ρ2 in the last term of Eq. 3.5 will be

evaluated by the next hierarchy (n = 2) in Eq. 3.6 which in turn also needs 3-

body density ρ3 from the next hierarchy, and so on. However, one can do some

approximation to truncate the 2- or 3-body density down to the product of single-

particle densities and close the set of equations. The different truncation schemes will

lead to the different single-density equations of motions as shown in Ref. (Aichelin,

1991)

Time-Dependent Hartree-Fock (TDHF) approach: For instance, the Time-

 



21

Dependent Hartree-Fock (TDHF) approach for simple two-body density truncation which

is limited to the effective in-medium mean ųeld interactions. The 2-body density can

be reduced into a product of antisymmetric product of single-particle density (fermion),

ρ2(1, 2; 1
�, 2�; t) ≈ A12ρ1(1, 1

�; t)ρ1(2, 2
�; t),

where Aij is the permutation operator. By substitute this back to Eq. 3.5, we obtain,

i
∂

∂t
ρ1(1, 1

�; t)− [T01 − T01�]ρ1(1, 1
�; t) + [V01 − V01�]ρ1(1, 1

�; t)

= Tr2 ([V
F
12A12 − VF1�2�A1�2�]) ρ1(1, 1

�; t)ρ1(2, 2
�; t) (3.7)

From the formula, a single-particle ith dynamics within TDHF approximation can be un-

derstood as a single-particle propagation with the kinetic T0i under a direct inŴuence

within the medium (external ųelds and/or other nucleons). This interaction is deter-

mined from a self-generated local mean-ųeld potential called Hartree term V0i or VHi .

Finally, a time-dependent exchange or non-local mean-ųeld potential, called Fock po-

tential VFi , accounts for the Pauli principle.

In order to draw any further meaningful interpretation from the density matrix

ρ, we need to derive the proper phase-space distribution function f(�r,�p). Hence, we
will perform the Wigner transformation which is a Fourier transform on a single-particle

wavefunction or single-particle density matrix (Hillery et al., 1984) with new variable

�s ≡�x1 − �x�1 and�r ≡ (�x1 +�x�1)/2 which reads,

f(�r,�p, t) =

�
d3s exp

�−i�p ·�s�
ρ(�r +�s/2,�r −�s/2) (3.8)

For simplicity, we will determine the phase-space distribution from TDHF approach

within the diluted gas limit, i.e., neglecting the Fock time-dependent exchange term.
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Under the Wigner transformation, Eq. 3.7 becomes,

i
∂

∂t

�
d3s exp

�−i�p ·�s�
ρ(�r +�s/2,�r −�s/2)

=
2

2m

�
d3s exp

�−i�p ·�s�
[∇2

�r+�s/2 − ∇2
�r+�s/2]ρ(�r +�s/2,�r −�s/2)

+

�
d3s exp

�−i�p ·�s�
[V0(�r +�s/2)− V0(�r −�s/2)]ρ(�r +�s/2,�r −�s/2)

(3.9)

Then we can simplify the second term with [�∇
2
�r+�s/2 − �∇

2
�r+�s/2] = 2�∇r · �∇s, and

the third term by the Taylor expansion around�s → 0 of self-consistent mean-ųeld

potentials lim
�s → 0

[V0(�r +�s/2)− V0(�r −�s/2)] ≈ s�∇rV
0 = s�∇rU. Finally, The Vlasov

equation is obtained,

∂f

∂t
+
�p

m
�∇rf + �∇rU · �∇pf = 0 . (3.10)

The equation describes a free propagation of a single-particle phase-space distribution

f(�r,�p) in the self-generated Hartree mean-ųeld potential U or UH. The right hand side

of the Vlasov equation can be non-zero, if we introduce the quantum effect corrections,

e.g., Fock exchange potential or the collision term
�
∂f
∂t

�

coll
.

Vlasov-Uehling-Uhlenbeck (VUU) approach: If one wants to include the

potential from the realistic interaction between particles instead of the effective mean-

ųeld potential. We need to evaluate the dynamics of a single-particle from, at least, a

truncation of the 3-body density matrices. The coupling term with a second particle is

responsible for the collision with the ųrst particle. While the third particle will generate

an external ųeld to correlate with the ųrst two particles. However, this requires lengthy

mathematics calculations where one needs to discuss not only the reduction of the

density but also the calculation that arises from the trace terms, e.g., Pauli-blocking

and G-matrix, which is not really inline with our focus in this thesis. Hence, we will only

discuss how to derive the VUU equation with the collision term from the 2-body level

density or second hierarchy of the BBGKY equation n = 2.

The 2-body density can be reduced into single-particle densities while non-

zero two-body correlations are still kept into account. The 2-body density matrix be-
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comes,

ρ2(1, 2; 1
�, 2�; t) ≈ A12ρ1(1, 1

�; t)ρ1(2, 2
�; t) + c2(1, 2; 1

�, 2�; t) .

Substitute this reduced density into the BBGKY second hierarchy Eq. 3.6, we get a similar

result to the TDHF approach with an additional trace term of c12,

TDHF-Vlasov� �� �
i
∂

∂t
ρ1(1, 1

�; t)− [H0
1 − H1�]ρ1(1, 1

�; t) = Tr2 ([V12 − V1�2�]) c2(1, 2; 1
�, 2�; t)

� �� �
Collision term + Pauli exchange

(3.11)

Finally, we perform the Wigner transformation to express the equation in terms of

physical phase-space distribution. This equation of motion is called “VUU” or “BUU”

equation;
∂f

∂t
+
�p

m
�∇r f − �∇r U · �∇p f = Icoll[f1, . . . , fN] . (3.12)

The left hand side is equivalent to the Vlasov equation describing the free propagation

within the mean-ųeld where U is a self-consistent potential. On the right hand side, Icoll
represents the collision integral arising from the trace term with the correlation matrix

density. This term is connected to the transition rates from various contributed collision

processes which reads,

Icoll =
1

(2π)3

�
d3�p2d

3�p3dΩ|v12|
�

dσ

dΩ

�

12 → 34

δ
3(�p1 +�p2 −�p3 −�p4)

×[f3f4(1 − f1)(1 − f2)� �� �
Gain term: 3+4 → 1+2

− f1f2(1 − f3)(1 − f4)� �� �
Loss term: 1+2 → 3+4

]. (3.13)

Several BUU-based transport models have been developed to simulate

heavy-ion collisions, e.g., GiBUU (The Giessen BUU model) (Buss et al., 2012), PHSD (The

Parton-Hadron-String Dynamics model) which includes both hadronic and partonic de-

gree of freedom (Linnyk et al., 2016), and SMASH (The Simulating Many Accelerated

Strongly-interacting Hadrons model) (Weil et al., 2016). In BUU transport models, the

phase-space distribution function is often represented using test particles (Wong, 1982).

This method discretizes the continuous distribution function into a large number of test
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particles, each representing a small fraction of the system:

fi(r, p, t) ∼
1

Ntp

�

i

g(r − ri(t)g(p − pi(t)) (3.14)

Here, Ntp is the number of the test particles and the g is the sharp function, e.g., the

delta function. These test particles are generated for every time step and averaged over

all events. Also, the mean-ųeld potential is also updated according to the one-body

test particles. However, this method reduces the ability to generate realistic 2-body

correlations in each time step as well as the event-by-event Ŵuctuations. These issues

are, however, not a problem with the QMD approach which we will discuss later.

3.3 Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

model

In contrast to BUU models, Quantum Molecular Dynamics (QMD) approaches

simulate the system using classical equations of motion for quasi-particles (Aichelin,

1991). Instead of using the test particles, each particle is represented as a Gaussian

wave packet (Ono et al., 1992a), and their dynamics are governed by mutual 2-body

interactions through effective potentials and realistic binary particle collisions. Thus

the QMD approach (Hartnack et al., 1989; Ono et al., 1992a; Bass et al., 1998; Bleicher

et al., 1999; Nara et al., 2000; Aichelin et al., 2020) could directly provide many-body

correlations and Ŵuctuations. It has recently extended its capabilities to describe larger

clusters and even hyperclusters. In this thesis, we utilize the latest version of the UrQMD

transport model (UrQMD v3.5). The UrQMD will be brieŴy introduced in this section.

3.3.1 Initialization

QMD approach initializes the particles with the explicit N-body nuclear wave-

fuction which can be approximated with a simple product of single-particle wavefunc-

tion, Ψ(�r; t) =
�N

i ψi(�r,�ri; t). Note that, in UrQMD, we can neglect the Slater

determination for the antisymmetrization from the Pauli in exchange for the compu-

tational time. However, the nature of the two-body correlation will arise from the

effective Pauli potential which will be discussed below. However, a few QMD models

attempt to initialize with real antisymmetric wavefunction, e.g., Antisymmetrized Molec-

ular Dynamics (AMD) model (Ono et al., 1992b) and the Fermionic Molecular Dynamics
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(FMD) model (Feldmeier, 1990). In UrQMD, the single-particle wavefunction is assumed

as a Gaussian wave packet,

ψ i(�r,�ri; t) =

�
1

2πL

�4/3

exp

�
−(�r −�ri(t))

2

4L
− i�pi(t)·�r

�
. (3.15)

L is the width of the Gaussian wave packet in coordinate space. Then, we apply the

Wigner transform in a similar fashion from Eq. 3.8. The phase-space density of particle

ith reads,

fi(�r,�p; t) =

�
1

π

�3

exp

�
−(�r −�ri(t))

2

2L
− 2L(�p − �pi(t))

�
. (3.16)

The equation of motion in the QMD approach is derived from the Euler-Lagrange. The

generalized Lagrangian function is given by,

L =

�
d3r1 . . . d

3rNΨ
∗
�
−i

∂

∂t
− H

�
Ψ, (3.17)

L =

	
d�ri
dt
·�pi − Ti −

�

j

"Vtotij # − 3

8mL



. (3.18)

The N-body Hamiltonian is deųned as H =
�
i

Ti +
�
j�=i

Vtotij where the ki-

netic energy and the total potential energy of the particle ith are Ti and Vtotij with

"Vtotij # =
�
d3rid

3pi
�
d3r�j d

3p�j fi(�r,�p)Vijfj(�r
�, �p�). The total 2-body interactions involved
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in the propagation are the following:

VSkyrme = α

�
ρ

ρ0

�
+ β

�
ρ

ρ0

�γ

, (3.19)

VYukawa = Cyuk

exp (−µ|�ri −�rj|)
|�ri −�rj|

, (3.20)

VCoul =
ZiZje

2

|�ri −�rj|
, (3.21)

VMD = t4 ln [t5(�pi −�pj)
2 + 1] δ(�ri −�rj) , (3.22)

VPauli =
Cpauli

(q0p0)3
exp

�
−(�ri −�rj)

2

2q2
0

− (�pi − �rpj)
2

2p2
0

�
. (3.23)

Already from here, one can see the difference between the QMD and BUU for the

treatment of the 2-body (and 3-body) interactions. In QMD, they appear as effective

potential replacing the real part of the transition matrix from the collision term. The

local short-range VSkyrme and and long-range VYukawa potentials are responsible for the

nucleon-nucleon interaction in the nucleus. The parameters α, β, γ are ųxed to mimic

the proper binding energy and the compressibility ruling the stiffness of the density-

dependent equation of state, e.g., soft EoS and hard EoS. The parameter Cyuk is nec-

essary to ensure the nuclear surface properties and its Ŵuctuations. The Coulomb po-

tential VCoul is straightforward and does not need further explanation. The Momentum-

Dependent potential VMD is a small correction for more repulsive nuclear interactions

leading to a small adjustment for the Skyrme’s parameters and the stiffness of the

equation of state. Finally, The Pauli potential is parametrized to prevent fermions from

occupying the same phase-space cell. The last two potentials, although optional, are

important in order to investigate the nuclear properties at low energies where the two-

body or three-body correlations become strong, e.g., collective Ŵow (Steinheimer et al.,

2018; Steinheimer et al., 2022) and Ŵuctuations (Ye et al., 2020).

3.3.2 Propagation and Collision

The propagation of all particles is also based on the non-relativistic Boltzmann

or BUU equations similar to Eq. 3.12 where the time evolution of the momentum and
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coordinate of particle ith is evaluated by the Euler—Lagrange equations,

d�ri
dt

=
∂"H#

∂�pi

, (3.24)

d�pi

dt
=

∂"H#

∂�ri
. (3.25)

However, unlike the BUU approach, UrQMD does not operate with the phase-space

density or test particles but real microscopic n-body (classical-)particles of 70 baryon-

and 39 meson-species (Table 3.1 and 3.2) and their antiparticles. Hence, the scattering

process in the collision (source) term between hadrons will be triggered based on a

geometrical interpretation of elastic and inelastic cross-sections. The collision will occur

once the relative distance between two particles is below d ≤
√

σtot/π.

Furthermore, while two-body or three-body interactions in the BUU approach

are calculated together in the collision term Icoll. It requires tedious calculation for both

the real and imaginary parts of the transition matrix (or the Bruckner g-matrix). However,

in the UrQMD approach, these interactions are expressed in terms of effective potentials

replacing the real part of the transition matrix and leaving only the imaginary part in

the collision terms. The imaginary part of scattering amplitude is modeled via binary

elastic and inelastic collisions and ųtted with the experimental data.

Baryon-Baryon scattering: The cross-section of the BB-scattering is given by,

σ
BB
tot(
√

s) ∝ (2S1 + 1)(2S2 + 1)
"p3,4#

"p1,2#

1

s
|M(m3, m4)|2, (3.26)

where Si is the spin of particle ith. The matrix element |M(m3, m4)| will be taken in

a general form with an adjustable free parameter to ųt with the experiments. Or if the

out-going particles are resonances, the matrix element will be written according to the

mass distributions of Breit-Wigner form and ųt with the decay width and branching ratio

from PDG.

Meson scattering: The scattering processes for the meson are mostly reso-
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Table 3.1 Table of Baryons.

N ∆ Λ Σ Ξ Ω

N938 ∆1232 Λ1116 Σ1192 Ξ1317 Ω1672

N1440 ∆1600 Λ1405 Σ1385 Ξ1530

N1520 ∆1620 Λ1520 Σ1660 Ξ1690

N1535 ∆1700 Λ1600 Σ1670 Ξ1820

N1650 ∆1900 Λ1670 Σ1750 Ξ1950

N1675 ∆1905 Λ1800 Σ1775 Ξ2025

N1680 ∆1910 Λ1810 Σ1915

N1700 ∆1920 Λ1820 Σ1940

N1710 ∆1930 Λ1830 Σ2030

N1720 ∆1950 Λ1890

N1900 Λ2100

N1990 Λ2110

N2080

N2190

N2200

N2250

Table 3.2 Table of Mesons.

00− 1−− 0++ 1++

π ρ a0 a1
K K∗ K∗0 K∗1
η ω f0 f1
η
�

φ f∗0 f∗1
1+− 2++ (1−−)∗ (1−−)∗

b1 a2 ρ1450 ρ1700

K1 K∗2 K∗1410 K∗1680
h1 f2 ω1420 ω1662

h�1 f�2 φ1680 φ1900

 



29

nance scattering. For example, the total cross-section for MB-scattering reads,

σ
MB
tot(
√

s) =
�

R=∆,N∗

"jB, mB, jM, mM||JR, MR#
2SR + 1

(2SB + 1)(2SM + 1)

×
π

p2
cm

ΓR→MBΓtot

(MR −
√

s)2 + Γ2/4
(3.27)

where the decay width and branching ratio are obtained from the PDG data. However,

for the unknown cross-sections, e.g., BB, B∗B, YN, M∗B∗, M∗M∗, these processes will

be obtained via detailed balance (Goulianos, 1983) or the Additive Quark Model (AQM)

re-scaling (Danielewicz and Bertsch, 1991). For example,

σ
MM
tot (

√
s > 1.7 GeV) = σ

πp
tot (

√
s)
σ
MM
AQM

σ
πp
AQM

. (3.28)

One also should be noted that the particle productions are not only subjected to the

scattering processes or cross-section calculations. The string excitation, fragmentation,

and coalescence routines are also embedded to the current version of the UrQMD v3.5.

The detailed implementations for the string excitation and the fragmentation can be

found in Ref. (Andersson et al., 1983). While the coalescence routine will be discussed

here.

3.3.3 (Hyper)nuclei Formation Routine

Another remarkable update of the UrQMD v3.5 is a coalescence routine for

the (hyper)cluster formations. The coalescence model states that if two or more con-

stituent particles are close enough in phase-space, they will coalesce and form into

a cluster (see Ch. V for more details). Within UrQMD v3.5, the coalescence model is

applied numerically using a method known as box coalescence.

For each pair of nucleons and/or hyperons, the relative distance in their

center of mass frame is calculated. If their relative distance ∆x = |xn,1− xn,2| is less
than ∆xmax,nn and their relative momentum ∆p = |pn,1−pn,2| is less than ∆pmax,nn,

and if the spin-isospin coupling probabilities are satisųed, a two-body state will form

with combined momentum pnn = pn,1 + pn,2 and position xnn = (xn,1 + xn,2)/2.
The procedure is then extended to form three-body cluster states. The

relative distance within their local rest frame ∆x = |xnn,12 − xn,3| must be
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less than ∆xmax,nnn, and the relative momentum ∆p = |pnn,12 − pn,3| must

be less than ∆pmax,nnn. If these conditions are metand the appropriate spin-isospin

probabilities are satisųed, a three-body cluster will form with combined momentum

pnnn = pnn,12 + pn,3 and position xnnn = (xn,1 + xn,2 + xn,3)/3.
The criteria for forming these clusters are listed in Table ??, where ∆xmax and

∆pmax are determined based on iterative ųts to cluster multiplicity data from various

experiments (see Ref. (Hillmann et al., 2018; Sombun et al., 2019) for light nuclei and

Ref. (Reichert et al., 2023c; Reichert et al., 2023d) for hypernuclei).

Table 3.3 The numerical coalescence parameters of UrQMD v3.5.

Particle ∆x [fm] ∆p [GeV/c] spin-isospin

d 4.0 0.25 3/8

t, 3He 3.5 0.32 1/12
4He 3.5 0.41 1/12

NΞ 9.5 0.15 3/8
3
ΛH 9.5 0.15 1/12

In conclusion, due to the realistic n-body treatments of the UrQMD, the coa-

lescence model will also register two-body correlation effects throughout the evolution

allowing us to better capture the Ŵuctuations, the correlations, and cluster formation

(which may relate to the critical behavior) than other transport approaches. All these

aspects are inline with our following investigations, thus we will use UrQMD v3.5 as our

basis for the event simulations.

3.4 Hydrodynamics Models

The hydrodynamics model offers a comprehensive framework for simulat-

ing the dynamics of heavy-ion collisions, providing insights into the evolution of the

quark-gluon plasma (QGP). One of the key advantages of hydrodynamic models is the

explicit description of the thermodynamic properties of the medium, allowing for a

more accurate incorporation of the equation of state (EoS).

The conservation laws of energy-momentum and baryon density form the
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foundation of hydrodynamic models, expressed by the following equations:

∂µT
µν = 0, (Energy-Momentum Conservation)

∂µN
µ = 0, (Baryon Four-Current Conservation)

Here, Tµν represents the energy-momentum tensor, and Nµ denotes the baryon four-

current. These quantities can be expressed in terms of the Ŵuid’s four-velocity uµ and

the thermodynamic state in the local rest frame of the Ŵuid, described by the energy

density �, the pressure p, and the baryon density n:

Tµν = (� + p)uµuν − pgµν, Nµ = nuµ . (3.29)

In addition to the hydrodynamic equations, a speciųc EoS, p = p(�, n), is required
to close these coupling equations.

The standard relativistic hydrodynamics model treats the medium from the

collision as a single Ŵuid (Belenkij and Landau, 1955; Amsden et al., 1975; Wong et al.,

1975; Csernai et al., 1980; Mishustin et al., 1987; Rischke, 1999; Spieles and Bleicher,

2020). However, this simple approach has its limitations, particularly in heavy-ion colli-

sions where the conditions are far from equilibrium (Noronha-Hostler et al., 2016). One

of the major shortcomings of the single Ŵuid model is the assumption of instantaneous

thermalization and inųnite stopping power, which leads to unrealistically rapid thermal

equilibration and excessive energy densities.

To address these issues, three-Ŵuid hydrodynamics models have been pro-

posed (Mishustin et al., 1989; Katscher et al., 1993; Brachmann et al., 1997; Ivanov et al.,

2006; Batyuk et al., 2016; Cimerman et al., 2023). These models aim to parametrize

the projectile, target, and ųreball as separate Ŵuids within the system. This three-Ŵuid

approach allows for a more realistic initialization and handling of the hydrodynamic

expansion stage of the collisions. Each Ŵuid component can permeate and exchange

energy-momentum appropriately, overcoming the limitations of the single-Ŵuid model.

The basic equations of relativistic hydrodynamics for the three-Ŵuid model involve the

conservation of energy-momentum and baryon current for each Ŵuid i:

∂µT
µν
i = Fνi , ∂µj

µ
i = Si (i = 1, 2, 3)

where the source terms Fνi and Si account for the energy-momentum and baryon charge
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exchange between the Ŵuids. The total conservation equations obey
�
i

Fνi = 0 and
�
i

Si = 0. These source terms include frictional forces arising from the relative

motion between Ŵuids, where viscosity could enter the equations (Busza et al., 2018),

inŴuencing the Ŵow dynamics and leading to the development of shear and bulk vis-

cosity effects.

Hydrodynamic models, as macroscopic descriptions, primarily provide macro-

scopic observables or bulk properties of heavy-ion collisions, such as thermodynamic

properties that may not be directly measured, like particle spectra. To translate these

thermodynamic quantities into experimental observables, the freeze-out condition

must be deųned, marking the transition where particles free stream to the detectors.

Deųning the freeze-out condition within hydrodynamic models is not straight-

forward and requires certain assumptions to describe hadronization. The “particliza-

tion” approach, which is adopted from the Cooper-Frye approach, occurs when the

local thermodynamic properties (energy density) of the medium at the freeze-out hy-

persurface fall below a certain threshold. At this point, the Ŵuid elements convert into

hadrons, which subsequently stream freely to the detectors.

However, the criteria for freeze-out are debatable and model-dependent.

This has led to a newly novel approach suggesting a continuous freeze-out during the

evolution instead of a snapshot of the hypersurface at the end of the calculation (Grassi

et al., 1996; Hung and Shuryak, 1998; Akkelin et al., 2008; Knoll, 2009).

Another approach is the hybrid model, where the hydrodynamic model is

integrated into the early stage of a microscopic transport model, often referred to as

an afterburner. This method provides the realistic initial stage and the possible phase

transition from QGP where the partons dominate the system to a hadronic phase as

well as realistic dynamics and kinetic freeze-out during and after the hadronic phase,

e.g., resonances, decays, and re-scattering.

3.5 Hybrid Models

Describing the hadronic freeze-out and extracting secondary particle spectra

presents a challenge for hydrodynamic models. The application of the Cooper-Frye

equation (Cooper and Frye, 1974) is commonly used for this purpose, where the transi-

tion from the Ŵuid to free hadrons occurs instantaneously on a hypersurface of equal

local energy density.
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Pure microscopic models, such as transport models, excel at describing the

hadronic phase of heavy-ion collisions, effectively capturing the non-equilibrium dy-

namics and individual particle interactions. However, they struggle to accurately de-

scribe the QGP or partonic phase and capture the effects of a phase transition in the

thermodynamical perspective which is important for the EoS studies.

Conversely, macroscopic hydrodynamic models are adept at describing the

QGP phase and the collective Ŵow at the early stage of the collisions, assuming local

thermal equilibrium and using EoS to describe the system’s evolution. Yet, they fall

short in describing the hadronic phase, particularly the freeze-out process and subse-

quent particle interactions, due to their reliance on equilibrium assumptions.

The hybrid model aims to combine the strengths of both microscopic trans-

port models and macroscopic hydrodynamic models. By integrating these approaches,

hybrid models provide a comprehensive description of the entire evolution of a heavy-

ion collision, from the initial QGP phase to the ųnal hadronic interactions. In this sec-

tion, we will brieŴy introduce the implementation based on the UrQMD hybrid ap-

proach (Steinheimer et al., 2008; Steinheimer et al., 2012).

The UrQMD hybrid model incorporates the hydrodynamic evolution of the

QGP phase allowing for a more accurate depiction of the transition from (local) equilib-

rium hydro phase to non-equilibrium hadronic phases. The implementation steps are

the following:

• Initial State: The hydrodynamic evolution begins after the two Lorentz-

contracted nuclei have passed through each other, triggering the thermal-

ization. The energy and momentum of the participants are mapped into

hydrodynamic quantities serving as initial conditions (Petersen et al., 2008).

The initial geometry is typically based on the Glauber model.

• Hydrodynamic Evolution and EoS: A (3+1)-dimensional ideal hydrodynamic

evolution is assumed for the early stage collision, where the system is ther-

malized. The chosen EoS guides the Ŵuid’s evolution, determining how the

system transitions from QGP to hadronic matter.

• Final State - Particlization: The change from the hydrodynamic to transport

phase occurs through particlization, where hydrodynamic parameters are con-

verted to hadron distributions using the Cooper-Frye procedure (Cooper and

Frye, 1974). Finally, these particles and their interactions, e.g., scattering and
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resonance decays, are simulated within the UrQMD transport algorithm until

freeze-out.

In addition to the UrQMD hybrid model, several other hybrid models have

been developed, integrating various transport and hydrodynamic approaches:

• Integrated UrQMD 3.3 (Petersen et al., 2008)

• Hadronic Dissipative Effects (Hirano et al., 2006)

• 3-D Hydro + Cascade Model at RHIC (Nonaka and Bass, 2006)

• NeXSpheRIO (Hama et al., 2008)

• EPOS+Hydro+UrQMD at LHC (Werner et al., 2010)

• MUSIC@RHIC and LHC (Schenke et al., 2011)

As mentioned before, particlization in pure hydrodynamics is akin to freeze-

out, where particle spectra are generated from the ųnal stage of the hydrodynamic

evolution. However, in the hybrid model, particlization refers to the mapping of hydro-

dynamic quantities to particle distributions for the transport model. It is important to

note that particlization is neither the hadronization process nor freeze-out but rather

a practice for transitioning between two frameworks while maintaining consistent initial

and freeze-out conditions.

The particlization is implemented numerically with a Monte Carlo based on

the Cooper-Frye equation:

E
dN

dp3
=

�
dσµp

µf(x, p) ≈
�

σ

∆σµp
µf(x, p) , (3.30)

where σµ is a hypersurface element of hydrodynamics. The challenge lies in

determining both the location and the normal direction of these surface elements.

In Eq. (3.30), f(x, p) represents the momentum distribution of hadrons inside the

Ŵuid. The assumptions about the Ŵuid are directly reŴected in the particle distribution
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function. For near-equilibrium Ŵuids, allowing for dissipation (viscous hydrodynamics),

f(x, p) reads:

f(x, p) = fF/B(x, p) + δf
�
C(shear)s , C(bulk)s

�
. (3.31)

This function is simply the density distribution of a fermion/boson gas, fF/B(x, p), plus
terms representing shear and/or bulk viscosities, cs (from dissipating non-equilibrium

effects).

 



CHAPTER IV

EXPLORING THE SPACE-TIME STRUCTURE OF THE

FIREBALL

As already emphasized in Ch. II, understanding the dynamical space-time pic-

ture of the heavy-ion collisions is important for interpreting the ųnal stage observables

from experimental data for EoS and the critical behavior studies.

We will begin this chapter by demonstrating the inŴuence on the cluster for-

mations, particularly the simplest cluster deuteron and antideuteron, from the freeze-

out geometry of the ųreball. We explore the ųreball geometry across beam energy

spectra to investigate the possible critical behavior on the source volume. Then UrQMD

transport model will be employed to validate our ųndings.

Later on, we further our ųreball volume investigation by studying the ųreball

space-time geometries from the effects of various phase transition scenarios, i.e., from

different EoS using the HBT radii. The HBT radii are equivalent to the interpretation of

the emission source for these clusters and they are related to the expansion time.

Overall, in this Ch. IV we present comprehensive studies on the space-time

structure of the ųreball from various beam energies and various EoS using the cluster

formations and HBT radii.

Clusters are ųnal stage observables and one of the most direct probes for such

studies. Clusters are composited particles of nucleons. Their formations are sensitive to

critical phenomena due to the fact that their constituents, nucleons, are subjected to

baryon conservation. At the critical point, it is well known that all conserved quantities

will diverge at chemical freeze-out. This leads to the divergence of the correlation

length, Ŵuctuation, and susceptibilities of the conserved quantities. The divergence of

correlation length and Ŵuctuation of the nucleons will inŴuence the formation of the

clusters at the kinetic freeze-out. These divergences are also related to the compression

and expansion of the source volume, ųreball.

However, these physical interpretations could only be manifested and in-

vestigated with the proper choice of formation mechanisms. The coalescence model

states that if two or more nucleons are close enough in phase-space, they will coa-

lesce and form a cluster at the very last stage of collisions, kinetic freeze-out (for more

 



37

details, see Ch. V). This physical description, on the space-time localization of the coa-

lescence model, makes it suitable for our following studies. It allows us to investigate

their emission sources and constituent density proųles and the all inŴuences before

their emission at kinetic freeze-out.

Back in 1992, the deviations from the simple approach were reported with

the failure to predict antideuteron yield in Si+Au collisions at AGS (Aoki et al., 1992),

where the measured antideuteron invariant cross section is suppressed by 5-10 times

compared to the deuteron’s. Since the simple coalescence dictates the cluster for-

mation mainly by a single coalescence parameter B2, the formation of deuterons and

antideuterons are expected to yield similar amount. This inconsistency leads to the

development of the phase-space coalescence approach.

The failure to describe the suppression of antideuterons was attributed to

the dependency of deuteron (Sato and Yazaki, 1981; Remler, 1981; Mrowczynski,

1987; Lyuboshits, 1988; Danielewicz and Schuck, 1992; Mrowczynski, 1992) and an-

tideuteron (Mrowczynski, 1990; Dover et al., 1991; Leupold and Heinz, 1994) formation

rates to the emission-source geometries in nuclear collisions. Then S. Mrówcyńzski

proposed the geometrical space-time formation rate to address the phase-space coa-

lescence model (Mrowczynski, 1993).

His approach assumed that antinucleons are emitted from the outer shell of

the source due to a high probability of nucleon-antinucleon annihilation in the central

baryon-rich region, while nucleons are emitted from the entire volume. Despite as-

suming spherical symmetry, this model successfully described experimental data from

Si+Au collisions at Elab = 14.6A GeV (Aoki et al., 1992).

In the next section, we will apply the antideuteron and deuteron formation by

Mrówcynźski coalescence approach to reconstruct and explore the size of the emission

source, assuming spherically symmetric (anti)nucleon source functions and call this

approach “Mrówcyńzski coalescence model”.

4.1 (Anti)deuteron formation rate and source geometry

The original Mrówcyńzski coalescence model (Mrowczynski, 1993) purposed

that the shape of the antinucleons source has to be reconsidered as well as suggest-

ing an analytic formula to get rid of the un-measurable constant parameter p0. The

(anti)deuteron distributions and (anti)nucleon distributions can then be formulated ac-

cording to the tunable space-time parameter which can be related to the collision
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system’s initial conditions.

4.1.1 Mrówcyńzski Density Function

The main assumption of this approach is that the produced antinucleons

located close to the center of the collision have a substantial probability to experience

secondary interactions and annihilation in the baryonic rich environment. Antinucleons

produced on the closer to the surface, on the other hand, have a higher chance to

escape the ųreball and proceed to coalescence. Nucleons are emitted from the whole

source or ųreball volume. From the above picture, we can impose and modify different

geometries on the antinucleon and nucleon sources which can help us addressing the

difference formation rates.
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Figure 4.1 The schematic picture of the geometric coalescence model for (anti)deuteron

formation if the two (anti)nucleons are close enough in phase-space. Ap and AT are the

incoming projectile and target nucleons and X represents the particles that carry the

rest momenta of the system. (Left) The nucleon emission source is a whole spherical

with radius r0. (Right) the survived antinucleons are emitted only on a spherical shell

radius r0 as the NN annihilations destroy most of the antinucleon at the center radius

r∗.

The simple coalescence model describes the formation of clusters assum-

ing that a pair of ųnal-state (anti-)nucleons carrying similar momenta can coalesce to

form a deuteron or an antideuteron with total momentum P. The invariant differen-

tial production cross sections for deuterons (d) and nucleons (p) and accordingly for
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antideuterons and antinucleons are related by

E
d3
σd

dP3
= B2

�
E

2

d3
σp

d(P/2)3

�2

, (4.1)

where (E,�P) and (E/2,�P/2) denote the deuteron and nucleon 4-momenta and σ inel is

the total inelastic cross section. The coalescence parameter B2 can be measured in ex-

periments and is usually used to infer the volume of the source size. Then, Mrówcyńzski

coalescence states that the formation rate is related to this coalescence parameter via

A = m
2
B2, with m denoting the nucleon mass. The formation rate A is calculated as

A =
3

4
(2π)3

� �
d3r1d

3r2D(�r1)D(�r2)|Ψd(�r1,�r2)|
2 , (4.2)

where the bulk nucleon source D(�ri) describes the probability of ųnding one nucleon

at a given point�ri in kinetic freeze-out ųreball (volume emission) and Ψd(�r1,�r2) denotes

the deuteron wavefunction. The emitted nucleons are assumed to be uncorrelated.

Figure 4.1 shows the emission regions for (anti)nucleons, the nucleon source

is distributed over the whole ųreball, while the antinucleons are suppressed near the

center of the whole volume. This leads to a surface-like to shell-like emission source

for antinucleon’s. The nucleon source function D(�r) is parametrized by a normalized

Gaussian (Mrowczynski, 1993),

D(�ri) =
exp (−�r2i /2r20)

(2π)3/2r30
, (4.3)

with r0 given by the mean radius squared "r2# = 3r20 . The normalized antinucleon

source function D(�r) contains a second Gaussian of width r∗ that effectively cuts out

the central region reads as

D(�ri) =
exp (−�r2i /2r20)− exp (−�r2i /2r2∗)

(2π)3/2(r30 − r3∗)
. (4.4)

It is useful to simplify our analysis into the center of mass frame coordinates,�P =
�p1 +�p2,�R = 1

2
(�r1 +�r2) with relative motions,�p = 1

2
(�p1 −�p2),�r =�r1 −�r2.
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The deuteron wavefunction then factorizes to

Ψd(�r1,�r2) = exp(i�P·�R)φd(�r) , (4.5)

The Hulthén wavefunction reads

φd(�r) =

�
αβ(α + β)

2π(α − β)2

�1/2
exp(−αr)− exp(−βr)

r
, (4.6)

with parameters α = 0.23 fm−1 and β = 1.61 fm−1 (Hodgson et al., 1997). The

formation rate A in relative coordinates then reads,

A ≡ 3

4
(2π)3

�
d3rDr(�r)|φd(�r)|

2 , (4.7)

where the nucleon source function is

Dr(�r) =
1

(4π)3/2r
3/2
0

exp(−�r2/4r20) , (4.8)

and the antinucleon source function is

Dr(�r) =
r30e

−�r2

4r2o + r3∗e
−�r2

4r2o − 2
5
2 r30r

3
∗

(r20+r2∗)
3/2 e

− �r2

2(r20+r2∗)

(4π)3/2(r30 + r3∗)
2

. (4.9)

The antideuteron formation rate A as function of r0 is depicted in Figure 4.2.

When the suppression region r∗ = 0 fm, the antideuteron formation rate is identical

to the deuteron formation rate. As the size of the suppression region r∗ increases at

the same source size r0, the antideuteron formation rate decreases. This decrease is

attributed to the thinning of the antideuteron emission shell as the suppression region

expands.

4.2 Energy Dependence of Formation Geometry

To extract the energy-dependent geometries of the antideuteron and

deuteron sources, we ųrst determine the deuteron emission source radius r0 by ųt-

ting the coalescence parameter B2 from various experiments, as it is proportional to
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Figure 4.2 The antideuteron formation according to the source bulk radius r0 with vary-

ing suppression radii r∗.

Figure 4.3 The energy dependence coalescence parameters B2 for deuterons (left) and

B2 antideuterons (right) from various experiments ranging from
√

sNN = 4.7−200 GeV.

The black lines show the B2 and B2 ųts using the extracted radii r0 and r∗ according to

the formation rate in Eq. (4.7)
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the deuteron formation rate A(�r, r0). The ųt results for experiments such as NA49 and

STAR are illustrated in Figure 4.3 (left) as black lines. Next, we extract the suppression

region of the antideuteron source r∗ by ųtting the antideuteron coalescence parame-

ters B2 ∝ A(�r, r0, r∗) to the experiments shown in Figure 4.3 (left). We assume that

both deuteron and antideuteron share the same emission source radius r0. This process

allows us to characterize both the emission source r0 and the suppression region r∗,

providing insights into the energy dependence of formation geometries.

Figure 4.4 The emission source radius r0 of deuteron (solid black lines) and the sup-

pression region of antideuteron source r∗ (dash-dotted line) as a function of energy

The energy dependence of the extracted source radii is presented in Fig-

ure 4.4. The deuteron emission source and also the antideuteron outer radius r0
(solid black lines) exhibit rapid growth with increasing center-of-mass energy below√

sNN = 20 GeV. The extracted radii r0 from NA49 and STAR experiments show

good agreement with a smooth connection with respect to the center-of-mass en-

ergy. However, the growth is suppressed and declines after reaching a maximum at√
sNN = 63 GeV. The Ŵattening and subsequent decrease in B2 and r0 for energies√
sNN ≥ 20 GeV contradict the assumption that a volume of the emission source, i.e.,
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a ųreball, increases with energy. This phenomenon may be attributed to Ŵow effects,

as reported in Ref. (Gaebel et al., 2021).

Regarding the annihilation region, i.e., the inner radius r∗ (depicted as a dash-

dotted line), it similarly exhibits an increase at low energies followed by a drop after

reaching a maximum at
√

sNN = 27 GeV. This trend might suggest a nutcracker-like

shell structure in this energy regime, as speculated by Ref. (Shuryak, 1999). The decrease

in the inner radius implies that antideuterons have a higher probability of survival inside

the ųreball. This can be explained by the dominance of pions over nucleons in the

ųreball at this energy regime, signiųcantly reducing the annihilation cross section of NN.

4.3 Validation with UrQMD

For theoretical validation of the source geometries, we conducted simula-

tions using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model.

Serving as a realistic microscopic simulation, UrQMD tracks the propagation of each

hadron’s 4-coordinates and 4-momenta from the initial collisions until the last colli-

sions at kinetic freeze-out, accounting for all re-scatterings, annihilations, and decays.

To conųrm our interpretations of the nucleon and antinucleon source geometries and

extract the corresponding parameters, we simulate 0 − 10% central Au+Au collisions

at various collision energies ranging from
√

sNN = 7.7 to 200 GeV. The nucleon and

antinucleon distributions are examined in the transverse plane rT given by 1
rT

dN
drT

, where

rT =
�

r2x + r2y, the normalization by 1/rT accounting for a cylindrical geometry at

mid-rapidity. The expression of the (anti)nucleon distribution is

We present examples of the normalized transverse distribution rT of

(anti)nucleons at
√

sNN = 11.5 and 200 GeV in Figure 4.5. In the case of
√

sNN =
11.5 (left panel), within the range rT ≤ 5 fm, nucleons experience a slight suppres-

sion around 5% below the maximum. Conversely, the suppression of antinucleons is

notably stronger, amounting to around 80%.

At the higher energy of
√

sNN = 200 GeV (the right panel), both nucleons

and antinucleons exhibit comparable suppression levels, approximately 60 − 70%

at the core of the sources. This indicates that, across different energy regimes, both

antinucleons and nucleons experience some kind of suppression at the core. For the

nucleons, this is due to the increased production of other particles at the core of the

ųreball, particularly pions, which become dominant at higher energies. However, the

degree of antinucleon suppression reŴects nucleon-antinucleon annihilation. At high

 



44

Figure 4.5 The normalised (anti)nucleon distribution in transverse plane rT at
√

sNN =
11.5 GeV (left panel) and

√
sNN = 200 GeV (right panel). The black solid line repre-

sents the nucleon distribution and antinucleon distribution is depicted with the dotted

line.

energies, the annihilation probability is reduced because the nucleon distribution is

scarcer compared to lower energies reducing the suppression of antinucleons at the

core.

After analyzing the quantitative distributions of both nucleon and antinucleon

sources, we can extract the source geometries by ųtting the nucleon and antinucleon

distributions with Gaussian source functions D(r0) and D(r0, r∗), respectively. We

assume a simple non-suppressed source function for the nucleons. Additionally, the

outer source radii of nucleons and antinucleons are assumed to be independent and

ųtted separately.

The extracted freeze-out geometries of (anti)nucleons shown in Figure 4.6

support the idea that nucleon-antinucleon annihilation is suppressed due to the pion

enhancement at high energy, as evidenced by the drop in the inner radius r∗ (open blue

squares) with increasing energy. Furthermore, we observe that all the extracted radii

exhibit a monotonic behavior with energy. This is in contrast to the sources extracted

from the Mrówcyńzski coalescence model ųtted with experimental data, which exhibit

local maxima for both the shared r0 and r∗ of the antinucleon source. This might be at-

tributed to using the cascade mode in UrQMD which lacks critical behavior as the EoS is

turned off. The sizes of the nucleon source radius r0 (full black circles) are comparable

to the sizes of the antinucleon source’s outer radius r0 (full blue squares). This supports
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Figure 4.6 The energy dependence of the ųtted (anti)nucleon source radii is illustrated.

The solid circles represent the whole nucleon source radius r0. The extracted source

radii of antinucleons are depicted with square symbols. The outer source radius of

antinucleons r0 is represented by the full symbols, while the inner source radius of the

suppression region r∗ is indicated by the open symbols.

our previous assumption that the antinucleon source shares the same source as nucle-

ons, or at least, is very close around r0 � 5−12 fm. Although this value is twice that of

the Mrówcynźski nucleon source, it is understandable as in UrQMD, the (anti)nucleons

gradually freeze out, while the Mrówcyńzski model assumes instantaneous emission.

In light of these differences, the qualitative comparison of the antinucleon

source from two different approaches is undertaken by examining the r∗/r0 ratio in

Figure 4.7. It is expected that the r∗/r0 ratio will approach or reach unity at the lowest

energy, indicating complete suppression of antinucleon emission. While the results

from the Mr’owcy’nzski coalescence model (red star symbol) cannot fully support this

notion due to the lack of available experimental data at low energy
√

sNN < 10 GeV, the

ratio from UrQMD simulations (blue square symbol) does indeed converge to unity at√
sNN = 7.7 GeV. Furthermore, the overall trends from both approaches align well, as
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Figure 4.7 The energy dependence of the r∗/r0 ratio of antinucleon source from Mrów-

cyńzski coalescence model (red star symbol) and UrQMD simulation (blue square sym-

bol) at central 0 − 10% Au+Au collisions.

the ratios decrease with increasing energy, supporting the idea of reduced suppression

from nucleon-antinucleon annihilation due to the dominance of pion enhancement in

the ųreball at high energy.

In conclusion, we have presented the Mrówcynźski coalescence model

which assumes an annihilation region inside the antinucleon source and extracted the

(anti)nucleon source radii of r0 and r∗ by ųtting the (anti)deuteron formation rate with

available experimental data of B2 and B2 from NA49 to STAR. Comparison with UrQMD

supports the idea of suppression inside the core especially for the antinucleons at low

energy. For high energy, the nucleon-antinucleon annihilation is suppressed due to the

pions dominating the ųreball as seen by the transverse distribution and the drop of

r∗. Finally, the comparison of r∗/r0 shows that both models share the same trend as

UrQMD’s ratio starts at unity at low energy as expected and both ratios decrease with

energy. The disappearance of the local maximum of the ratio in UrQMD is attributed by

the fact that we employ the cascade mode in UrQMD, so there is no critical behavior
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from the change of the EoS. It would be interesting to test our model and the effects of

the EoS within UrQMD in the future when experimental data at lower energies becomes

available.

So far, we have demonstrated the interplay between the cluster formations

and source volume which is crucial for understanding the QCD matter revolving around

the critical point and ųrst-order phase transition. The result has hinted at the possibility

of critical behavior in the ųreball volume measured by the coalescence parameter

B2(B2), contrasting with results from the (cascade) UrQMD model.

To deepen our understanding on the effects on the source volume from a

phase transition, particularly at low energies, we turn to HBT interferometry (Lacey,

2015; Bluhm et al., 2020), speciųcally focusing on pion intensity (Pratt, 1986). HBT

offers various unique observables sensitive to the ųrst order phase transition, allowing

us to probe the critical behavior of the (emission) source volume via the space-time

structure and momentum correlations (Ackermann et al., 2003; Csorgo et al., 2006).

The investigations into the effects of the EoS on HBT interferometry within

different models are mostly limited to high energies (Pratt, 1986; Bertsch et al., 1988;

Ma et al., 2006). Moreover, at high beam energies, other observables like Ŵuctuations

haven’t exhibited the anticipated behavior indicative of a phase transition. These in-

tensify the debate surrounding the existence of the critical point.

The following section aims to study the interplay between phase transitions

and HBT source volumes, with different phase transition scenarios or EOS toward lower

energies.

4.4 HBT Correlation

The principle of HBT interferometry proposed by R. Hanbury-Brown and R. Q.

Twiss in 1954 (Brown and Twiss, 1956) has become a useful tool in the study of the

space-time geometry of the emission sources in astronomy (Hanbury Brown and Twiss,

1956), and nuclear and particle physics (Goldhaber et al., 1960; Csorgo, 2006).

The main difference between the HBT interference and the conventional

Michelson interferometry is that the latter one is based on the superposition of two

amplitudes. The interference pattern is predicted simply by the path difference be-

tween two sources as a function of relative angle. In contrast, the HBT interference

occurs by correlating two wave intensities which can also result in intensity distributions

as a function of the relative angle between the detectors. Thus, HBT interferometry
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can also be understood as intensity interferometry (Wiedemann and Heinz, 1999).

4.4.1 Two-Particle Correlations

The effect of HBT correlations is strongly related to the Ŵow (Dinh et al., 2000;

Retiere and Lisa, 2004; Lisa et al., 2005) which can be used to hint at a phase transi-

tion (Spieles and Bleicher, 2020). Various species of particle waves are emitted from

the created ųreball. Let us consider the particles emitted from the source according to

a density distribution ρ(r). The source is parametrized at the later stage of the collision

where the source distribution is at the kinetic freeze-out stage. The correlation function

C is deųned as a ratio of the correlation intensity IAB from detector A and detector B

divided by the individual intensity from detector A and B, IA and IB, i.e., C = IAB/(IA·IB).

Detector A

b

a

Detector B

Source

Figure 4.8 The diagram of particle detection. Particle 1 and particle 2 are emitted, with

a four-momentum p1 and p2, at points a and b respectively. Then they are detected

by detectors A and B. If the particles are identical, we also need to consider the cases

where the particles propagate indistinguishably into the detectors as illustrated with

the dashed lines.

According to Figure 4.8, we can measure the correlation function by the den-

sity ratio of two-particle coincident event divided by the single particle event in phase-
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space. The correlation function now reads,

C(�k,�q) =
(d6N/d�p1d�p2)

(dN3/d�p1)·(dN3/d�p2)
= N

P(p1, p2)

P(p1)·P(p2)
, (4.10)

where the relative and average momentum of the two particles are denoted by�q =
(�p1 − �p2) with q0 = E1 − E2 and�k = 1

2
(�p1 + �p2) with k0 = E0 =

√
m2 +�k2.

Here, P(pi) is the probability of a single particle carrying four-momentum pi, N is a

normalization factor between P(p1, p2), the probability of the coincident event with

particle 1 having four-momentum p1 and particle 2 having four-momentum p2, and the

product of two P(pi), the probability of an uncorrelated single particle event. We have

P(p1, p2) =

�

source

S(x1, p1)S(x2, p2)|φ(q, r)|2d4x1d
4x2, (4.11)

where φ(q, r) is the probability amplitude for detecting two particles described with

by relative four-momentum q = p1 − p2, k =
1
2
(p1 + p2) and space-time point

r = (x1 − x2) , R = 1
2
(x1 + x2), one from point a with p1 in detector A and one

from point b with p2 in detector B. However, since the particles of interest are identical,

we cannot determine which particle is registered by A or B. So, we need to consider

the exchange of two particles as a linear combination,

φ(p1, p2) =
1√
2
(φ12 ± φ21) . (4.12)

Here, φ12(φ21) represents the case where particle 1(2) from point a is detected in A(B)
and particle 2(1) from point b in B(A). For bosons, we have a symmetric conųguration

(plus-sign). For fermions, we have an anti-symmetric conųguration, thus a minus sign.

If a single emitted particle is described by a plane wave as a free particle, we

have

φ12 = eip1·x1·eip2·x2 ,

φ21 = eip2·x1·eip1·x2 ,

where the space-time coordinates of positions a and b are denoted x1 and x2, respec-
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tively. Now Eq. (4.11) becomes,

P(q, r) =

�

source

S(r)S∗(r)d4rd4r

±
�

source

S(r)eiq·rd4rS(r)e−iq·rd4r

= |F[S(0)]|2 ± |F[S(q)]|2 , (4.13)

with a smoothness approximation coupled with the on-shell momentum, we can use

S(R− r
2
, k− q

2
)S(R+ r

2
, k+ q

2
) � S(r, k)S(r, k), and deųne S(r) ≡ S(r)eiq·r. For

the single-particle probability, we have P(pi) =
�

source S(xi)e
ipi·xid4x = F[R(0)].

Substituting into the correlation function (Eq. (4.10)), we ųnally end up with,

C(�k,�q) = 1 ± |F[S(q)]|2

|F[S(0)]|2
. (4.14)

Here, we can clearly see the relation between the correlation and the source density

distribution. The mass-shell constraint is k·q = 0 and it is convenient to consider the

system in the co-moving frame of the particle pair. Thus in this particle pair rest frame,

the time structure of the relative source and correlation function are integrated out,

i.e., S(�q,�r) and C(�k,�q). We assume a certain source function S(�q,�r) for the ųreball

and ųt the result with experimental data. In this way, we can get a general idea of the

size and the lifetime (Kopylov and Podgoretsky, 1972) of the emission source created

by the collisions (Shuryak, 1973).

A different choice of source distribution will give us a different interpretation

of the freeze-out formation. The most common parametrization for the source is the

Gaussian distributions, S(�r, t) ∝ exp (−�r2/2R2), resulting in a correlation function

C(�k,�q) given by,

C(�k,�q) = 1 ± λ·Rexp

�
−1

2
q2R2

�
. (4.15)

The factor λ is called “chaoticity” or “incoherent factor” and added as a free parameter

for a better ųtting to the data (Adams et al., 2005; Adhikary et al., 2023; Weiner, 2000;

Kincses et al., 2020). So far, we have discussed only the simplest example of the

two-particle correlations. The correlation functions can be parametrized by various
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formulae depending on the origin of correlations between considered particles.

Ref. (Chapman et al., 1995a) has shown in detail that one can assume an

expanding source parametrized alternative to the Gaussian (Bertsch et al., 1988; Boal

et al., 1990; Sarabura et al., 1992; Abbott et al., 1992; Seyboth et al., 1992; Chapman

et al., 1995b; Roland, 1994; Heinz et al., 2002) by Yano-Koonin-Podgoretsky (Yano and

Koonin, 1978) and Heinz (Chapman et al., 1995a) which is appropriate to explicitly take

into account a collective cylindrical expansion, the correlation due to quantum statistics

can be parametrized in terms of the components of q:

C(qL, qO, qS) = 1 + exp (−R2
Lq

2
L − R2

Oq
2
O − R2

Sq
2
S − 2R2

OLq
2
OL) , (4.16)

where qi is the relative momentum of a particle pair in longitudinal qL, outward qO

and sideward qS directions, and Ri are the HBT radii in the same direction as deųned

for qi. An advantage of using this coordinate system is that the outward radius RO

reŴects the space-time structure of the source. The sideward radius RS is separated

from the temporal structure and measures a bare spatial extension. The observation

of a pronounced difference of these two radii on the transverse plane, i.e., R2
O − R2

S or

R0/RS, is expected to provide a hadronic signature for the realization of the new state of

matter* (Chapman et al., 1995a; Ackermann et al., 2003; Heinz and Kolb, 2002; Retiere

and Lisa, 2004; Kolb and Heinz, 2004; Lisa et al., 2005; Shen and Heinz, 2012). Once

the quark-gluon plasma is formed, one expects that the time evolution of the system

becomes slower in the phase transition (or possibly, a crossover) regime, which reŴects

in the long lifetime of the hadron source, and possibly a prolonged emission time.

In the above considerations, the electromagnetic interactions between

charged hadrons were neglected. Namely, the quantum-statistical correlation functions

discussed so far were obtained with the plane-wave assumption for the wavefunction.

In the following, these will be denoted by C0(�q,�k).
If the ųnal-state electromagnetic interactions are also taken into account,

the correlation function has to be calculated not via the interference of plane waves,

but via the interference of solutions of the two-particle Schrödinger equation with a

Coulomb-potential, describing the ųnal state electromagnetic interactions. The ratio of

these two correlation functions is called the Coulomb correction (Csorgo et al., 2004):

*Note that it has been shown in Ref. (Chapman et al., 1995a) that the interpretation for R2
O −

R2
S ∝ ∆temission is highly model dependent. However, only within the ųxed frame, such an assumption is

justiųed.
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In order to extract the quantum-statistical effects, the counter-acting inŴu-

ence of the Coulomb repulsion as well as the dilution by misidentiųed pairs must be

taken into account, while the effect of the strong interaction can be neglected (Csorgo

et al., 2004; Kincses et al., 2020). This leads to the ansatz:

C = N [(1 − λ) + λKC(qinv, Rinv)·C2(�q,�k)] (4.17)

where λ denotes the purity of the pairs, KC represents the Coulomb repulsion factor,

and C(q) is the correlation from quantum statistics parameterized by the source func-

tion. For pions, the Coulomb correction can be approximately determined from the

experimental correlation function for unlike-sign pairs (Boal et al., 1990; Bowler, 1991;

Baym and Braun-Munzinger, 1996), which is dominated by the Coulomb interaction and

receives no contribution from Bose-Einstein correlation.

The factor KC(qinv, Rinv) describes the Coulomb interaction. It is determined

as (Sinyukov et al., 1998; Csorgo, 2008; Rogochaya, 2017),

K =
C(QS + Coulomb)

C(QS)
(4.18)

4.5 Simulation set-ups and EoS

We use the latest version of the UrQMD transport model (UrQMD v3.5) to

generate the freeze-out scenarios within heavy-ion collisions operated in various EoS

modes and use the “correlation after-burner” (CRAB v3.0β) program (Pratt, 2000) to

explore the results via pion intensity interferometry.

The study will ųrst employ three default modes within UrQMD as baseline for

comparing the results from different equations of state with different types of phase

transitions: I) The cascade mode is primarily used for simulating high-energy collisions

where the interactions between hadrons are predominantly binary scattering and the ef-

fects of nuclear potentials become less signiųcant compared to lower energies. Thus, in

cascade mode, nuclear potentials are turned off, and interactions occur solely through

binary scattering based on available cross-sections. II) The soft EoS mode is used to

refer to the system with more substantial compression and less stiffening of the matter

created in heavy-ion collisions. Soft EoS modes are often employed to study collisions

at lower energies, where the system may spend more time in a dense, hot state before
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Figure 4.9 The comparison of the density dependent potential V (a) and the pressure

p (b) from different the CMF EoS scenarios. CMF_PT2 EoS and CMF_PT3 EoS both

are incorporated with a phase transition as well as instability region indicated by local

maximum and minimum. The simple CMF EoS corresponds to a smooth crossover

transition (Li et al., 2023).
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expanding and cooling. The softer interactions can lead to more substantial collective

Ŵow patterns, allowing researchers to investigate the transition from the initial dense

phase to the ųnal state hadrons. At the phase transition, the system is expected to

be at the softest point. III) The hard Skyrme EoS represents a scenario with less com-

pression and more rapid expansion of the matter created in heavy-ion collisions and is

often used for simulating collisions at higher energies. While this may initially suppress

collective Ŵow, the higher temperatures and densities reached in collisions at higher

energies can still induce signiųcant Ŵow effects.

Then, we extend our investigation by adopting EoS based on chiral mean ųeld

(CMF) models (Machleidt and Entem, 2011; Omana Kuttan et al., 2022) with different

phase transition scenarios to demonstrate how distinct EoS and phase transitions man-

ifest in pion interferometry. The successful integration of CMF in the UrQMD model is

done by calculating the density-dependence mean ųeld potential energy V from the

CMF model’s energy per baryon as demonstrated in Figure 4.9 and also in detail in

Ref. (Motornenko et al., 2020; Omana Kuttan et al., 2022).

To explore the effects of various EoS with and without different phase tran-

sition scenarios, we feed the obtained pion freeze-out phase-space coordinates at the

last interactions (either collisions and decay) from UrQMD calculations to the “correla-

tion after-burner” (CRAB v3.0β) program (Pratt, 2000), provided by S. Pratt.

4.6 Two-Pion HBT Analysis

To begin our analysis, we want to rule out other inŴuences or effects that

could affect the ųnal results. The Coulomb interaction could microscopically alter

hadron trajectories and inŴuences the spatial and momentum correlations at freeze-

out, ultimately impacting the collective behavior of the system on the macroscopic

level. Consequently, the inclusion or neglect of Coulomb interactions in HBT calcula-

tions can lead to differences in the extracted HBT radii and, thus, affect interpretations

of the system size and dynamics.

Figure 4.10 compares the transverse momentum dependence (kT) of HBT

radii in central 0 − 10% Au+Au collisions at
√

sNN = 2.4 GeV for different Coulomb

interaction scenarios with the hard EoS. The analysis focuses on negative pion pairs with

a pair-rapidity cut at |yππ| < 0.35, deųned as yππ = 1
2
ln
(E1+E2+p1,L+p2,L)

(E1+E2−p1,L−p2,L)
, where Ei

and pi,L represent the energies and longitudinal momenta of each pion, respectively.

This conųguration aligns with the experimental data.
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Figure 4.10 Comparison of kT dependence of pion HBT radii showing the effect of

Coulomb interactions. Panels (a), (b), and (c) display the R0, RS, and RL radii, respec-

tively, and panel (d) shows the ratio RO/RS of the π-source from central (0 − 10%)

Au+Au collisions at
√

sNN = 2.4 GeV. Red star symbols depict the results from the

HADES experiments (Adamczewski-Musch et al., 2019). Black dotted lines indicate the

UrQMD simulation results without Coulomb potential (w.o. Coul.), blue dashed lines

show the UrQMD simulation results with Coulomb potential for baryons only (with Coul.

(B)), and pink solid lines depict the UrQMD simulation with the full Coulomb potential

for all hadrons (with Coul. (B+M)).

At high transverse momenta (kT > 100 MeV/c), all simulation scenarios can

reproduce the data reasonably well, except for a slight underestimation of RS. This

underestimation leads to a higher RO/RS ratio compared to the measured values. Fur-

thermore, it is clear that the impact of the Coulomb potential from both scenarios (blue

dashed lines and pink solid lines) is negligible when compared to the Coulomb-free in-

teraction (black dotted line).

Therefore, the subsequent discussion will omit the Coulomb effect on the

 



56

HBT radii. The following results will more or less come from purely nuclear potential,

i.e., the choice of EoS and the phase transition.

Figure 4.11 The transverse momentum (kT) dependence of the HBT radii, RO (left pan-

els), RS (middle panels), and RL (right panels), for 0 − 10% central Au+Au collisions

at
√

sNN ranging from 2.4 GeV (top panels) to 7.7 GeV (bottom panels). Experimental

data are denoted by star symbols from HADES, E895, E866, and STAR collaborations (Lisa

et al., 2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019;

Adamczewski-Musch et al., 2020; Adam et al., 2021). The UrQMD simulations are rep-

resented by lines: the cascade mode (black line with square), hard EoS (blue line with

circle), and soft EoS (pink line).

The inŴuence of the density dependence of the nuclear potential on HBT radii

is explored in Figure 4.11. The UrQMD model simulations are depicted for three scenar-

ios: cascade mode (black line with square), hard EoS (blue line with circle), and soft EoS

(solid pink line) are compared with experimental data (star symbols) (Lisa et al., 2000;

Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019; Adamczewski-
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Musch et al., 2020; Adam et al., 2021) as a function of transverse momentum (kT) within

the same collision system and rapidity conųguration mentioned above.

A clear impact of the nuclear potential is evident when comparing the colored

lines (with nuclear potential) to the black line with squares (without nuclear potential)

across the entire kT range. This effect is particularly pronounced at lower center-of-

mass energies. The hard EoS (blue line with circle) generally leads to a decrease in R0

values and an increase in RS compared to the cascade mode (black line with squares).

This behavior results in a better description of the experimental data (star symbols)

observed for most collision energies. The soft EoS (solid pink line) exhibits qualitatively

similar trends to the hard EoS, hence we present the results only for
√

sNN = 2.4 GeV

for the sake of brevity.

An interesting observation is seen at
√

sNN = 4.5 GeV, where the hard

EoS predicts a higher R0 than the cascade mode, unlike at other energies. This ųnding

suggests a potential non-monotonic behavior in the difference between RO and RS,

which may not necessarily be indicative of a critical point associated with a phase

transition. To gain a deeper understanding of these observations, the next section will

focus on a detailed analysis of the RO and RS difference across various nuclear potential

scenarios, including those incorporating and excluding a phase transition.

4.7 Effect of the EoS with Phase Transition

As discussed earlier, the expected non-monotonic behavior in the RO and

RS difference remains ambiguous (Pratt, 2009). It’s unclear whether this arises from

critical behavior near the phase transition or solely from the effects of a strong repulsive

potential (hard EoS). This ambiguity is further ampliųed by the large error bars associated

with the experimental data at the relevant energy (
√

sNN = 4.5 GeV) where the actual

trend might even be a smooth increase rather than a peak (Lacey, 2015; Adamczyk et al.,

2015; Adamczewski-Musch et al., 2019).

Therefore, to gain deeper insights, we explore the difference between RO and

RS, quantiųed by RO/RS and R2
O − R2

S, as a function of center-of-mass energy (
√

sNN)

for various nuclear potential scenarios. These results are then compared with available

experimental data, as illustrated in Figure 4.12. The RO and RS values are chosen at

kT = 275 ± 25 MeV/c in central (0 − 10%) Au+Au collisions with a pair-rapidity cut

of |yππ| < 0.35.
Based on our previous observations, nuclear potentials without a phase tran-

 



58

sition tend to decrease RO and increase RS. This explains the behavior of the hard

EoS (blue line with circle) and the nuclear density dependent CMF EoS (green line),

where both result in suppression of RO/RS and R2
O − R2

S compared to the cascade

mode (black squares). At these energies, the hard EoS and CMF EoS potentials exhibit

similar strength as the nuclear density reaches around ρb/ρ0 ≤ 5. This similarity in

terms of repulsive strength results in the earlier pion emission, as aligned with the rela-

tion ∆τ
2∝1/(R2

O− R2
S). Consequently, the non-monotonic behavior observed around√

sNN ≈ 4.5 GeV in Figure 4.11 is not attributable solely to a rise in RO from the hard

EoS.

We can now shift our focus to the effects of a phase transition in the results

from the CMF EoS with critical behavior representing the phase transition at ρb/ρ0 ≈ 4

and ρb/ρ0 ≈ 5 (CMF_PT2 EoS with orange dotted line and CMF_PT3 EOS with pink

dashed line). At the lowest energy (
√

sNN = 2.4GeV), the results from all CMF EoS

scenarios are similar to the ones from the hard EoS. However, as the energy increases,

CMF_PT2 EoS (orange dotted line) gradually approaches the cascade scenario, reaching

a maximum around
√

sNN≈4 GeV. This reŴects the softening of the nuclear potential

due to the critical behavior from the phase transition. In contrast, CMF_PT3 EoS (pink

dashed line) remains consistent with the default CMF EoS (green line) across all energies.

This suggests that the nuclear density in this energy range never reaches the critical

regime implied by CMF_PT3 EoS, i.e., ρb/ρ0 ≈ 4 − 5.

In conclusion, our ųndings indicate that HBT radii are sensitive to the EoS.

CMF_PT2 suggests that critical behavior is expected around a nuclear density of

ρb ≈ 4 − 5ρ0, as it best describes the experimental data at
√

sNN ≈ 4 GeV.

4.8 Space-time Structure from HBT radii

Now we continue with the discussion of the negative pion π
− emission time.

The critical behavior at the phase transition may result in a softening of the EoS, leading

to longer emission times. This can be interpreted in terms of the HBT radii, where

R2
O− R2

S∝∆τ
2
emission (for non-Ŵow volume). To assess how different assumptions about

the EoS affect the freeze-out time distribution, we present this comparison for various

collision energies ranging from
√

sNN = 2.4 − 7.7 GeV in Figure 4.13.

At
√

sNN = 2.4 GeV, all the freeze-out time distributions with different

EoS (colored lines) are nearly identical, except for the cascade mode (solid black line),

where most pions freeze out around t ≈ 15 fm/c. This uniformity occurs because, at
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this energy, the density-dependent nuclear potentials are nearly the same.

As we move towards higher energies, the freeze-out distribution for the

CMF_PT2 EoS (solid orange line) approaches that of the cascade mode, while the distri-

butions for the other EoS remain almost identical for the rest of the energy range, with

slight deviations at
√

sNN = 7.7 GeV. Here, the freeze-out times for CMF EoS (green

dashed line) and CMF_PT3 are extended similarly, while the hard EoS (solid blue line)

exhibits the shortest emission times.

The corresponding mean freeze-out times "t# and transverse radii rT =�
r2x + r2y

�
of π− are then illustrated in Figure 4.14 as functions of collision energy√

sNN. In panel (a), the mean freeze-out time "t# exhibits a minimum at
√

sNN ≈ 4 GeV

for all calculations. The similar behaviors of increasing freeze-out time "t# at higher en-

ergies of all EoS scenarios may be attributed to resonance decay, with string excitation

overcoming fragmentation. The emission time from a hard EoS (coloured line) is pro-

longed over the entire energy range.

Furthermore, we observe a consistent increase in transverse radii rT in panel

(b), in line with the assumption of an expanding charged volume. The transverse radii rT
from the EoS scenarios with strong repulsive potentials (colored lines) result in consis-

tently larger rT compared to the cascade mode (solid black line), suggesting a stronger

system expansion due to higher pressure. We observe an interesting behavior of the

transverse radii from the CMF_PT2 EoS (orange dotted line), where it remains relatively

constant and approaches the cascade mode (solid black line).

In summary, we investigate the sensitivity of HBT radii to different Equations of

State (EoS) using UrQMD simulations of central (0− 10%) Au+Au collisions at collision

energies ranging from
√

sNN = 2.4 − 7.7 GeV. We explicitly demonstrated that

the inclusion of nuclear potential, independent of Coulomb interactions, signiųcantly

impacts HBT radii (contrast to (Li et al., 2006)). We found that incorporating a hard

EoS, either with or without a phase transition, leads to a better description of the

experimental data for the RO and RS differences of the HBT radii (RO/RS and R2
O − R2

S).

The results obtained with the CMF_PT2 EoS exhibit a softening of the nuclear potential

around
√

sNN ≈ 4 GeV due to the critical behavior, providing an even better agreement

with the data compared to other EoS scenarios. This suggests that the nuclear density

in this energy range falls within the region of ρB 4 − 5ρ0 and likely doesn’t exceed

these values, as the CMF_PT3 EoS doesn’t exhibit any critical behavior.

Finally, we investigated the emission time, represented by the freeze-out
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time distribution of negative pions π
−. Interestingly, all EoS scenarios, including the

cascade mode (without any EoS), display a minimum emission time at
√

sNN ≈ 4 GeV.

As expected, the freeze-out time distribution from the CMF_PT2 EoS shows a distinct

behavior, with a prolonged freeze-out time approaching the cascade mode. This ųnding,

coupled with the observation of nearly constant transverse radii until
√

sNN ≈ 4 GeV,

strongly suggests a critical behavior involving a longer relaxation time associated with

the softening of the nuclear EoS during the phase transition.

These results demonstrate the potential of using HBT radii as a direct probe

to investigate the EoS in this density and energy regime of interest. Future studies can

beneųt from additional experimental data with smaller error bars to further validate

and reųne our understanding of the EoS in this domain.
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Figure 4.12 Comparison of the collision energy dependence of the (top panel) R0/RS

ratio and (bottom panel) R2
O−R2

S for cascade (black line with squares) and various EoS

models (hard EoS: blue line with circles, CMF EoS: green line, CMF_PT2 EoS: orange

dotted line, CMF_PT3 EoS: pink dashed line) with available experimental data (Lisa

et al., 2000; Lisa et al., 2005; Adamczyk et al., 2015; Adamczewski-Musch et al., 2019;

Adamczewski-Musch et al., 2020; Adam et al., 2021).
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Figure 4.13 The freeze-out time distribution of π− from 0 − 10% Au+Au collisions

with the different EoS; Cascade mode (solid black line), Hard EoS (solid blue line), CMF

EoS (green dashed line), CMF_PT2 EoS (solid orange line), and CMF_PT3 EoS (pink dash-

dotted line)
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Figure 4.14 (a) The corresponding mean π
− emission time "t# and (b) transverse radii

rT at freeze-out as a function of collision energies calculated from different EoS.

 



CHAPTER V

REVIEWS ON (HYPER) (LIGHT) NUCLEI

The previous chapter has already pointed out that cluster formations are

important for critical phenomena of the medium and the EoS studies. Also, the tension

between formation mechanisms arises due to the different space-time pictures in the

heavy-ion collisions. In this chapter, we will review on the cluster formations ranging

from the normal nuclei to the hypernuclei by discussing their roles in various studies

and the available formation mechanisms on the markets.

5.1 Role of (Hyper)Nuclei Formation

Nuclei or clusters, such as deuteron, triton, and Helium-3, are the bound state

of two or more nucleons. The studies of these particles are crucial for a broad range

of physics from the nuclear physics (Knoll et al., 1982; Sun et al., 2017; Zhu et al.,

2015; Oh and Ko, 2007) to the astrophysics (Hagedorn, 1960; Butler and Pearson, 1961;

Carlson et al., 2014; Hou et al., 2017; Most et al., 2023).

In the context of the heavy-ion collisions, they are important probes for the

critical behavior and the EoS due to their sensitivity to the medium (Andronic et al.,

2011; Blaschke et al., 2020; Knoll et al., 1982; Hagel et al., 2012; Yang et al., 1984). This

is attributed to the nature of the bound state and the ųnal stage observables. They

can be reŴective to the various medium effects from the early to ųnal stage of the

collisions. For example, beam energy and initial geometries can lead to the different

temperatures and densities affecting the cluster formations at the ųnal stage (Csernai

and Kapusta, 1986; Hagel et al., 2012). The correlations and Ŵuctuations of the baryon

at the critical point also lead to change in their multiplicities (Knoll et al., 1982; Bertsch

and Cugnon, 1981; Oliinychenko, 2021).

In the context of astrophysics and cosmology, these clusters, particularly the

light nuclei, play a critical role in understanding the early universe (Yang et al., 1984)

providing a strong support on the most famous cosmological models, i.e., Big Bang mod-

els (Alpher and Herman, 1948; Yang et al., 1984; Malaney and Mathews, 1993; Pospelov

and Pradler, 2010). Also it has been postulated that the antideuterons in space could
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be used to trace and investigate the candidate and nature of dark matter (Korsmeier

et al., 2018; Bellini, 2022; Fuke et al., 2005; Ibarra and Wild, 2013; Aguilar et al., 2016). .

However, the research on these clusters has been recently highlighted again

due to the fact that their fundamental structures and formations could serve as a basis

for studying hypernuclei (Cho et al., 2017; Andronic et al., 2018; Braun-Munzinger and

Dönigus, 2019). The hypernuclei are the bound state between nucleons with a least

one strange baryon called hyperon. These hypernuclei could extend our understanding

of the QCD matter in both nuclear physics and astrophysics aspects as well.

Furthermore, since the strangeness is only produced from the early stage of

the collisions, these hypernuclei also carry information at the very initial stage of the

collisions. They are also subjected to the correlations and Ŵuctuations of the medium

due to their bound state nature. Particularly, the goal for investigating the hypernu-

clei in the nuclear medium is to understand their internal structures and interactions.

However, at high collision energies, these hypernuclei are very rare making their exper-

imental data situations very limited.

This motivates most of the heavy-ion collision facilities to design lower ener-

gies collision to enhance the strangeness productions in the nuclear medium (Schaffner-

Bielich and Gal, 2000; Andronic et al., 2011). These created environments correspond to

the neutron stars and binary neutron star mergers. The presence of hyperons in these

compact stellar objects can inŴuence the neutron star EoS (Balberg et al., 1999; Chatter-

jee and Vidaña, 2016; Oertel et al., 2016) through hyperon-nucleon interactions (Nagels

et al., 1977; Nagels et al., 1979; Shinmura et al., 1984; Fujiwara et al., 1996a; Fujiwara

et al., 1996b; Nemura et al., 2000; Hildenbrand and Hammer, 2019) and ultimately

affecting the maximum mass and radius of these stellar objects (Bombaci, 2017; Özel

and Freire, 2016; Lattimer, 2021). This suggests that the hypernuclei could also serve

as sensitive probes for the EoS especially around neutron star density.

The investigation on their internal interactions are also important to their

formation mechanisms. One could argue that these normal nuclei and hypernuclei

are formed from the same mechanism. The investigation on the formation mechanism

from the normal nuclei could also be crucial to understand the nature of the hyperon

interactions.

The following sections will delve deeper into these highlighted topics, ex-

ploring the detailed mechanisms and implications of (hyper)nuclei studies in various

physical contexts (for more detailed reviews Ref. (Dönigus, 2020)).
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Big Bang Nucleosynthesis

Big Bang Nucleosynthesis (BBN) is one of the eras of the early universe where

a larger amount of light atomic nuclei are continuously created. It was postulated to

happen a few minutes after the Big Bang (Alpher and Herman, 1948; Malaney and Math-

ews, 1993). Originally, while the universe was cooling down, many light nuclei could be

formed but hot universe with energetic nucleons, also destroyed them continuously.

Only until the universe is cool enough such that it allows deuterons to survive. This is

one of the most important threshold in the BBN, the so-called “deuteron bottleneck”.

A large amount of light nuclei can be produced with these deuterons as their con-

stituent in which inducing an enormous nuclear chain reaction to form other heavier

nuclei (Pospelov and Pradler, 2010).

Interestingly, most of the abundance of deuterium observed in the universe

today is accounted from the BBN era. By investigating the primordial deuteron yields

from the coalescence model along with the constraints on the density and composition

of baryonic matter in the early universe from the cosmic microwave background, we can

obtain the most valuable evidence for supporting the BBN model (Alpher and Herman,

1948; Yang et al., 1984; Pospelov and Pradler, 2010).

Furthermore, the same argument can also be applied to the heavy-ion col-

lisions. The cluster formation from the thermal model provides a contradict picture

with the deuteron bottle neck argument leading to the so-called “snow ball in hell”

where these loosely bound clusters are directly emitted from the hot ųreball at the

chemical freeze-out with temperature Tchem ≥ 100 MeV. However, in this thesis, we will

eventually point out that the coalescence model could provide more consistent pic-

tures between the emission source geometries, BBN, and other arguments like isospin

Ŵuctuations.

Potential Signal of the Critical point

When the medium reaches the critical point, it induces a signiųcant change

to the thermodynamics properties leading to the divergence of the correlation length,

susceptibility, and Ŵuctuations particularly in conserved quantities like baryon number,

electric charge, or strangeness. The Ŵuctuation of these conserved observables has

been extensively studied both theoretically and experimentally through event-by-event

Ŵuctuations and correlations (Sun et al., 2017; Stephanov et al., 1999; Stephanov, 2009;

Skokov et al., 2013; Luo and Xu, 2017; Mrówczyński and Słoń, 2020).
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Measurements from the Beam Energy Scan (BES) program by the STAR Collab-

oration have reported clear deviations from unity or shown a non-monotonic behavior

in the energy-dependence of event-by-event Ŵuctuations, such as fourth-order Ŵuctu-

ations (κσ2) of the net-proton number, which could indicate a critical behavior (Adam-

czyk et al., 2014). This critical behavior manifests in various ųnal state observables,

including η/s ∝ d/p (Andronic et al., 2009; Braun-Munzinger and Dönigus, 2019; An-

dronic et al., 2017), and the slope of harmonic Ŵows of light clusters (Hartnack et al.,

1994). These observations are sensitive to the correlations and Ŵuctuations near the

critical point.

Moreover, due to the fact that the constituent nucleons are subjected to

the baryon conservation, the critical Ŵuctuations and the correlation length will be

reŴected by the relative densities between nuclei and nucleons at kinetic freeze-out

in heavy-ion collisions, e.g., O(d/p), O(tp/d) and O(p3He/d). These ratios are ex-

pected to reŴect pure contributions from proton-neutron correlations and baryon Ŵuc-

tuations (Oliinychenko, 2021; Liu et al., 2020).

Relation to Dark Matter

The estimated ratio of, e.g., d/p abundances aligns reasonably well with the

observable number of baryons in the universe today (Yang et al., 1984; Hou et al.,

2017). This implies that there isn’t a signiųcant unseen source for baryons. However,

the observations also suggest that a large quantity of matter is necessary to explain the

gravitational behavior of galaxies and their halos, at least 10 times the mean density of

the visible baryons (Aguilar et al., 2016). Thus, this indicates that this missing mass is

not made of ordinary matter, but the so-called dark matter.

The AMS experiment aims to measure the Ŵux of antinuclei in space (Fuke

et al., 2005; Ibarra and Wild, 2013; Aguilar et al., 2016). It has been postulated that

dark matter annihilation could produce the NN which then potentially form the antin-

uclei (Carlson et al., 2014; Korsmeier et al., 2018; Bellini, 2022; Šerkšnyté et al., 2022)

where the formation rates of these antinuclei are theoretically estimated by the coa-

lescence model that is also applied in heavy-ion collisions (Nagle et al., 1994; Bleicher

et al., 1995; Abelev et al., 2010; Zhu et al., 2015; Chen et al., 2018).

Understanding the correct mechanism for cluster formation from heavy-ion

collisions might help us provide the correct estimated production rate of these antin-

uclei.
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5.1.1 Hypernuclei

One of the important aspects for cluster studies in heavy-ion collisions is the

role of strange quarks and strange hadrons in the medium. These strange quarks are

only produced after the medium reaches the QGP stage and only after the hadroniza-

tion passes, their bound states are then allowed to form. From this point, one can

foresee that the hypernuclei could be inŴuenced by various factors such as strong in-

teractions, decays, Ŵuctuations, and re-scattering throughout the evolution. However,

these ųnal stage observables can also be seen as information carrier from the early

stages of the QGP (Koch et al., 1986; Soff et al., 1999).

Despite signiųcant theoretical advancements and the fact that available mod-

els could already accurately estimate hyperon and hypernuclei behaviors and spectra,

several topics remain open for investigation (Rufa et al., 1990; Gibson and Hungerford,

1995).

One of such topics is the hypertriton structure and its dependence on sys-

tem size (Acharya et al., 2022). Measurements of the hypertriton lifetime, which is

close to that of Λ hyperons, suggest a structure consisting of a deuteron core and a

loosely bound Λ (Juric et al., 1973; Abelev et al., 2010; Adam et al., 2016; Dönigus,

2020; Andronic et al., 2018). Understanding the correct hypertriton structure requires

a consistent wavefunction, and interactions between its constituents, such as ΛN or

ΛNN interactions and even ΛΛN interactions (Nagels et al., 1977; Nagels et al., 1979;

Shinmura et al., 1984; Fujiwara et al., 1996a; Fujiwara et al., 1996b; Nemura et al., 2000).

The main challenge in understanding hyperon-nucleon interactions is the lack

of experimental data. Thus for the current trend for most facilities will focus on these

hypernuclei studies especially toward the lower energy regime (lower temperature but

higher density) where hypernuclei yields are expected to be enhanced and the environ-

ments are suitable for studying their internal interactions through correlations (Bertsch

and Cugnon, 1981; Lisa et al., 2005; Mihaylov et al., 2018; Acharya et al., 2019). Future

facilities like FAIR, PANDA, and HADES will conduct research with particular interest in

this regime for hypernuclei physics (Pochodzalla, 2005; Ablyazimov et al., 2017; Gal

et al., 2016; Almaalol et al., 2022) aiming to investigate their structure, the underlying

internal interactions such as hyperon-nucleon and hyperon-hyperon interactions, and

the weak decays of these objects.

These hypernuclei structure and internal interaction studies have direct im-

plications to the neutron stars EoS (Huth et al., 2022). Since the attractive and repulsive
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nature of these interactions will inŴuence the balance of the Fermi pressure. Inside the

neutron stars, it is expected the presence of hyperons and hypernuclei. However, the

inclusion from their contributions from various models result in a strong softening of

the EoS (Balberg et al., 1999; Chatterjee and Vidaña, 2016; Oertel et al., 2016). The

maximum masses in these cases could never reach the observed neutron stars masses

of around 2M� (Biswas, 2021). While the pure neutron star model exhibits a too stiff

EoS leading to the always larger possible masses for pure neutron stars. Thus, a com-

prehensive understanding of the effects of hypernuclei and their constituent hyperons

is also crucial for understanding the properties of matter under extreme conditions, not

only in heavy-ion collisions but also in contexts such as the early universe (Rafelski and

Yang, 2022) and the cores of neutron stars (Özel and Freire, 2016; Lattimer, 2021).

5.2 Cluster Formation Mechanisms

To accurately predict the yield of nuclei formation, understanding the un-

derlying mechanisms responsible for this process is important. In this section, we will

introduce the most successful and well-known mechanisms for nuclei formation. De-

spite their successes, each model has its own interpretations, leading to debates over

which mechanism is realized in nature.

5.2.1 Thermal productions

Thermodynamic models have been extensively used to study the macro-

scopic properties of strongly interacting matter over a broad range of energies. These

statistical thermal models are applicable when the system has reached its equilibrium.

In the sense of heavy-ion collisions, this equilibrium refers to the stage of chemical

freeze-out (Andronic, 2014; Cleymans et al., 2006). In this section, we will introduce

the setup of the model for nuclei production by following the explanation presented

by Ref.. (Kapusta, 1980; Vovchenko and Stoecker, 2019) and discuss some drawbacks

(see also Ref. (Mrowczynski, 2017)).

The basic idea of the thermal model is to treat each particle species as a

non-interacting gas. The schematics for the thermal model is shown in Figure 5.1.

Inside the ųreball, all kinds of particles (hadrons and clusters) can form. The

nuclei are treated, like other particles, as free particles inside a volume Vchem character-

ized by temperature Tchem and chemical potential µchem,i. The distribution of particle i
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Figure 5.1 The schematic for a particle production from a thermal model. A projectile AP

and a target nucleus AT exchange energy and momentum upon collision. All particles X,

p and n, are emitted directly from the ųreball including the composited particle d. This

hadronization occurs at chemical freeze-out. The ųgure is adopted from Ref. (Kapusta,

1980)

can be described as:

d3Ni

dpi

=
(2Si + 1)

(2π)3
V

�
exp

	
(p2

i + m2
i )

1/2 − µi

T



± 1

�−1

, (5.1)

where Si is the spin multiplicity of the particle, and ± depends on whether the particle

is a fermion or boson.

The particle distribution function can then be rewritten in terms of the Milne

momentum coordinates, while the spatial coordinates are integrated and yield the

three-volume V. It is also possible to introduce Milne-coordinates for coordinate space

(t, x, y, z)→ (η, rT, τ, θ),

d3N

dmTdydφ
=

gV

(2π)3
EmT

1

eβ(E−µ) ± 1
(5.2)

=
gV

(2π)3

m2
Tcosh(y)

eβ(mTcosh(y)−µ) ± 1
(5.3)
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If the bulk evolution is symmetric with respect to φ, one can integrate over the az-

imuthal angle and obtain the particle distribution as a function of y and mT:

d2N

dmTdy
=

gV

(2π)2

m2
Tcosh(y)

eβ(mTcosh(y)−µ) ± 1
(5.4)

From here on one can calculate the transverse momentum spectrum of a given particle

species or the rapidity distribution. Moreover, integration over y and mT yields the total

number of particles.

N =
gV

(2π)2

∞�

−∞

dy

∞�

m

dmT

m2
Tcosh(y)

eβ(mTcosh(y)−µ) ± 1
(5.5)

The thermal description can provide a good estimate for normal hadron productions,

see ųgure 5.2. However, the estimated (anti)cluster or hypernuclei yields are usually

poor (on the logarithmic scale). Nevertheless, a simple thermal model can still give

us a lot of insight on the particle productions from a very wide spectrum ranging from

SPS to RHIC energies without any need to introduce more parameters (Andronic et al.,

2010).

Various extensions of the ideal gas picture have been discussed mostly within

the excluded volume (Rischke et al., 1991; Yen et al., 1997; Yen and Gorenstein,

1999), where the effects of repulsive hadronic interactions at short distances are intro-

duced. Another extension is the quantum van der Waals model (Vovchenko et al., 2015;

Vovchenko et al., 2017a; Vovchenko et al., 2017b), which allows to include both the

repulsive and attractive interactions between hadrons. Recently, repulsive interactions

have received renewed interest in the context of lattice QCD data on Ŵuctuations of

conserved charges. In addition, the fugacity free parameters sometimes are introduced

and used to describe how the presence of particles deviates from ideal gas behavior

due to interactions (Koch et al., 1986; Rafelski, 1991; Letessier and Rafelski, 1999). A

modiųed pressure term accounts for the chemical potential and reŴects the departure

from equilibrium conditions. Especially for hypernuclei, there is a strong enhancement

visible at low energies that can be understood as an interplay of the medium T, µi,

and canonical effects. This is of particular interest for low energy facilities where col-

lisions occur at chemical potential, like the upcoming FAIR facility (Friman et al., 2011;

Ablyazimov et al., 2017; Durante et al., 2019; Bzdak et al., 2020).
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Figure 5.2 The comparison between thermal predictions and the measured (anti)nuclei

production on the energy spectrum. The ųgure is adopted from Ref. (Dönigus, 2020)

Despite its simplicity and successful predictions of cluster yields, the thermal

prescription ultimately assumes the formation of nuclei directly from the chemical

freeze-out stage with Tchem ≈ 150 MeV which is much larger than the binding energies

of all (hyper)nuclei, thus raising the questions which mechanisms are realized in nature.

In contrast to the thermal model, the coalescence model assumes that light

(anti)nuclei are produced at a later stage, i.e., the kinetic freeze-out (Braun-Munzinger

and Dönigus, 2019; Mrówczynśki and Słoń, 2020).

5.2.2 Coalescence Model

The coalescence model assumes that light nuclei are formed by the coa-

lescence of nucleons and other light clusters that are sufųciently close in coordinate

and momentum space. The coalescence probability depends on the momentum and

separation of the nucleons or clusters.

The model describes the formation of composited particles in the late stage

of the collision - ųrst, all resonances decay into nucleons, then nucleons coalesce into

nuclei at the freeze-out stage. There are many types of coalescence models (Hagedorn,

1960; Butler and Pearson, 1963; Bond et al., 1977; Csernai and Kapusta, 1986; Sato and
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Yazaki, 1981; Hillery et al., 1984; Danielewicz and Schuck, 1992; Mrowczynski, 1992;

Kittiratpattana et al., 2020). The model states that a pair of ųnal-state (anti)nucleons

that are carrying similar momenta can coalesce to form a deuteron or an anti-deuteron

with total momentum P as shown in ųgure 5.3. The nucleus-nucleus collision creates

a ųreball which emits protons, neutrons, and many other particles out. In the case

where an emitted proton and neutron have similar momenta, they will be localized and

formed into a deuteron. Different formulations for the coalescence rate are possible.

In this section, we will discuss the problems with the simple coalescence model and

present the more considerate treatment for the model.

ࡼۯ

ࢀۯ

࢖

࢔

ࢄ

ࢊ

Figure 5.3 The schematic for a particle production and cluster formation from a colliding

projectile nucleus AP and a target nucleus AT. In the coalescence model, the free

streaming neighbor of p and n pair after Ŵying a certain distance will coalesce and form

a deuteron outside of the ųreball. The rest of the momentum is represented by X.

This coalescence process happens at kinetic freeze-out. The ųgure is adopted from

Ref. (Kapusta, 1980)

Simple Momentum Coalescence

The coalescence model for relativistic nuclear collisions was developed from

the physical insight provided by proton-nucleus collisions by Butler and Pearson (Butler

and Pearson, 1963). Then, Ref. (Schwarzschild and Zupancic, 1963) pointed out that,

independent of the detailed production mechanism, the deuteron density d3Nd/dP
3
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should be proportional to the square of the proton density (d3Np/dp
3)

2
. The coefų-

cient may be momentum dependent and could be made dependent on the space-time

details of the mechanism.

The derivation of the coalescence model for deuterons goes as follows. Let

d3Np/dp
3 be the invariant momentum space density for nucleons before coalescence

into deuterons. We assume that protons and neutrons have equal densities but the

formulas can be generalized to include the non-equal cases. The probability of ųnding

one nucleon with momentum p0 is density times the volume of momentum sphere

averaging by the mean of nucleon multiplicity.

P =
1

M

4π

3
p3

0γ
d3Np

dp3
(5.6)

where M is the mean nucleon multiplicity. The purely statistical probability for ųnding

two nucleons in the case where M � 1 and MP 
 1 of this sphere is

PM(2) =

	
M

2



P2(1 − P)M−2 (5.7)

4π

3
p0

3
γ
d3Nd

dP3
=

M2

2

�
1

M

4π

3
p3

0γ
d3Np

dp3

�2

(5.8)

γ
d3Nd

dP3
=

1

2

4π

3
p3

0

�
γ
d3Np

dp3

�2

(5.9)

If we consider the spin (triplets and singlet) and isospin (triplets and singlet) combina-

tions, we obtain,

γ
d3Nd

dP3
= 8

3

4

4π

3
p3

0

�
γ
d3Np

dp3

�2

(5.10)

again with deuteron momentum P = p1 + p2 and assuming that these nucleons

approximately carry the same momenta p1 = p2 = p. From here, one can expresses

that whenever two nucleons with correct spin-isospin states are within a momentum

sphere with radius p0 of each other then they will coalesce and form a deuteron.

However, it is more common to express the density in the form of the Lorentz invariant.
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Thus the coalescence model is usually written as,

E

�
d3
σd

dP3

�
= B2

�
E

2

d3
σp

dp3

�2

, (5.11)

assuming the equality of proton and neutron cross sections. E is the energy of the

deuteron where the nucleons are assumed to be E/2. B2 is a well-known coalescence

parameter which is used and measured by most experiments related to the coales-

cence model. Still, B2 also contains the proportionality to the unknown p0. However,

the physical interpretation of radius p0 is still questionable (Butler and Pearson, 1963;

Schwarzschild and Zupancic, 1963; Gutbrod et al., 1976; Bond et al., 1977; Sato and

Yazaki, 1981; Gyulassy et al., 1983; Csernai and Kapusta, 1986; Mrowczynski, 1990). Be-

cause this parameter could not be expressed with any dependencies on the collision

initial conditions, e.g., the target/projectile size, beam energy, impact parameter etc.

However, based on this proportionality, a similar relation between p0 and the volume

V from the thermal model can be drawn,

d3Nd

dP3
=

3

4

(2π)3

V

d3Np

dp3
1

d3Nn

dp3
2

. (5.12)

The weighting factor of 3/4 averages the spin multiplicity per nucleon-nucleon bound

state. In Lorentz invariant density form, this is:

�
γ
d3Nd

dp3

�
= 8

3

4

(2π)3

V

1

γ

�
γ
d3Np

dp3

�2

. (5.13)

Comparing this the Eq. (5.10) with the thermal model Eq. (5.13), we get the relation

with p0,
4

3
πp3

0 =
1

γ

(2π)3

V
(5.14)

According to this naive relation, p0 seems to be inversely proportional to the thermal

volume V and the Lorentz factor γ. One can see that p0 can now be understood as

the coalescence parameter BA which is expected to have a direct connection with the

volume as BA∝
�

1
V

�A−1
. However, the interpretations of the volume from the thermal

model and the coalescence model are not the same. The latter one refers to the

volume of homogeneity of the emission source which is in line with the volume from
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HBT interferometry (Kapusta, 1980; Ackermann et al., 2003; Csorgo et al., 2006).

Because of its simplicity, this model fails to describe the antideuteron invari-

ant yield at Si+Au in the AGS experiment E802 (Aoki et al., 1992). Figure 5.4 shows

the invariant cross section of the negative charged particles, i.e., π−, K−, p, and an-

tideuterons d. The anticipated cross section ratio of antideuteron to antiproton squared

according to the coalescence model is actually 5 − 10 times smaller than the ratio

obtained from normal deuteron.

The coalescence model can be upgraded with more explicit descriptions of

the phase-space correlation which can incorporate quantum mechanical considera-

tions. An approach for a better description of the antinuclei yields has been suggested

by (Mrowczynski, 1993) which we have adopted in this studies the in previous chapter

Ch. IV.

Analytic Coalescence Models

The simple coalescence model does not provide any insights into the dy-

namics of nucleon clustering. It does not predict a numerical value for the coalescence

parameter p0 in Eq. (5.10) or how coalescence parameters depend on system size, cen-

trality or beam energy. Moreover, it does not allow one to extract useful information

of nuclear matter properties. Therefore, there was a clear need for a dynamical basis

for the coalescence model.

These models generally are based on based on the density matrix of the

source (Feynman, 2018; Shuryak and Torres-Rincon, 2020) or the equivalent Wigner

function formalism (Hillery et al., 1984), where the quantum effects are incorporated

inside the wavefunction calculated with and without potential. In this approach, the

coalescence yield is governed by the wavefunction of the state formed by coalescence,

typically approximated by a Gaussian function or Hulthén wavefunction (with Yukawa

potential) (Zhaba, 2017).

This approach allows us to study the coalescence parameter and cluster

yields and to estimate their structure and their underlying interaction (for example ΛN

in hypertriton) from different factors (Nagels et al., 1977; Nagels et al., 1979; Shinmura

et al., 1984; Fujiwara et al., 1996a; Fujiwara et al., 1996b; Nemura et al., 2000).
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Figure 5.4 The invariant cross section of π−, K−, p and d from Si+Al, Si+Cu, and Si+Au

collisions. The solid-line represents the d’s predicted by coalescence model. The

measured d and the instrumental upper limit are represented by the square open

symbol at 6.1 GeV and down arrow symbols (Aoki et al., 1992).
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Wigner’s Function

According to the rules of statistical quantum mechanics, the number of cre-

ated deuterons with momentum�Pd is given by projecting the deuteron density matrix

onto the two-nucleon density matrix ρd in the ųreball at freeze-out:

d3Nd

d�Pd

∝

�
d3�x1d

3�x2d
3�x�1d

3�x�2ρd(�x1,�x2;�x�1,�x�2)

× ρpn(�x1,�x2;�x�1,�x�2) (5.15)

The two-nucleon spatial density matrix ρpn in the ųreball is not known and has to

be approximated. We assume that at freeze-out the nucleons are uncorrelated, i.e.,

ρpn(�x1,�x2;�x�1,�x�2) ≈ ρp(�x1,�x�1)ρn(�x2,�x�2). In order to translate a single particle

density matrix into phase-space density representation, the Wigner transformation is

needed with new relative coordinates�r ≡ (�xi + �x� i)/2 and�R =�xi − �x� i,

fi(�ri,�pi) =

�
d3�Riexp (i�pi·�Ri) ρi(�ri +�Ri/2,�ri −�Ri/2) , (5.16)

where fi(�ri,�pi) is the single-particle Wigner function. This is also applicable to the den-

sity matrix of the deuteron. The Wigner transformation of clusters are usually expressed

within the wavefunction form since we can calculate and impose physical structure on

the wavefunction. We have,

Wd =

�
d3�RΨd

�
�r +

�R

2

�
Ψ
∗
d

�
�r −�R

2

�
exp (−i�p·�R) , (5.17)

where Ψ(�r) is the cluster wavefunction, i.e., deuteron wavefunction or a relative wave-

function of the constituents.

With all of these ingredients, we now can formulate the cluster yields of mass

A in the expression of the overlapping nucleons phase-space functions fi(�ri,�pi) with the

probability of the reaction determined by Wigner transformation of the cluster matrix:

NA = gA

� �
A�

i

d3�rid
3�pifi(�ri,�pi)

�
WA(�r,�p), (5.18)

 



79

where WA(�r,�p) is the so-called Wigner transformation function and gA is the spin-

isospin degeneracy. Typically the relative wavefunction or cluster wavefunction Ψ(�r)A

is usually assumed to be the spherical harmonic-oscillator wavefunction which leads

to the expression of:

WA(�r,�q) = 8A−1exp

�
−

A�

i=1

�
�R2

i

σ2
i

+ σ
2
i�q

2
i

��
, (5.19)

The parameter σi is associated with the root-mean-square (rms) radius of coalesced

nuclei.

Besides this simple Wigner’s transformation, one can also apply the same

idea, adopted from density matrix considerations, with different assumptions as, e.g.,

suggested by S. Mrówczyński which not only assumes a simple Gaussian model but

also uses the more realistic Hulthén wavefunction (well described at low energies, but

does not impact on the ųnal results much). We will discuss this model in more detail

in Ch.IV.

5.2.3 Dynamical Model

To consider dynamical effects for cluster productions, we generally integrate

cluster formation into the event generators, mostly the transport models and/or hy-

drodynamical models.

UrQMD + Box Coalescence

The coalescence model is integrated into UrQMD with the concept of box

coalescence, i.e., the phase-space coordinates (positions and momenta) of all nucle-

ons are extracted at kinetic freeze-out, a criterion is then established to determine if

nucleons are close enough in phase space to form a nucleus. This involves both spatial

and momentum proximity criteria ∆R and ∆P.

The distance between nucleons is evaluated in the center of mass frame of

the nucleons considered for coalescence. This process is repeated iteratively for all

nucleons in the system, ensuring that all possible clusters are identiųed. The ųnal step

involves the spin-isospin projection probability to a pair of these proximity nucleons.

In this study, we will use and discuss about this hybrid approach often and

in more detailed in the following sections.
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PHQMD + MST

In the Quantum Molecular Dynamics (QMD) approach (speciųcally the PHQMD

realization (Aichelin et al., 2020)), nucleons interact through both potentials and colli-

sions. The potential between nucleons is attractive around nuclear ground state den-

sities, and thus, at the end of a heavy-ion reaction, nucleons tend to stay together

and form clusters. To identify these clusters, a Minimum Spanning Tree (MST) proce-

dure (Aichelin, 1991) is applied, described as follows:

In the MST algorithm, only coordinate space information is used to identify

clusters. A nucleon is considered part of a cluster if its spatial distance to any other

nucleon is less than r0 = 4 fm in the local rest frame of the cluster. The distance

is calculated by a Lorentz transformation from the computational frame to the local

rest frame, and the cut-off distance is chosen according to the range of the potential in

PHQMD. Nucleons more distant than the cut-off distance are assumed not to be bound

by the attractive nuclear interaction of that speciųc cluster.

The main advantage of the MST method is that it allows the identiųcation

of clusters at any time during the system’s evolution. While the coalescence mech-

anism combines nucleons into deuterons at the kinetic freeze-out hypersurface, the

MST method identiųes clusters dynamically as the clusters are created by potential

interactions at different stages of the evolution.

SMASH + Nucleon/Pion Catalyses

While coalescence and thermal models offer valuable frameworks for un-

derstanding cluster formation, recent developments suggest a more nuanced picture.

Here, we discuss the SMASH (Simulating Many Accelerated Strongly-interacting Hadrons)

transport model and its potential to capture the complexity of deuteron production.

Similar to the URQMD model, SMASH (Weil et al., 2016) simulates heavy-ion

collisions by accounting for various interaction types based on the mean-ųeld BUU

numerical code. However, SMASH also includes multiple reactions like three-body col-

lisions (Staudenmaier et al., 2021). It also directly calculates or ųts inelastic cross sec-

tions, incorporating the detailed balance relationship between deuteron creation and

destruction reactions. Recent advancements in SMASH include a stochastic collision

implementation coupled with a hydrodynamic afterburner, allowing for the calculation

of these multiple reactions.

As highlighted in Ref. (Oliinychenko, 2021; Liu et al., 2020), observed deuteron
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Figure 5.5 The Comparison of the tp/d2 ratio from two cluster formation mechanisms

of thermal (dashed line) and simple coalescence model (solid line) with experimental

data (symbols).
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production might not be solely explained by either coalescence or thermal models.

The thermal model suggests cluster formation directly at the chemical freeze-out stage,

alongside resonances and decays. In contrast, the coalescence model proposes clus-

ter formation at the later kinetic freeze-out, with constituent nucleons inŴuenced by

resonances and decays only at ųnal state.

Figure 5.5 illustrates how experimental data for the tp/d2 ratio falls some-

where between the predictions of these two models. This suggests that cluster forma-

tion likely involves a combination of mechanisms working together.

The formation and disintegration of deuterons is catalyzed by reactions in-

volving pions or nucleons, such as:

πd ↔ πnp,

Nd ↔ Nnp,

Nd ↔ Nnp,

πd ↔ NN .

Additionally, rate reactions for these particle-deuteron interactions are in-

cluded in the model. Studies suggest that Nd↔ Npn dominates at lower beam energies

(4 − 5 GeV), while πd ↔ πpn becomes more signiųcant at higher energies (7.7 GeV).

SMASH’s nucleon/pion catalysis model suggests that deuterons, often de-

scribed as “snowballs in hell” within the thermal model analogy, do not simply survive

from the chemical freeze-out (Tchem ≈ 150 MeV) to the kinetic freeze-out. Instead, they

are likely continuously disintegrated and re-created at similar rates, maintaining a state

of relative equilibrium with the surrounding nucleons (Oliinychenko et al., 2021).

5.2.4 Multifragmentation

The multifragmentation model (Bondorf et al., 1995) describes the breakup

of a highly excited nucleus into smaller fragments, i.e., (light)(hyper)nuclei, based on

their mass A and charge Z. It can be viewed as a liquid-gas phase transition analogy

applied to excited nuclear matter (Barz et al., 1986).

The excitation energy involved in the heavy-ion collisions is typically rang-

ing between �
∗ � 1 − 10 MeV/nucleon. At low excitation energies �

∗ ≈ 1 MeV/

nucleon, the nuclear system can be fully described with the liquid-drop model as the

baryon density is then close to the saturation density ρ0 ≈ 0.15 fm3. When the system
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Figure 5.6 Different statistical ensembles used for describing the breakup of a nuclear

system with partition f (Bondorf et al., 1995; Fai and Randrup, 1983; Gross, 1984).

reaches higher excitation energies, the baryon density becomes smaller ρ < ρ0, the

nuclear system can be excited and realized as a droplet as described by the liquid-

drop model (if ρ ρ0/2). At this stage, attractive nuclear force dominates and favoring

clusterization, leading to so-called pre-fragments. Finally, when the excitation energy

is high enough �
∗ � 5 − 8 MeV/nucleon, i.e., higher than most total binding energies

of (light) nuclei, the compound (excited) nuclei begin to loosen as long-range Coulomb

repulsion becomes important. In the excited nuclear system, the primary fragments

cannot hold together anymore and evaporation-like decay mechanisms occur, result-

ing in the explosive break-up, This process could occur multiple times reducing the

excitation energies of the fragments and emitting multiple fragments, a process known

as multifragmentation.

Considering a large ensemble of ųnal fragments and assuming local equi-

librium with constraints from nuclear conųgurations and Coulomb energies, we can

describe multifragmentation statistically. Figure 5.6 illustrates different statistical en-

sembles used for describing the breakup of the nuclear system, all conserving total

mass (A0), charge (Z0), and energy (E0).
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The total energy of a fragment partition (f) can be expressed as:

Ef(T, V) = Etr
f (T, V) +

�

(A,Z)

E(A,Z)(T, V) + EC
0(V) (5.20)

The ųrst term (Etr
f ) describes the translational and rotational motion of fragments. The

second term accounts for the internal excitation energy and clusterization energy of

individual fragments (A, Z). The third term (EC
0) represents the total Coulomb energy.

The ųnal fragment multiplicities can be determined by considering the system

at thermal equilibrium, where the number of microscopic states leading to a speciųc

partition is governed by its entropy (Sf).

The multifragmentation process can be visualized in three stages: (I) The ini-

tial non-equilibrium stage, this stage leads to the production of an intermediate highly-

excited nuclear system. It is important to note that there is no clear or uniųed model

to describe the initial non-equilibrium stage. Additionally, the ųnal multiplicity of the

fragment nuclei is highly sensitive to the initial conditions. (II) Fragment formation and

breakup: Breakup of the system into separate fragments through a complex interplay

of nuclear and Coulomb forces. (III) Coulomb Propagation and de-excitation: Hot frag-

ments interact via Coulomb repulsion and undergo de-excitation through various mech-

anisms.

Since the initial non-equilibrium stage lacks a complete theoretical descrip-

tion, a hybrid modeling approach is often employed. This combines dynamical models

(e.g., transport models like UrQMD) to describe the initial stages (system size, partici-

pants, energy density) with statistical multifragmentation models to describe fragment

formation at later stages when the system approaches equilibrium. The implementa-

tion of such hybrid models will be discussed in Chapter VIII.

 



CHAPTER VI

CORRECTING BA COALESCENCE FACTOR

Our previous focuses have been on understanding the mechanisms and out-

comes of cluster formation, particularly emphasizing the ųreball geometry and the

space-time picture. We found that the extracted (anti)nucleon source geometries, by

ųtting the experimental data on B2 and B2 coalescence parameters, reveals a local

maximum around
√

sNN = 27 GeV. This source volume contradicts the conventional

belief that the source volume grows with charged particle yields.

It is well-known and also mentioned before in Ch. V that the yield ratio of

deuterons to nucleon square inversely scales with the volume d/p2 ∝ 1/V. In the

thermal model, this volume corresponds to the volume of the thermal source, while

the coalescence model suggests it corresponds to the spatial source where the clusters

coalesce. Quantitatively, the relation between the density of nucleons Np or Nn and

the ųnal cluster yield NA based on the coalescence model is,

EA
d3NA

dp3
A

= BA

	
Ep

d3Np

dp3
p


Z �
Ep

d3Nn

dp3
n

�N

. (6.1)

Here, A = N + Z is the mass number of the produced nuclei. The coalescence

parameter BA is proportional to (1/V)A−1. As mentioned above, the ųnal values and

the interpretation of the volume are model dependent (Butler and Pearson, 1963;

Schwarzschild and Zupancic, 1963; Gutbrod et al., 1976; Bond et al., 1977; Sato and

Yazaki, 1981; Gyulassy et al., 1983; Csernai and Kapusta, 1986; Mrowczynski, 1990). In

the coalescence model, this volume is akin to the region of homogeneity interpreted by

Hanbury-Brown-Twiss (HBT) analyses (Kapusta, 1980). This prompts further exploration

to ascertain the compatibility between the coalescence volume and the HBT volume

through the BA values.

The comparison between experimental data of the coalescence factor BA

and predictions by HBT is illustrated in Figure 6.1. The HBT data (represented

by the black dash-dotted line) aligns well with experimental data at high energies

Ebeam > 10A GeV (Adamczyk et al., 2015). However, discrepancies emerge at lower
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Figure 6.1 Coalescence parameter BA measured by experiments (Braun-Munzinger and

Dönigus, 2019) and predicted by HBT (Adamczyk et al., 2015) as a function of center-

of-mass energy
√

sNN [GeV].

energies Ebeam ≤ 10A GeV, raising questions as experimental measurements exhibit a

notable spike in B2 values, whereas the HBT prediction decreases.

In this chapter, our objective is to investigate and demonstrate that the ob-

served discrepancy can be effectively addressed and resolved through a proper correc-

tion of the measured data. By implementing these corrections and testing with UrQMD

simulations, we aim to not only solve the discrepancies at low collision energies but

also enable the prediction of B3 for the entire energy range under consideration.

6.1 Problems with BA

We begin by addressing the issues with the measurements of B2 as outlined

in Eq. (6.1): First, the equation requires measurement of the neutron density, yet in

practice, the estimated neutrons are obtained by assuming an equal number of neu-
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trons and protons. Second, the measured protons typically represent the ųnal-stage

protons, which is justiųable only at high energies where cluster yields are signiųcantly

smaller than the square of ųnal-stage protons.

At lower energies, however, the protons and neutrons in Eq. (6.1) are meant

to be the primordial ones before coalescence, not the ųnal-stage ones. At these en-

ergies, not only is there an enhancement in cluster production, but other clusters are

also produced at mid-rapidity, drawing from the primordial protons and neutrons. This

leads to a discrepancy of almost 40% compared to the ųnal-stage nucleon contents,

rendering the assumption of ųnal-stage protons and neutrons unjustiųed. Additionally,

the unequal distribution of protons to neutrons due to isospin equilibration further in-

validates the assumption of equal nucleon distribution at low energies, as discussed in

Ch. VII. Below we will investigate how to obtain the proper BA for the experiments and

present how do these effects affect the ųnal results from the measurements.

6.2 Reconstructing Primordial Protons and Neutrons

6.2.1 Rapidity Distribution

We begin by illustrating the distinction between the ųnal state protons typi-

cally measured by the experiments and the primordial protons before coalescence ob-

tained from the simulations. To quantify these effects, we simulate the Au+Au 0−10%

central collisions at Ebeam = 1.23A GeV using the UrQMD transport model, reŴecting

conditions attainable in current HADES experiments. As discussed above, at such low

energy, the fraction of (light) clusters relative to the ųnal state nucleons is substantial.

Figure 6.2 clearly illustrates the difference between the simulated primordial

protons Nprim
p (red circles) and the ųnal state protons Nųnal

p (red dashed line) in rapidity

yields, with the ųnal state protons accounting for only approximately 60% of the overall

primordial protons before coalescence. This discrepancy arises because a portion of

primordial protons is bound into light clusters. Based on this idea, we can estimate the

primordial protons reconstructed from the measured ųnal state protons by

dNprim(reco)
p

dy
=

dNųnal
p

dy
+

clusters�

c

Zc

dNųnal
c

dy
. (6.2)

Here, the reconstructed primordial proton distribution dNprim(reco)
p /dy is estimated by
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Figure 6.2 Rapidity distribution comparison of protons and light nuclei in 0 − 10%

Au+Au collisions at Ebeam = 1.23A GeV. Simulated primordial protons (red circles),

simulated ųnal state protons (red dashed lines), and reconstructed primordial protons

(red solid lines) are contrasted alongside the rapidity distributions of deuterons (green

diamonds), tritons (cyan crosses), and 3He nuclei (yellow hexagons).

adding all the ųnal state proton contents, comprising the free ųnal state protons

dNųnal
p /dy, along with the clusters dNųnal

c /dy, where Zc represents the proton num-

ber of the clusters c. The estimated reconstructed primordial proton distribution is

depicted in Figure 6.2 as a red solid line, illustrating its high accuracy in describing the

primordial proton distribution.

Similarly, a comparable approach as in Eq. (6.2) can be employed to estimate

the primordial neutron numbers, given by

dNprim(reco)
n

dy
=

dNųnal
n

dy
+

clusters�

c

Nc

dNųnal
c

dy
, (6.3)
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where Nc is the neutron number of cluster c. However, unlike protons, we lack ex-

perimental data on both the primordial and the ųnal state neutron distributions. In

order to estimate the ųnal state neutrons, we consider the isospin conųguration and

the isospin exchange of the system. Initially the isospin contents are from two gold

nuclei 2NAu/2ZAu = 1.49. After the collision, isospin begins to exchange and equili-

brate toward the ųnal stage of the collision. The charged pions are emitted from the

resonance decays carrying the isospin. The isospin exchange, transforming a primordial

proton to a ųnal stage neutron, produces a positively charged pion π
+. On the other

hand, the production of a negatively charged pion π
− represents the isospin exchange

of a primordial neutron transformed into a ųnal state proton. This implies that the

integrated number of primordial protons and neutrons at given ųxed participants Apart

can be written as

Nprim(reco)
p =

2ZAu

2AAu

Apart + (Nπ− − Nπ+), (6.4)

Nprim(reco)
n =

2NAu

2AAu

Apart − (Nπ− − Nπ+) (6.5)

The ųrst terms from both equations account for the isospin fraction from the gold nuclei

to the participant numbers, i.e., estimated Npart
p and Npart

n . The second term subtracts

and adds the primordial protons and neutrons from the ųnal stage charged pions.

The participant numbers Apart cannot be measured directly. However, we

can infer the number via Apart = Npart
p + Npart

n . Assuming the same isospin content

ratio for the participants and the initial two gold nuclei which are well justify within the

central collisions, we have Npart
n �2NAu

2ZAu
Npart
p

*. The number of participating protons can

be calculated and measured via Npart
p = Nprim

p − (Nπ− − Nπ+). So, The participant

numbers can be expressed in all measurable observables as

Apart =
�
Nprim
p − ∆π

�
×

�
2NAu

2ZAu

�
, (6.6)

*The UrQMD simulations give us the "Npart
n # = 2NAu − "Nspec

n # = 143.61 and "Npart
n # =

2NAu − "Nspec
n # = 213.99 which is Npart

n � 2NAu

2ZAu
Npart
p = 214.51.
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with ∆π≡(Nπ− − Nπ+). Inserting this into Eq. (6.4) and Eq. (6.5), we ųnally obtain,

Nprim(reco)
n = Nprim(reco)

p

�
Nprim
p − ∆π

� �
2NAu

2ZAu
+ 1

�
2NAu

2AAu
− ∆π

�
Nprim
p − ∆π

� �
2NAu

2ZAu
+ 1

�
2NAu

2AAu
+ ∆π

� �� �
≡∆prim

iso

. (6.7)

The factor ∆
primiso denotes the isospin ratio of the primordial state estimated from

the integrated numbers in 4π. Now the reconstructed primordial neutron distribution

Eq. (6.3) can now be expressed via the measured rapidity distributions of protons and

clusters and the integrated number of charged pions∆π in 4π. The primordial neutron

rapidity distribution is then given by,

dNprim(reco)
n

dy
=

	
dNųnal

p

dy
+

clusters�

c

Zc

dNųnal
c

dy



∆

prim
iso . (6.8)

Finally, the reconstructed ųnal state neutron rapidity distribution reads

dNųnal(reco)
n

dy
=

	
dNųnal

p

dy
+

clusters�

c

Zc

dNųnal
c

dy



∆

prim
iso −

	
clusters�

c

Nc

dNųnal
c

dy



. (6.9)

The comparison of the UrQMD simulated neutron rapidity distributions with

our reconstructions is depicted in Figure 6.3. We observe that the reconstructed neutron

distributions from Eq. (6.8) (blue dashed line) and Eq. (6.9) (blue dotted line) match the

results from simulations (blue squares), validating our proposed reconstruction method.

Furthermore, we can observe that the neutron densities exceed the proton densities

around �1.3 − 1.5 for both primordial and ųnal states.

6.2.2 pT Distribution

Proceeding from our successful testing of the reconstruction methods for es-

timating the differential rapidity distributions of primordial and ųnal state neutrons and

protons, we can now extend our analysis to the transverse momentum pT distribution

which is crucial for determining the coalescence parameter BA. We follow the same pro-

cedure as for the rapidity distribution, but additionally scale the transverse momentum
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Figure 6.3 Rapidity distribution of simulated (symbols) and reconstructed (lines) proton

and neutron at central Au+Au collisions Ebeam = 1.23A GeV. (Left panel) The com-

parison for the simulated and reconstructed primordial proton (red) and neutron (blue)

rapidity based on Eq. (6.2) and Eq. (6.8). (Right panel) The comparison for the simulated

and reconstructed ųnal neutron rapidity based on Eq. (6.9).

of the clusters by their respective mass number, pT/A. The reconstructed primordial

proton and neutron transverse momentum distribution reads

1

pT

dNprim(reco)
p

dpT

=
1

pT

dNųnal
p

dpT

+
clusters�

c

Zc

1

pT/A

dNųnal
c

dpT/A
, (6.10)

1

pT

dNprim(reco)
n

dpT

=
1

pT

dNųnal
n

dpT

+
clusters�

c

Nc

1

pT/A

dNųnal
c

dpT/A
. (6.11)

Figure 6.4 illustrates the invariant transverse momentum distributions of light

clusters from our simulations, including deuterons (d: green diamonds), tritons (t: blue

crosses), and 3He (yellow hexagons), represented by dotted lines. Additionally, com-

parisons are made between simulated primordial neutrons (blue squares), protons (red

circles), and the reconstructed primordial neutrons (dash-dotted lines) and protons (red

solid line) at 0 − 10% central Au+Au collisions Ebeam = 1.23A GeV mid-rapidity, all

at the same transverse momentum pT/A. The calculations accurately depict both the

reconstructed primordial protons and neutrons compared to their simulated counter-

parts. Additionally, the neutron density is higher than the proton density across the
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Figure 6.4 Invariant pT spectra of d (green diamonds with dotted line), t (cyan pluses

with dotted line), 3He (yellow hexagons with dotted line), the primordial proton (full

red circles) and neutron (full blue squares) from the simulations. While, the recon-

structed primordial protons and neutrons are shown with solid red and solid blue lines

respectively. The calculations are done at mid-rapidity in central Au+Au reactions at

Ebeam = 1.23A GeV

entire transverse momentum range, consistent with the initial isospin asymmetry of the

gold nuclei. This results in a higher abundance of tritons compared to 3He nuclei in the

coalescence spectra as expected.

We now discuss and clarify the use of the rapidity and pT independence of

∆
prim
iso from Eq. (6.7) for reconstructing primordial protons and neutrons with the 4π-

integrated ∆π. The pion rapidity and pT distributions differ from those of participating

nucleons. For instance, pion distributions are typically broader in rapidity due to their

lower mass. Moreover, in pT spectra, pions tend to have lower pT values compared to

nucleons. Consequently, applying a pT-dependent correction would lead to increas-

ingly severe corrections as pT increases. Therefore, ∆prim
iso cannot be evaluated differ-
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entially in rapidity and scaled transverse momentum pT since it is also experimentally

challenging to associate the rapidity and pT bin of emitted pions with the correspond-

ing primordial nucleons from their respective spectra. Figure 6.5 supports our approach

and justiųes the use of a constant ∆prim
iso by demonstrating that ∆prim

iso remains nearly

constant across rapidity (left panel) and transverse momentum distributions pT/A (right

panel).

Figure 6.5 (Left panel) The Rapidity distributions of the neutron/proton ratio (full black

line), and the integrated ∆
prim
iso (dashed line). (Right panel) The transverse momentum

distributions of the primordial neutron/proton ratio (full black line), and the integrated

∆
prim
iso (dashed line).Both from UrQMD for 0− 10% central Au+Au reactions at Ebeam =

1.23A GeV

6.2.3 Estimating B2 and B3

We ųnally can test the impact of the invariant distribution of the (recon-

structed) primordial protons and neutrons as a function of transverse momentum per

nucleon pT/A on the coalescence parameter BA (Eq. (6.1)),

BA =

�
1

2π(pT/A)

d2NA

dyd(pT/A)

�
�
1

2πpT

d2Np

dyd(pT)

�Z

·

�
1

2πpT

d2Nn

dyd(pT)

�N

.

(6.12)

Figure 6.6 illustrates the dependence of the coalescence parameters B2 (left

panel) and B3 (right panel) on the scaled transverse momentum pT/A.
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Figure 6.6 The scaled transverse momentum pT/A-dependence of the coalescence pa-

rameter B2 (left panel) and B3 (right panel) calculated using the ųnal state nucleons and

reconstructed primordial nucleons from UrQMD for 0 − 10% central Au+Au reactions

at Ebeam = 1.23A GeV

First, considering the impact of using ųnal state neutrons for calculating the

coalescence parameter, the original B2 obtained by the ųnal state proton squared ratio

d/p2(ųnal) (red dashed line) already overestimates B2 calculated with the product of

ųnal state protons and neutrons d/pn (ųnal) (blue dotted line) by a factor ≈1.5 across

the entire range of pT/A. This pT-independent scaling is attributed to the isospin asym-

metry from the initial stage, aligning with the expected values from the initial isospin of

gold nuclei NAu/ZAu = 1.49 and the primordial isospin factor ∆prim
iso = 1.32.

Second, upon changing from ųnal state to primordial nucleons, B2 calculated

with the reconstructed primordial protons d/p2(prim) (red solid line) noticeably sup-

presses the original B2∝d/p2(ųnal) (red dashed line) across the entire pT spectrum,

with a maximum suppression factor of approximately 3 at pT/A�0, gradually decreas-

ing to unity for pT/A>1.0. This arises because clusters are more likely to coalesce at

lower pT/A than at higher pT/A (see Figure 6.4), resulting in similar numbers of ųnal and

primordial protons and neutrons.

With the complete correction of the coalescence parameter calculated using

the product of primordial protons and neutrons d/pn (prim) (blue dash-dotted line), it

is evident that this correction further suppresses B2 calculated using primordial proton

square (red solid line) by a factor of 1.2 − 1.5, and around 4 times at pT/A when

compared to the original B2 (red dashed line).
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Similarly, in Figure 6.6 (right panel), the correction impacts on the original B3

of tritons and 3He calculated using the ųnal state proton cubic square, i.e., t/p3 (blue

dashed line) and 3He (green dotted line), are shown. The total corrections of B3 tritons

using primordial proton and neutrons squared (blue solid line) suppress their original B3
(blue dashed line) by a factor of 7, while the corrected B3 of 3He using the primordial

neutron and proton squared (green dash-dotted line) is suppressed by approximately

5 times its original B3 value (green dotted line). Interestingly, the original values of B3

for tritons (blue dashed line) and 3He (green dotted line) are initially separated by an

isospin factor of 1.2 − 1.5. However, after the correction, both become identical for

pT/A ≤ 1.0.
Finally, we arrive at our main objective of investigating the energy de-

pendence of the coalescence parameter BA and its comparison with experimental

data (Wang et al., 1995; Ambrosini et al., 1998; Armstrong et al., 1999; Ahle et al.,

1999; Barrette et al., 2000; Armstrong et al., 2000; Afanasiev et al., 2000; Bearden et al.,

2002; Anticic et al., 2004; Anticic et al., 2016; Botvina et al., 2021). The representing

coalescence parameter BA is chosen at pT/A = 0 [GeV/c] for each beam energy as

we follow the HADES approach. Figure 6.7 shows our analyses of B2 (left panel) and

B3 (right panel) from the original calculations and the corrected version comparing with

the experimental data depicted by the symbols and the result from the HBT (Adamczyk

et al., 2015) shown as a black dash-dotted line.

In the left panel, the original B2 calculated by the ųnal state proton square

(red dashed line) increases after Ebeam ≤ 10A GeV, consistent with FOPI and HADES

experiments (black symbols). However, the corrected B2 from our reconstructed pri-

mordial protons and neutrons (red solid line) aligns with the prediction from the HBT

volume, decreasing with the energy for Ebeam ≤ 10A GeV. The values of B2 are summa-

rized in Table 6.1

The same trend is evident in the calculation of B3 in the right panel. The orig-

inal B3 values for both triton and 3He (blue dashed line and green dotted line) obtained

from the ųnal state cubed proton number increase at lower beam energies, where the

discrepancy in their isospin asymmetry by a factor of 1.2 − 1.5 becomes more no-

ticeable. This discrepancy arises because at lower energies, the system struggles to

equilibrate the isospin due to time constraints and limited pion production for isospin

exchange. In contrast, the corrected versions of B3 for triton and 3He exhibit almost

identical behavior, decreasing with energy in qualitative agreement with the HBT predic-
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Table 6.1 The B2 values calculated ųnal state protons and both primordial protons and

neutrons at pT/A = 0.0 GeV at midrapidity |y| ≤ 0.5. The calculatation is extracted

from 0 − 10% central Au+Au collisions at kinetic beam energies from Ebeam = 0.3A
to 40A GeV.

Ebeam [A GeV]
B2[×10−4GeV2

/c3]
d/p2

ųnal d/pprimnprim

0.3 14.44 0.70

0.5 15.31 1.10

1.23 14.77 3.52

1.93 13.44 5.00

11.45 9.34 6.88

20 8.39 6.71

30 7.72 6.46

40 7.22 6.21

Table 6.2 The B3 values calculated ųnal state protons and both primordial protons and

neutrons at pT/A = 0.0 GeV at midrapidity |y| ≤ 0.5. The calculatation is extracted

from 0 − 10% central Au+Au collisions at kinetic beam energies from Ebeam = 0.3A
to 40A GeV.

Ebeam [A GeV]
Bt3[×10−7GeV4/c6] B

3He
3 [×10−7GeV4

/c6]
t/p3

ųnal t/pprimn
2
prim

3He/p3
ųnal

3He/p2
primnprim

0.3 82.75 0.73 61.17 0.80

0.5 72.93 1.16 50.16 1.16

1.23 36.00 3.64 26.24 3.50

1.93 23.35 4.72 18.25 4.63

11.45 7.94 4.78 7.29 4.83

20 6.22 4.29 5.79 4.22

30 5.25 3.91 4.83 3.81

40 4.58 3.56 4.18 3.41
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Figure 6.7 The ųgure caption describes the beam energy dependence of B2 extracted

at pT/A = 0 GeV in mid-rapidity |y| ≤ 0.5 for 0 − 10% central Au+Au collisions.

Left panel: The dashed red line illustrates the original calculation of B2 using the ųnal

state proton square, while the solid red line shows the corrected B2 calculated by the

product of reconstructed primordial protons and neutrons. Right panel: the original B3
of tritons and 3He, calculated from the ųnal state proton cubic square, are depicted by

the blue dashed line and green dotted line while the corrected B3 of tritons and 3He,

using our reconstructed primordial protons and neutrons, are shown as the blue solid

line and the green dash-dotted line, respectively. Experimental data (Wang et al., 1995;

Ambrosini et al., 1998; Armstrong et al., 1999; Ahle et al., 1999; Barrette et al., 2000;

Armstrong et al., 2000; Afanasiev et al., 2000; Bearden et al., 2002; Anticic et al., 2004;

Anticic et al., 2016; Botvina et al., 2021) are denoted by symbols, while the dash-dotted

black line represents the volume extracted from HBT results from STAR (Adamczyk et al.,

2015).

tion. In this case, the splitting in isospin is already canceled out within each individual

B3 value, as mentioned above. The values of B3 are summarized in Table 6.2.

In conclusion, we have investigated the discrepancy of the energy depen-

dence of the coalescence parameters BA between direct data from experiments and

the prediction from HBT. Although the interpretation of BA ∝ (1/V)
A−1

is well-known

and widely accepted, problems occur in its application. In the experiment, the mea-

sured BA grows with decreasing energy. At ųrst glance, this makes sense since the

volume should also drop with energy if the cluster productions are not zero. However,

the measurements of BA not only estimate the number of neutrons from protons but
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also use the ųnal state protons in the calculations. However, we show that the coa-

lescence parameter BA, in fact, requires the primordial protons and neutrons as they

are the main ingredients for the cluster before coalescence, i.e., the BA is based on

the probability with which the nucleons are drawn from the primordial state, not the

ųnal state. Thus, we obtain a method to acquire/reconstruct the primordial protons

and neutrons from the ųnal state observables and a corrected BA. As expected, our

calculation of the energy dependence of both B2 and B3 explains this discrepancy as

supported by the HBT predictions.

 



CHAPTER VII

INVESTIGATING CLUSTER PRODUCTION MECHANISMS

7.1 Thermal vs Coalescence

(Hyper)(Light)Nuclei have been highlighted as crucial tools for investigating

the medium properties and serving as a basis for studying the EoS around neutron star

density regimes. In the Ch. IV, we have explored and discussed the roles of the source

geometry and the cluster formations in the context of space-time exploration. We

further emphasized on the different space-time pictures of various formation mecha-

nisms in Ch. V especially two common approaches, i.e., the thermal model and the

coalescence model. Despite the fact that their underlying physics assumptions differ

signiųcantly, there is no clear evidence to determine which mechanisms are really re-

sponsible for the cluster formation as both models result in similar estimated particle

yields across a broad spectrum of collision energies.

The thermal model describes the particle production through the thermo-

dynamic properties of the ųreball, i.e., temperature and chemical potential, and typ-

ically within the grand canonical ensemble. It presumes that particle yields are ųxed

after the medium is fully thermalized at chemical freeze-out, thus implying that all

particles form at a ųxed temperature Tchem 70 MeV and corresponding chemical po-

tential µB,chem(T) (Andronic et al., 2018). This raises questions about the survival of

light clusters like the deuteron, with a binding energy of just a few MeV, in such an

environment and contrasts with the deuteron bottleneck concept in Big Bang Nucle-

osynthesis (Pospelov and Pradler, 2010), where cluster formation requires cooling to

match deuteron binding energies. Despite these challenges, the thermal model re-

mains widely used to estimate particle yields (Vovchenko et al., 2020), even as it is

difųcult to incorporate dependencies like wavefunctions which are crucial at lower en-

ergies where the internal structure of clusters matters (Juric et al., 1973; Abelev et al.,

2010; Adam et al., 2016; Dönigus, 2013; Andronic et al., 2018; Blaschke et al., 2020).

On the other hand, although the coalescence model is also based on sta-

tistical mechanics, it is closer in spirit to the microcanonical ensemble, allowing for

the study of medium dynamics. Here, coalescence occurs at the kinetic freeze-out;
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if two or more free nucleons, after their ųnal collisions and decays, are close enough

in phase-space, they will form a cluster. Typically, the temperature and volume of

the source size are smaller than in the thermal model making it possible for the clus-

ters to survive. In contrast to the thermal model’s limitations, the coalescence model

can accommodate various other factors and dynamical considerations. Distinguishing

between thermal and coalescence methods for cluster production becomes crucial.

In this chapter, we use these distinctions to investigate which mechanism is

realized in nature for cluster formation in heavy-ion collisions. In the thermal model,

occurring at chemical freeze-out, all hadrons, including clusters and resonances, are

generated at the same time before undergoing any decay processes. Consequently,

the ųnal yields of clusters may not experience any Ŵuctuations due to the stochastic

nature of the decays or uncorrelated. Conversely, the coalescence model operates at

kinetic freeze-out, occurring after all resonances have decayed, potentially allowing for

the effects of event-by-event Ŵuctuations from resonance decays to inŴuence the ųnal

yields.

In our study, we speciųcally consider isospin Ŵuctuations. Although the ther-

mal model adheres to conservation laws, it typically employs grand canonical ensem-

bles* (Cleymans and Satz, 1993; Becattini et al., 1998; Florkowski et al., 2002; Cleymans

et al., 2006; Andronic et al., 2011; Petrán et al., 2013; Vovchenko et al., 2016; An-

dronic et al., 2019). This implies that while the thermal model can indeed capture

isospin Ŵuctuations, it can only provide averaged values derived from these Ŵuctua-

tions (Vovchenko and Stoecker, 2019). Therefore, we will examine if there is any corre-

lation between isospin Ŵuctuations and light cluster yields in the coalescence approach,

knowing that the thermal model will always yield uncorrelated results.

7.2 Isospin triggering

Due to isospin conservation, the number (density) of nucleons is correlated

with the emitted charged pions at the kinetic freeze-out through ∆ decays (Reichert

et al., 2019; Reichert et al., 2021). While other charged particles, e.g. kaons, also carry

isospin, the freeze-out nucleons and charged pions are still the dominant species at all

*Even for the canonical ensemble (Vovchenko et al., 2018a), the total baryon number and isospin

are also ųxed (for a b = 0 collision they are identical to the initial state). The light nuclei, e.g., deuterons

with isospin zero, are therefore not correlated with the pion isospin Ŵuctuations. The main driver of pion

isospin Ŵuctuations are resonance decays after the ųxing of the deuteron (and other cluster) numbers
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energies. The correlation arises from the isospin content exchanges via,

ppart → nfr + π
+

npart → pfr + π
−,

where ppart and npart represent participating protons and nucleons, respectively, while

pfr and nfr denote protons and nucleons at kinetic freeze-out. It’s important to note

that we assume a ųxed volume where the participants Apart = NAu + ZAu and the

isospin ratio Npart/Zpart = NAu/ZAu do not Ŵuctuate to demonstrate a clear isospin

Ŵuctuation effect (Kittiratpattana et al., 2022). With this assumption, we can estimate

the number of light clusters using coalescence models.

To illustrate our argument, consider an initial scenario with head on Au+Au

collisions with ppart = 2 × ZAu = 2 × 79 = 158 participating protons. If we

trigger on an extreme event with 158 emitted π
+ and zero π

−, we would have a pure

nfr = 158 medium at kinetic freeze-out. According to the coalescence model, the

probability of forming other light nuclei should vanish in this scenario. Conversely, if

we trigger on an event with pure π
− and pfr, there should be no light nuclei present.

Therefore, we can deduce that the yields of light nuclei can be expressed in terms of

the relative difference in charged pion yields ∆Yπ≡(Yπ−−Yπ+) which should exhibit

a distinct maximum.

In summary, the presence of a local maximum in the deuteron yield at a

ųxed (or tightly constrained) Apart as a function of ∆Yπ serves as a distinguishing factor

between thermal deuteron production and the coalescence approach. Additionally,

we will also study higher mass clusters to validate this scenario.

7.2.1 Simple estimates

The simple coalescence model states that,

d = B̃2 · nfr · pfr , (7.1)

t = B̃3·n
2
fr · pfr , (7.2)

3He = B̃3·nfr · p
2
fr (7.3)

From the previous discussion, the total number of neutrons at kinetic freeze-out, de-

noted as nfr, is determined by the sum of initial neutrons from the nuclei, 2NAu, added
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to the number of π− responsible for newly produced neutrons, and then subtracted

by the number of π+ responsible for converting initial participant neutrons into pro-

tons at kinetic freeze-out. Similarly, the total number of protons at kinetic freeze-out,

denoted as pfr, can be expressed similarly. We write nfr and pfr in terms of the relative

difference in charged pions ∆Yπ ,

nfr = 2NAu − ∆Yπ , (7.4)

pfr = 2ZAu + ∆Yπ . (7.5)

Then, we can estimate the yields of light clusters based on the coalescence model,

which is expressed as:

d = B̃2 · (2NAu − ∆Yπ) · (2ZAu + ∆Yπ) (7.6)

t = B̃3 · (2NAu − ∆Yπ)
2 · (2ZAu + ∆Yπ) (7.7)

3He = B̃3 · (2NAu − ∆Yπ) · (2ZAu + ∆Yπ)
2 , (7.8)

where B̃A is a coalescence factor from (Kittiratpattana et al., 2022) which has been

discussed already in Ch. VI.

The results from Eq. (7.6)-(7.8) are shown in Fig. 7.1. The estimated yields

of deuterons (d) are represented by the solid pink line, tritons (t) by the blue dashed

line, and 3-Helium (3He) by the orange dotted line. As anticipated, all three show a

district maximum with respect to the ∆Yπ triggering. The local maximum of deuterons

occurs at ∆Yπ = 39. This arises from the fact that deuterons, consisting of one

proton and one neutron, will have the highest probability to form when the medium

is dominated by an equal number of protons and neutrons at kinetic freeze-out, i.e.,

∆Yπ = NAu − ZAu = 39.

For the tritons and 3He, their respective local maxima at ∆Yπ = 1
3
(2NAu −

4ZAu) = −80
3

for tritons and ∆Yπ = 1
3
(4NAu − 2ZAu) = 314

3
. Additionally,

at ∆Yπ = 39, where the proton and neutron content in the medium are evenly

distributed coupled with the symmetry between tritons and 3He, we expect their yields

to be equal.
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Figure 7.1 The theoretical estimation of the deuteron d (pink full line), triton t (blue

dashed line), and 3He (orange dotted line) production according to the Eq. (7.6)- (7.8)

for central Au+Au reactions as a function of ∆Yπ .

7.3 Qualitative Estimates

For the simpliųed theoretical model estimates, we assumed that the number

of participants as well as their isospin N/Z ratio do not Ŵuctuate, i.e., a ųxed volume

and N/Z = NAu/ZAu for the estimation of the deuteron (and higher mass cluster) yields.

However, this is not the case for a realistic situation. Thus, in this section, we will test

our toy model with a detailed microscopic simulation of the UrQMD model which does

not have such assumptions (even at the most central collisions). The results show

nearly the same behavior as our simpliųed toy model.

In UrQMD model (Bass et al., 1998; Bleicher et al., 1999; Bleicher and

Bratkovskaya, 2022) version v3.5, light clusters are produced by phase space coales-

cence from nucleons at kinetic freeze-out (see also (Sombun et al., 2019; Hillmann

et al., 2022; Kireyeu et al., 2022) for details).
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We focus on central Au+Au collisions with a center-of-mass energy range of√
sNN = 3 − 8 GeV, optimal for testing our concept, as pions and participating

nucleons are strongly correlated, with their numbers being nearly equal or at least in

the same order of magnitude. Moreover, at this energy range, both pions and nucleons

dominate the medium, and when the isospin is (or is trying to become) equilibrated,

the effects of isospin Ŵuctuations on pions and nucleon numbers are more apparent

than at higher energies. Although, at higher energies, the net charged pion Ŵuctuations

are stronger, it is compensated by the lesser deuteron yields and less correlation with

the nucleons, as various hadrons also participate in the isospin exchange.

7.3.1 Freeze-out time distributions

Figure 7.2 Freeze-out time distribution of nucleons (full black line), pions (dashed black

line), deuterons (dotted pink line), tritons (dotted blue line), and 3He (dotted orange

line).

To begin and illustrate the idea, Fig. 7.2 shows the normalized freeze-out time

distribution of the nucleons (solid black line), pions (dashed black line), deuterons d

(dotted pink line), tritons t (dotted blue line) and 3-Helium 3He (dotted orange line) in

very central Au+Au collisions at
√

sNN = 3 GeV (left panel) and at
√

sNN = 7.7 GeV

(right panel).

It is evident that light nuclei freeze-out after the pions have decoupled from

the system, i.e., after isospin equilibration, as expected. Therefore, isospin Ŵuctuations

can indeed inŴuence cluster formation. Although at both energies pions appear to

decouple shortly before nucleons, this process is faster at higher energies (
√

sNN =
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7.7 GeV). This is due to the fact that, unlike our toy model, in themore realistic scenarios

simulated by UrQMD, other hadrons can still be emitted together with the nucleons

after the pions have decoupled. However, the overall assumption still holds true, as

pions decouple before the clusters.

7.4 Light cluster yields versus isospin Ŵuctuation

Figure 7.3 Deuteron yield as a function of ∆Yπ for Au+Au reactions. The UrQMD results

are shown by red circles. The estimated yield, Eq. (7.7), is represented by the full red

line. Left: Results at
√

sNN = 3 GeV. Right: Results at
√

sNN = 7.7 GeV.

Finally, we contrast the estimated deuteron yields from the toy model with

deuteron yields obtained from UrQMD simulations as a function of relative charged

pion difference ∆Yπ . The comparison at
√

sNN = 3.0 GeV is depicted in Fig. 7.3 (left

panel), and at
√

sNN = 7.7 GeV in Fig. 7.3 (right panel). We clearly observe a local

maximum in the deuteron yields at both energies around ∆Yπ = 39, consistent with

the expectation from the toy model.

The same comparison on light clusters with A = 3 is done and shown
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Figure 7.4 The ∆Yπ dependent of triton (blue squares and dashed blue line) and 3He

(orange triangles and dotted orange line) yields. The UrQMD results are shown by

symbols. The estimated yields, Eqs. (7.7) and (7.8), are represented by the lines. Left:

Results at
√

sNN = 3 GeV. Right: Results at
√

sNN = 7.7 GeV

in Fig. 7.4, depicting the simulated triton (blue crosses) and 3He (orange triangles)

yields from UrQMD at
√

sNN = 3 GeV (left panel) and
√

sNN = 7.7 GeV (right

panel) with the corresponding estimated yields from the toy model represented by the

blue dashed and orange dotted line, respectively. We observe that both the UrQMD

simulated tritons and 3He at both energies follow the estimated yields. Especially at√
sNN = 3.0 GeV, where the tritons exhibit the maximum yield at ∆Yπ = −26.67,

we observe a close resemblance between UrQMD and estimated values.

Finally, we provide the energy dependence of the cluster yields as a function

of ∆Yπ from Elab = 1.23A − 40A GeV. the cluster yields are normalized by their

respective yields at ∆Yπ = 39. We can clearly observe that the local maxima of the

deuteron yields and the A = 3 clusters are present and independent of the beam

energy.

Also, some deviation from the UrQMD simulation to the toy model is ob-

served as the distributions of light nuclei become broader along with the energies. This
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Figure 7.5 Distribution of cluster yields on the ∆Yπ spectrum is normalized to unity at

∆Yπ = 39. The symbols represent simulation results from various collision energies

ranging from Elab = 1.23A GeV to Elab = 40A GeV in ultra-central Au+Au reactions

from UrQMD. Left: Deuteron distribution. Right: Triton and 3He distribution.

deviation can be attributed to the fact that in the toy model, isospin equilibration is

assumed only between pions and nucleons. In a realistic scenario, some isospin is also

carried by other hadron species such as charged kaons, Σ, etc.

We conclude our chapter with the observation that the coalescence model

exhibits an energy-independent local maxima in cluster yields, e.g., the deuteron yields

at ∆Yπ = 39 (for Au+Au reactions). This distinct dependence on the isospin trig-

gering allows us to potentially resolve tensions between the thermal model and the

coalescence model. Since the thermal model usually uses grand canonical ensembles,

it does not show any dependence of the cluster yield on ∆Yπ . This is because the

isospin Ŵuctuations occur before kinetic freeze-out inducing the correlation between

cluster yields and the emitted charged pions (and nucleons). In the thermal model,

all hadron yields are generated or emitted simultaneously at the chemical freeze-out.

Consequently, the cluster yields from the thermal model do not correlate with any

isospin Ŵuctuations, or at most, have been accounted for only on an averaged basis.
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Our studies indicate that the cluster formation is governed by coalescence

at the kinetic freeze-out rather than a direct emission from the chemical freeze-out

by thermal productions. This approach can be measured in any ultra-central Au+Au

collision facilities at
√

sNN = 3 − 8 GeV.

 



CHAPTER VIII

RESULTS IN PION INDUCED REACTIONS

The previous chapters present extensive studies on the space-time geometry

of the source volume and the cluster formations across the broad range of collision

energies and EoS in heavy-ion collisions. We proposed the usage of space-time consid-

eration, particularly the isospin exchange at chemical freeze-out as a tool to distinguish

between thermal and coalescence models. However, we can extend our investigation

beyond heavy-ion collisions at low energies as there is also a pressing need for inves-

tigations of smaller systems. Since the yield of hypertriton, for instance, demonstrates

a system size dependence (Acharya et al., 2022), leading to another tension between

the thermal and coalescence models. Furthermore, the hypertriton’s potential use

as a constraint for the coalescence parameter, hypernuclei structure, and neutron star

EoS underscore the signiųcance of probing smaller systems. In this chapter, we aim to

provide supports for the realization of the coalescence mechanism as well as the the-

oretical predictions and insights for future experiments at smaller systems, particularly

pion-induced reactions.

8.1 The needs and potential of small collision systems

The interest in the low energy regime is circulating around the cluster forma-

tions (Vovchenko et al., 2020), including the quest for dark matter (Hou et al., 2017;

Korsmeier et al., 2018; Doetinchem et al., 2020; Hornung, 2021; Šerkšnyté et al., 2022),

the extraction of the Equation of State (EoS) for neutron stars (Capano et al., 2020; To-

los and Fabbietti, 2020; Vidaña, 2018), and the essential interplay between theoretical

predictions and experimental measurements. One of the main ingredients for the EoS

of neutron stars is the understanding of ΛN-interactions, and even ΛNN-interactions,

as hyperons and hypernuclei are expected to be presented at the core of neutron

stars (Nagels et al., 1977; Nagels et al., 1979; Shinmura et al., 1984; Fujiwara et al.,

1996a; Fujiwara et al., 1996b; Nemura et al., 2000; Hildenbrand and Hammer, 2019).

Exploring these interactions can be achieved through diverse methods, in-

cluding the study of correlation functions and the direct examination of bound state
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formation, such as the hypertriton 3
ΛH made of a deuteron core with a weakly bound

Λ (Juric et al., 1973; Abelev et al., 2010; Adam et al., 2016; Dönigus, 2013; Andronic

et al., 2018). This state possesses a very small Λ separation energy, typically in the

range of a few hundred keV (Davis, 2005; Adam et al., 2020), resulting in a wide wave-

function extending up to approximately 10 fm in radius (Braun-Munzinger and Dönigus,

2019). Notably, the size of the 3
ΛH wavefunction may be associated with the constraint

of the coalescence parameter and the underlying ΛN interaction for the neutron star

EoS (Nagels et al., 1977; Nagels et al., 1979; Shinmura et al., 1984; Fujiwara et al., 1996a;

Fujiwara et al., 1996b; Nemura et al., 2000; Hildenbrand and Hammer, 2019).

Figure 8.1 ALICE measurements in p+ Pb (in red) and Pb+ Pb collisions (Adam et al.,

2016) (in blue) as a function of mean charged-particle multiplicity and the predictions

from canonical statistical hadronization (excluded volume) (Vovchenko et al., 2018a)

and coalescence models are shown (Sun et al., 2019). The ųgure is adopted from

Ref. (Acharya et al., 2022)

The recently published data by the ALICE experiment (Acharya et al., 2022),

Fig. 8.1, of the system size dependence of 3
ΛH production for small collision systems

in p+p and p+Pb shows that the predictions from the coalescence mechanism sup-

press the 3
ΛH/Λ yield compared to the results from the thermal model. The result is

compared with the prediction from the canonical SHM (Vovchenko et al., 2018a), which
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assumes exact conservation of baryon number, strangeness, and electric charge across

a correlation volume Vc. The SHM predictions are computed using a ųxed chemical

freeze-out temperature of Tchem = 155 MeV and two correlation volumes extending

across one unit (Vc = dV/dy), and three units (Vc = 3dV/dy) of rapidity (Vovchenko

et al., 2018a). The size of the correlation volume governs the inŴuence of exact quan-

tum number conservation, with smaller values leading to a stronger suppression of

conserved charges and Vc → ∞ leading to the grand canonical ensemble. The results

seem to favor the 2-body coalescence model (d-core and weakly bound Λ). How-

ever, toward smaller systems, due to the limited available data, we cannot pin-point

whether the hypertriton yield ratio will tend toward the thermal model prediction or

the 2-body or 3-body coalescence model, thus changing the interpretation of its size

and wavefunction. This again emphasizes the importance on the understanding of the

cluster mechanisms and low energy studies.

Nevertheless, the new availability of secondary pion beams at the HADES

experiment (Agakishiev et al., 2009) in Darmstadt, Germany, may provide a unique

opportunity to study hadron and dilepton production in π + A interactions with a

momentum of 1.7 GeV on carbon (C) and tungsten (W) targets allowing to investigate

normal clusters and hypernuclei production in small systems and at low energies.

Particle production of, e.g., Λ in p + A reactions results in a large forward

momentum of the created particle, therefore reducing the chance for hypernuclei pro-

duction (within the coalescence picture). Thus, hypernuclei will be produced outside

of the nucleus. In contrast to that, pion reactions π + A have several advantages for

cluster studies. The pion induced reaction proceeds via the excitation of a baryonic

resonance, π− + n → ∆
∗,− or ∆− + p → ∆

∗,0 or N∗, with a typical mass up to

2 GeV. The baryon resonance (moving forward with respect to the target system) then

decays after approx. 1-2 fm/c mostly into π+ N (leading to the production of protons

and neutrons in the forward direction) and may also lead to the production of Λ and

even Ξ via the decays Λ+ K and Ξ → KK, respectively (Steinheimer et al., 2017). How-

ever, the pion projectile has a larger stopping power compared to the proton beam,

the production of nucleons/hyperons must be richer around the target region than the

forward rapidity. Thus, one can expect the enhancement of the hypernuclei formation

within the target and this allow for larger hypernuclei A
 3 as Λ or Ξ inside the nucleus

may slow down allowing for binding or multifragmentation into a hypernucleus. The

deceleration of the hyperon will of course depend on the size of the target nucleus
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and is more pronounced in the bigger tungsten than in the carbon target. Thus, the

pion beam measurements at HADES provide a promising environment to explore the

properties of the (3ΛH) in small systems.

To demonstrate our arguments above and discuss the potential use of the

pion beam experiment at HADES (Adamczewski-Musch et al., 2017; Yassine et al., 2023),

we perform the ųrst baseline predictions for the production of non-strange and strange

clusters in π
− + C and π

− + C collisions.

To this aim, we will employ the UrQMD v3.5 with box coalescence model

which has been successfully describe the production of non-strange light nuclei, i.e

deuterons, tritons, helium, and strange hypertriton and further strange clusters which

have not yet been measured (Gaebel et al., 2021; Hillmann et al., 2022; Reichert et al.,

2023c; Reichert et al., 2023d) and then compare the results with the statistical multifrag-

mentation approach which allows to produce (hyper)nuclei with large mass numbers

relative to the system size (Botvina et al., 2021; Buyukcizmeci et al., 2020; Botvina et al.,

2022; Buyukcizmeci et al., 2023).

8.2 Model Setup

For this study, we use the transport model UrQMD v3.5. For this analysis, the

simulations are conducted in cascade mode, with potentials turned off. As a QMD-type

simulation, UrQMD tracks all n-particle correlations during system evolution, preserving

the collision history with detailed space-time and 4-momentum information for all

particles. This data is then input into a numerical coalescence model and the Statistical

Multifragmentation Model (SMM) (Bondorf et al., 1995) to compute cluster production.

All the following results are obtained by simulating 146 million and 41 million

events of minimum bias π
− + C and π

− + C collisions, respectively. We deųne

minimum bias collisions for π−+C with an impact parameter range of 0< b < 2.5 fm,

excluding events without any interaction, and use a total cross section of σπ
−+C

tot =
196.35 mb for normalization. For π− + C, we use an impact parameter range of

0 < b < 6.5 fm, also excluding non-interacting events, with a total cross section of

σ
π−+C
tot = 1327.32 mb.

All calculations are done in the target rest frame (laboratory frame in the

HADES experiment) and the rapidity y refers to this frame, i.e. ytarget = 0. To compare

with the experimental data, free Λ hyperons always include the Σ
0 hyperons, as the Σ

0

decays into a Λ and can not be distinguished by the experiment. However, the coales-
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cence and multifragmentation routines consider only initial Λ hyperons, since Σ
0 hyper-

ons decay further away due to their comparatively long lifetime and do not signiųcantly

contribute to the hypertriton production. Protons in the simulation do not include feed

down from the Λ decays. The units used for d2
σ/dpTdy are [µb/(GeV∆y)], and for

dσ/dy are [µb/∆y] chosen in line with the HADES measurements (Yassine et al., 2023).

The coalescence results are evaluated at the kinetic freeze-out, while the

SMM uses input from UrQMD at a ųxed time in this analysis. Furthermore, all particles, as

well as spectators in UrQMD, are included in the statistical multifragmentation approach.

The coalescence parameter in the SMM model has been set to vc = 0.22 as this value

has been shown to provide good results (Botvina et al., 2015; Buyukcizmeci et al., 2020;

Botvina et al., 2021).

8.3 Proton and Λ Baryon Production

We begin our exploration by investigating the double differential transverse

momentum spectra of cluster constituents, i.e., protons and Λ hyperons.

In Fig. 8.2 (upper panel), we illustrate the double differential cross section

d2
σ/dpTdy in [µb/(GeV∆y)] for protons against transverse momentum across various

rapidity bins (ranging from 0 ≤ y < 0.1 to 0.9 ≤ y < 1.0). For clarity, the curves are pro-

gressively scaled by factors of 10 from bottom to top. The left panel shows results for

minimum bias π−+ C collisions, while the right panel shows results for minimum bias

π
− + C collisions, from UrQMD (v3.5) simulations. Solid lines with symbols depict the

simulated data, while open symbols represent recent HADES measurements (Yassine

et al., 2023). Additionally, a dotted line denotes the exponential ųt, parameterized

by the yield integral and slope parameter as ∼C(y)pT

√
p2

T + m2
0exp

�
−

√
p2
T+m2

0

T(y)

�
,

consistent with the HADES analysis (Yassine et al., 2023). The ųtting to the simulation

data is done within the same pT acceptance as the HADES setup, i.e., pT ≥ 0.4 [GeV]

and is displayed only for the rapidity bin 0 ≤ y < 0.1. Fig. 8.2 (lower panel) illustrates

the relative deviation between the UrQMD simulations and the experimental data.

The simulation results demonstrate both quantitative and qualitative agree-

ment between UrQMD model calculations of the differential cross section for protons

and experimental data (open symbols) (Yassine et al., 2023) for both collision systems

and across all forward rapidity bins, as well as a good match of the slope parameters

between our simulations and the measured data. Notably, as anticipated, we observe
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Figure 8.2 The transverse momentum (pT) spectra of protons produced in minimum

bias π− + C (left panel) and π
− + C (right panel) collisions at various rapidity bins

(0≤ y < 0.1 to 0.9≤ y< 1.0) as measured by the UrQMD model (v3.5). The pT spectra

are represented by differential cross sections (d2
σ/dpTdy) in units of [µb/(GeV∆y)].

The curves for each rapidity bin are consecutively multiplied by a factor of 10 from

bottom to top for better visualization. Solid lines with symbols depict the UrQMD sim-

ulation results, while open symbols represent recent HADES experimental measure-

ments (Yassine et al., 2023). The lower panel shows the relative deviation (percentage

difference) between the UrQMD simulations and the corresponding experimental data

for each rapidity bin.
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Figure 8.3 The upper panel displays the transverse momentum (pT) spectra of Λ hyper-

ons produced in minimum bias π− + C (left) and π
− + C (right) collisions at various

rapidity bins (0 ≤ y < 0.15 to 0.9 ≤ y < 1.05) as calculated by the UrQMD model

(v3.5). The pT spectra are represented by differential cross sections (d2
σ/dpTdy) in

units of [µb/(GeV∆y)]. The curves for each rapidity bin are consecutively multiplied

by a factor of 100 for improved visualization (bottom to top). Solid lines with symbols

depict the UrQMD simulations, while open symbols represent recent HADES experimen-

tal measurements (Yassine et al., 2023). The lower panel presents the relative deviation

(percentage difference) between the UrQMD simulations and the corresponding exper-

imental data for each rapidity bin
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a greater proton abundance at small transverse momenta pT in the UrQMD simulation

compared to the interpolation predicted via the exponential ųt function, especially at

low rapidity. This arises due to limitations in the phase space coverage of the HADES

detector, preventing direct observation of these residue-free protons at transverse mo-

menta pT < 0.4 GeV around zero rapidity. This effect is evident for both systems and

becomes more pronounced with increasing system size. In the subsequent section,

we will demonstrate how typical extrapolation results in slight deviations in rapidity

densities near y≈0.

Figure 8.2 (lower panels) presents the relative differences in pT spectra be-

tween the UrQMD (v3.5) simulation and the HADES experimental data (Yassine et al.,

2023) for protons. These differences remain below 1 across the pT range and all rapidity

bins. In the carbon system, the deviations become stronger with increasing momentum

and further rapidity bin. Conversely, in the tungsten system, the deviations indicate less

dependence on both pT and rapidity.

Fig. 8.3 (upper panel) shows the transverse momentum double differential

cross section d2
σ/dpTdy of Λ’s as a function of transverse momentum in different

rapidity bins (from 0 ≤ y < 0.15 to 0.9 ≤ y < 1.05. The curves are scaled by factors of

100 from bottom to top for clarity. The results from minimum bias π−+C and π
−+C

collisions from UrQMD (v3.5) are presented in the left and right panels, respectively.

The solid lines with symbols show the calculations and the open symbols represent

the HADES measurements (Yassine et al., 2023). The relative deviation between the

UrQMD simulations and experimental data is shown in the lower panel.

Similarly, the UrQMD simulations agree well with the data across the trans-

verse momentum range in all rapidity bins. They reproduce the sharp drop-off behavior

at high pT values, a result of the limited available collision energy.

We are now able to discuss the slight deviation from using the extrapolated

rapidity distribution from the exponential ųt. In Fig. 8.4, we present the comparison of

rapidity differential cross section spectra dσ/dy in [µb/∆y] of simulated protons and

extrapolated protons as well as the rapidity distribution of Λ’s. The left panel displays

the results from minimum bias π− + C collisions, while the right panel displays those

from minimum bias π− + C collisions.

Unlike experimental approaches that rely on extrapolations from integrated

transverse momentum spectra, UrQMD simulations can directly calculate particle rapid-

ity distributions. Our results demonstrate that the extrapolated free protons obtained
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Figure 8.4 The differential cross section with respect to the rapidity dσ/dy [µb/∆y] of
protons (red), Λ’s (orange), and Ξ’s (black) from minimum bias π

− + C (left panel)

and π
− + C (right panel) collisions. The UrQMD results are shown as colored lines

with symbols, while the open black symbols depict the recent HADES measurements

(Yassine et al., 2023). The blue line with crosses shows the experimental ųt function

for the pT extrapolation.

from the exponential ųt (solid blue line with crosses) generally agree with the HADES

data (open circles) across the measurable rapidity range. However, as mentioned ear-

lier, there are notable limitations to this approach.

Speciųcally, the current exponential ųt function could not account for residue

free protons residing near zero rapidity (target region). These protons are unde-
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tectable by the HADES experiment due to its limited coverage at nearly zero rapidity

(pT < 0.4 GeV/c). The UrQMD simulations (solid red line with circles) clearly capture

this effect, demonstrating a higher density of free protons around zero rapidity despite

agreeing well with the exponential ųt from both experimental data and simulations in

the forward rapidity region. This limitation of the exponential ųt extends to all protons,

not just the free ones. In the target region, there are not only residue free protons

but also bound protons within clusters, as depicted by the red dashed line with open

circles. Additionally, the larger target nucleus, with stronger stopping power, further

ampliųes the presence of all protons (bounded and free protons) at zero rapidity.

The UrQMD model demonstrates its capability by successfully reproducing

the measured Λ rapidity distributions (orange line with squares) in both π
− + C and

π
− + C collision systems. This achievement indicates that the model can describe

the multiplicity and general trend of Λ hyperons.

Furthermore, we also present the production of Ξ hyperons (black line with

triangles), particularly in the π
−+C system. This ųnding, combined with the successful

description of proton and Λ production, suggests that these low-energy, small-system

collisions hold promise for studying clusters and the possibility of exploring the forma-

tion of multi-strange hyperclusters, without the need for an anti-proton beam.

8.4 (Light) Nuclei distributions

Building upon the successful validation of the UrQMD model in describing the

production of protons, Λ’s, and even Ξ’s (constituents of most (hyper)nuclei), we are

now well-positioned to delve into the investigation of cluster and hypernuclei formation

within these collision systems.

Figure 8.5 shows the transverse momentum (pT) spectra of deuterons pro-

duced in minimum bias π− + C (left panel) and π
− + C (right panel) collisions at

various rapidity bins (0 ≤ y < 0.1 to 0.8 ≤ y < 0.9) as simulated by the UrQMD

model. The pT spectra are represented by differential cross sections (d2
σ/dpTdy) in

units of [µb/(GeV∆y)]. The curves for each rapidity bin are consecutively multiplied

by factors of 100 (bottom to top) for improved visualization. Similar plots for tritons (Fig-

ure 8.6) and 3He (Figure 8.7) show the production of these light clusters across different

rapidity bins (0 ≤ y < 0.1 to 0.5 ≤ y < 0.6) in both collision systems.

The observed pT spectra for deuterons, tritons, and 3He show a substantial

amount of light cluster production, particularly in the target rapidity region (y�0 with
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Figure 8.5 The transverse momentum differential cross section d2
σ/dpTdy in

[µb/(GeV∆y)] of deuterons as a function of transverse momentum in different ra-

pidity bins (from 0 ≤ y < 0.1 to 0.8 ≤ y < 0.9, the curves are successively multiplied

by factors of 100 from bottom to top) for minimum bias π
− + C (left panel) and

π
− + C (right panel) collisions from UrQMD.

low pT) similar the to transverse momentum of protons. This effect is present in all

light nuclei pT spectra due to the mentioned effect of protons sitting inside the target.

This ųnding suggests that the UrQMD model can effectively describe the formation of

these clusters in π
− + C and π

− + C collisions.

Figure 8.8 presents the rapidity dependence of cluster yields. It shows the

rapidity differential cross sections (dσ/dy) in [µb/∆y] for deuterons (orange), tritons
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Figure 8.6 The transverse momentum differential cross section d2
σ/dpTdy in

[µb/(GeV∆y)] of tritons as a function of transverse momentum in different rapid-

ity bins (from 0 ≤ y < 0.1 to 0.5 ≤ y < 0.6, the curves are successively multiplied by

factors of 100 from bottom to top) for minimum bias π−+ C (left panel) and π
−+ C

(right panel) collisions from UrQMD.

(green), 3He (blue), and 4He (red) as a function of rapidity for both π
− + C and π

− +
C collision systems. The UrQMD coalescence model results are depicted by dashed

lines with open symbols, while the yields from the Statistical Multifragmentation Model

(SMM) are represented by solid lines without symbols.

The overall light cluster multiplicities from both models show good agree-
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Figure 8.7 The transverse momentum differential cross section d2
σ/dpTdy in

[µb/(GeV∆y)] of 3He as a function of transverse momentum in different rapidity bins

(from 0≤ y < 0.1 to 0.5 ≤ y < 0.6, the curves are successively multiplied by factors

of 100 from bottom to top) for minimum bias π− + C (left panel) and π
− + C (right

panel) collisions from UrQMD.

ment, with a factor of two difference between 4He multiplicities. As expected, the

cluster yields (shown in Figure 8.8) peak around zero rapidity, indicating that most clus-

ters form in the target region where protons (nucleons) are abundant. Interestingly,

both systems exhibit a protrusion in the deuteron distributions towards forward ra-

pidity, particularly pronounced in the smaller carbon system. This suggests that the
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Figure 8.8 The rapidity differential cross section dσ/dy in [µb/∆y] of deuterons (or-

ange), tritons (green), 3He (blue) and 4He (red) as a function of the rapidity for minimum

bias π− + C (left panel) and π
− + C (right panel) collisions from UrQMD (v3.5) as

denoted by dashed lines with symbols and from statistical multifragmentation model

(SMM) as denoted by solid lines without symbols.

incident pions could occasionally eject only a few nucleons out of the target.

The tungsten target (π−+C) shows a more symmetrical deuteron distribution

compared to the carbon target (π− + C). This can be explained by the concept of

stopping power. The larger size and higher stopping power of the tungsten nucleus lead

to more frequent coalescence and/ormultifragmentation around the target region. This,

in turn, enhances and broadens the rapidity distributions for all clusters in the π
−+ C
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system compared to π
−+C washing out the protrusion effect in deuteron distribution.

8.5 (Hyper) Nuclei distribution

Figure 8.9 The differential cross section with respect to transverse momentum

d2
σ/dpTdy [µb/(GeV∆y)] of 3He (blue line with squares) and NΞ (black triangles)

from UrQMD results at mid-rapidity minimum bias π− + C (left panel) and π
− + W

(right panel) collisions. The dashed line indicates the extrapolated ųt of NΞ.

Finally, we come to the most intriguing aspect of this study discussing about

the potential production of hypernuclei. Here, we focus on the hypertriton (3ΛH) and

NΞ hypernuclei.

Figure 8.9 presents the predicted transverse momentum spectra of the hy-

pertriton 3
ΛH (blue line with circles) and anticipated NΞ clusters from UrQMD model

simulations and its corresponding extrapolated ųt (black triangles and dotted line re-

spectively). The spectra show the production rates as a function of the transverse

momentum (pT) for minimum bias π
− + C and π

− + C collisions at mid-rapidity
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Figure 8.10 The differential cross section with respect to rapidity dσ/dy [µb/∆y] of NΛ
(blue), NNΛ (green), 3

ΛH (red), 4
ΛH (orange), 4

ΛHe (pink), and NΞ (black) from minimum

bias π− + C (left panel) and π
− + W (right panel). The UrQMD results are denoted

by dashed lines with open symbols, while the results from the statistical multifragmen-

tation model (SMM) are denoted by solid lines with full symbols.

(|y| ≤ 0.5). The signiųcant production of 3
ΛH suggests a high probability of detection

with momenta accessible by the HADES experiment. The production and measurement

of NΞ clusters might also be achievable.

Figure 8.10 shows the predicted rapidity distributions of various hypernuclei

from A = 2 − 4 in SMM (solid lines and ųlled symbols) models contrasting with

UrQMD results (dashed lines and open symbols).

The 3
ΛH production cross section peaks around the target rapidity region,

indicating formation primarily within the target nucleus. The yield is higher and more

symmetric in the π
− + C system compared to π

− + C. This is attributed to the fact

that the tungsten system produces more hyperons and has a higher stopping power,

effectively increasing the probability of hypernuclei formation.
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In addition, the protrusion effect is also observed in the hypernuclei yield

with A ≤ 3 from both models, i.e., NΛ (blue line with circles), NNΛ (green line with

up triangles), and 3
ΛH (SMM: red line with down triangles, UrQMD: red dashed line with

down triangles). As discussed before, the incoming pions could knock out only a few

nucleons toward the forward rapidity region. The agreement between UrQMD and

SMM models for light cluster and hypertriton formation is good for the larger tungsten

system. However, a factor of 10 difference exists for the smaller carbon system, given

a potential lower and upper bound of error in hypertriton production estimates.

Quantifying these predictions, the expected yield is on the order of 10−3 hy-

pertritons and 10−6 NΞ per event in these collisions. This translates to approximately

105 and 102 detectable 3
ΛH and NΞ from the entire data set of the HADES collaboration

(108 recorded events per system) reported in Ref. (Yassine et al., 2023). This large num-

ber allows for detailed studies and measurements of the hypertriton and potentially

NΞ.

8.6 Fragments of larger mass numbers

To conclude our analysis, we present a compilation of estimated total abun-

dances for normal nuclei and hypernuclei, ranging from light elements up to oxygen

(mass number A = 16). These estimates aim to quantify the production rates of vari-

ous nuclei following pion beam collisions with carbon (π−+C) and tungsten (π−+C)

targets at an incident momentum of plab = 1.7 GeV/c.

Figure 8.11 showcases the integrated cross section for light nuclei (full sym-

bols) and hypernuclei (single strange hyperon Y = 1, open symbols) as a function

of their mass number (A). The data is further categorized by the charge (Z) of the nu-

clei, represented by different colors. The results are obtained from a SMM analysis of

UrQMD (v3.5) simulation data for minimum bias π−+ C (left panel) and π
−+ C (right

panel) collisions.

The ųgure reveals that the abundance of both light clusters and hypernuclei

follows an approximately exponential decrease with increasing mass numbers. This

aligns with observations from light nuclei production at RHIC (Agakishiev et al., 2011).

Despite the decline, the integrated production cross sections might still be sufųcient for

signal detection by the HADES collaboration or in future pion-beam experiments with

higher beam luminosity.

Notably, the translated yields from the cross section for normal nuclei and
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Figure 8.11 The mass number distribution of the integrated cross section of light nuclei

(full symbols: Y=0) and hypernuclei (single-strange as open symbols: Y=1) production

with different charges Z (denoted by the color) from SMM analysis of the UrQMD data

at minimum bias π− + C and π
− + C collisions.

hypernuclei remain at the level of 10−4 to 1 and 10−6 to 10−3 per event, respectively.

This paves the way for the ųrst-ever exploration of normal clusters and hypernuclei

with mass A > 4 in pion beam collision experiments.

Furthermore, as reported by the HADES collaboration Ref. (Ardid et al., 1999),

their pion beam can reach momenta of up to 2.5 GeV. This higher beam energy is

expected to signiųcantly increase the production cross sections, potentially enabling
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the study of Ξ-hypernuclei as well. This opens an exciting opportunity to explore

aspects of hypermatter physics within the HADES π + A program, potentially mirroring

some of the objectives envisioned for the PANDA experiment.

Figure 8.12 The comparison in the yield ratio of the hypertriton (3ΛH/(Λ + Σ
0)) as a

function of the mean charged particles multiplicity with various models. Our analysis

for π− + C (green line) and π
− + C (black line) is presented alongside data from

p+Pb and Pb+Pb. The ųgure also includes predictions from two models: the thermal-

statistical model denoted by CSM Thermal-FIST (dotted line) (Vovchenko et al., 2018a)

and the previous UrQMD-hybrid coalescence model (coloured lines with symbols (Sun

et al., 2019)). Finally, brown diamonds represent experimental measurements by the

ALICE collaboration (Acharya et al., 2022).

The integrated yields of hypertritons (3ΛH) and (Λ + Σ
0) hyperons allow for

an analysis of the dependence on collision system size. Centrality classes are approxi-

mated by the proton multiplicities. Figure 8.12 presents the results.

The analysis aligns well with previous ųndings from the UrQMD-hybrid coales-

cence model (coloured line with squares) for larger systems, exhibiting a suppression

of hypertriton yield ratio towards smaller systems. This π− + A study indeed enables

predictions for the yield ratio behavior at even lower system sizes. Interestingly, for

smaller systems (dNch/dη < 10), the hypertriton yield ratio from π
−-reactions shows
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an even stronger suppression compared to the thermal model (dotted line), which

fails to capture this effect even at the p+Pb volume. While the p+Pb experimental

data agrees with the moderate suppression predicted by the coalescence parameter

∆r = 4.3 fm, i.e., smaller hypertriton wavefunction, the overall trend supports the

coalescence model’s formation mechanism.

However, our predictions suggest a larger hypertriton wavefunction with a co-

alescence parameter of ∆r = 9.5 fm. This indicates a potentially more extended

wavefunction due to a loosely bound d-core with the Λ hyperon. Future HADES ex-

periments with higher precision could validate these predictions and provide further

insight on the formation mechanism.

This chapter explores the formation of clusters and hypernuclei in π
−+A at

the HADES experiment. Studying these collisions offers a unique opportunity allowing

us to investigate cluster formation in regimes where there is limited experimental data,

particularly for smaller systems.

The ųrst step involved validating our simulation model. We employed the

UrQMD model to simulate π
− + C and π

− + C at momentum of plab = 1.7 GeV/

c. The simulated results, including the transverse momentum and rapidity distribution

of protons and Λ’s, show good agreement with experimental data from the HADES

experiment. However, we identiųed a limitation in HADES acceptance to capture low pT

protons near the target region. This suggests a need for adjustments to the exponential

function used.

We then proceed to investigate the production of deuterons, tritons, 3He,

and 4He nuclei. We compare two different theoretical approaches between the coa-

lescence model and the Statistical Multifragmentation Model (SMM). Both approaches

successfully reproduced the observed spectra of light clusters, with good agreement

in their rapidity distributions. Interestingly, both models also show a protrusion in the

distribution of deuterons towards forward rapidity. This suggests that incoming pions

only knock a few nucleons out of the target nucleus. Furthermore, the larger tungsten

target system results in broader rapidity distributions for all clusters compared to the

carbon target. This can be attributed to the stronger stopping power of tungsten, which

leads to a higher probability of binding and multifragmentation at kinetic freeze-out.

Building upon the success with light nuclei, we investigated the production of

hypernuclei. Similar to light clusters, hypernuclei with a mass number A<3 displayed

a protrusion towards forward rapidity as well as broader rapidity distributions for all
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hypernuclei in the tungsten system. We then estimated the total abundances for all

clusters, including both normal nuclei and hypernuclei up to oxygen mass. These

estimates suggest that the yields are sufųciently high to be detectable by the HADES

collaboration.

Finally, we explored potential avenues for future research and investigated

the system size dependence of hypernuclei. Our analysis of the yield ratio of hypertri-

ton as a function of charged multiplicity revealed a strong suppression in π
− + A col-

lisions compared to the thermal model. This ųnding supports the coalescence model

with a larger hypertriton wavefunction (coalescence parameter ∆r = 9.5 fm).

In conclusion, this chapter highlights the potential of using pion-nucleus col-

lisions at low energies and smaller system sizes to study cluster formation and hyper-

nuclei production. The good agreement between simulations and experimental data

paves the way for further exploration of hypermatter physics using the HADES pion-

induced program. We propose that using a higher momentum pion beam in the HADES

setup could enable studies of the production of Ξ hyperons via the decay of a reso-

nance state (Steinheimer and Bleicher, 2016). This approach might also allow for the

investigation of the formation of double-Λ hypernuclei.

 



CHAPTER IX

SUMMARY

In this thesis, we emphasize the importance of the understanding of the

space-time picture of heavy-ion collision dynamics (as highlighted in Ch. II) which is

helpful for the search of a potential critical point and constraining the EoS for neutron

stars. These two topics are some of the main efforts for most of the future facilities,

especially the BES program and GSI-FAIR and HADES. Various theoretical and simulation

models are important tools for describing the physics and properties of the medium.

Ch. III provides a brief introduction of transport, hydrodynamics, and hybrid models.

The corresponding assumptions and advantages of these models are covered. For a

microscopic treatment with realistic correlations and Ŵuctuations, we adopt the UrQMD

v3.5 transport model for event simulations and for the whole thesis.

The space-time structure of the ųreball is explored by demonstrating the

interplay between the coalescence parameter B2 and the (anti)nucleon source geome-

tries in Sec. 4.1 of Ch. IV. By adopting the Mrówczyński’s spatial coalescence model, we

investigate the (anti)deuteron production and extract the (anti)nucleon source radii r0
and r∗ by ųtting the (anti)deuteron formation rate with the available coalescence param-

eter data B2 and B2 from NA49 to STAR. The simulations from the cascade UrQMD v3.5

transport model show agreement with our (anti)nucleon source geometries, in which

the antinucleon source suffers from the NN-annihilation at the center. The comparison

of r0/r∗ from both models shares a similar trend. However, the r0/r∗ from our model

exhibits a sign for critical behavior from the observed local maxima of both antinucleon

source radii at
√

sNN = 27 GeV. This ųnding also indicates that the (anti)nucleon emis-

sion source Vsource of the coalescence model is not the same as the thermal (charged)

volume Vchem, which always scales with the collision energy. This motivates us to fur-

ther investigate and compare the effects of different critical behaviors on the emission

source.

Since the interpretation of extracted (anti)nucleon sources is similar to the

HBT source volume, we utilize two-pion HBT interferometry to study the source volume

in Sec. 4.4, particularly the effects of different EoS with and without phase transition

for the neutron star-like medium, i.e., HADES to STAR energies. We begin our investiga-
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tion by showing that the impact from the Coulomb potential is minimal and negligible

around these energies, where the strong interaction is dominant. The simulation results

from the CMF_PT2 EoS are the only EoS that exhibits critical behavior from the phase

transition, where the nuclear density for the phase transition to occur in this energy

range is around ρB/ρ0 ≤ 4 − 5. The emission time distribution from the UrQMD v3.5

transport model further supports this critical behavior of CMF_PT2 by extending the

freeze-out time distribution of the π
− toward the cascade’s at higher energies. This

indicates that the HBT radii are sensitive and can be used to test and constrain the EoS.

The space-time structure of emission sources is usually related to the coales-

cence parameters which are measured by either the HBT method or the cluster yields.

However, in order to correctly estimate cluster formations and interpret the experimen-

tal data, we need to have a clear understanding of their origins and their implications to

the whole space-time dynamics of the collisions. Ch. V details various possible cluster

formation mechanisms and also highlights hypernuclei formation which shares a similar

basis with normal cluster formation.

We continue our discussion on the emission source volume toward even

lower collision energies. It is well known and has been clariųed in this thesis how the

coalescence parameter is inversely proportional to the emission source BA ∝ (1/V)A−1,

which is again equivalent to the volume of homogeneity of the HBT volume. However,

the HBT prediction drops at lower energies, showing a discrepancy with the increasing

BA from the experiments. To solve this disagreement, we demonstrate in Ch. VI that

the measurements of BA from all experimental facilities are obtained from the esti-

mated ųnal state neutrons, e.g., B2 � d/p2
final, which is justiųed only at high energies.

We propose to make adjustments to BA measurements by calculating the correct dis-

tributions of primordial protons and neutrons, e.g., B2 � d/(pn)prim. By validating our

formula with the simulated events from the UrQMD v3.5 transport model, our corrected

BA indeed aligns with the emission volume predicted by the HBT method, providing a

consistent picture of the emission source.

One of the most debated concepts in cluster formation is which mechanism

is realized in nature, especially the controversial interpretation of cluster formation

within the thermal model. In Ch. VII, we propose an approach, based on the different

distinct space-time pictures, to distinguish between the thermal (chemical freeze-out)

and coalescence (kinetic freeze-out) model in order to solve this tension. By using the

isospin triggering ∆Yπ = (Yπ− − Yπ+), the results from the UrQMD v3.5 transport
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model agree with our theoretical estimates as the simulated deuterons, tritons, and
3He all show their maxima indicating the ∆Yπ-dependent. This is a clear illustration

that the coalescence mechanism, which occurs at the kinetic freeze-out, is sensitive to

the isospin Ŵuctuations and thus is responsible for the cluster formation.

Another difference between the thermal model and coalescence model is

also apparent in the system size-dependence of the hypertriton ratio, 3
ΛH/Λ. The co-

alescence model predicts a stronger suppression than the canonical thermal model.

Also, the study of the critical behavior and the constraint for the low energy EoS (neu-

tron star conditions) involve not only normal nuclei but also hypernuclei and their

interactions, e.g., YN− and/or YYN−interaction. Hence, our last Ch. VIII begins by

highlighting the need for low energy and a small system for hypernuclei formation. We

employ the UrQMD v3.5 transport model to simulate the same collisions of π− + C

and π− + W at plab = 1.7 GeV as at HADES and contrast the results with the SMM

model for the (hyper)nuclei formation. We found that the extrapolation ųt function

needs to be adjusted due to the residue protons sitting in the target region, which is

outside of the detector acceptance. The light nuclei rapidity distributions further show

that the incoming pions can only knock one or two nucleons off the target region, which

is a favorable condition for cluster formation or fragmentation. This is further supported

by the integrated total yields that (hyper)nuclei, produced with pion-induced reactions,

are comparable and even higher than those at p+A and A+A collisions. These indicate

that the pion beam at HADES provides a conductive environment to explore these rare

probes. Finally, we end our investigation by showing that the 3
ΛH/Λ from pion-induced

reactions could indeed provide a new measurement at a lower system size and also

exhibit a strong suppression following the prediction of the coalescence model.
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