
CHAPTER VII

INVESTIGATING CLUSTER PRODUCTION MECHANISMS

7.1 Thermal vs Coalescence

(Hyper)(Light)Nuclei have been highlighted as crucial tools for investigating

the medium properties and serving as a basis for studying the EoS around neutron star

density regimes. In the Ch. IV, we have explored and discussed the roles of the source

geometry and the cluster formations in the context of space-time exploration. We

further emphasized on the different space-time pictures of various formation mecha-

nisms in Ch. V especially two common approaches, i.e., the thermal model and the

coalescence model. Despite the fact that their underlying physics assumptions differ

signiųcantly, there is no clear evidence to determine which mechanisms are really re-

sponsible for the cluster formation as both models result in similar estimated particle

yields across a broad spectrum of collision energies.

The thermal model describes the particle production through the thermo-

dynamic properties of the ųreball, i.e., temperature and chemical potential, and typ-

ically within the grand canonical ensemble. It presumes that particle yields are ųxed

after the medium is fully thermalized at chemical freeze-out, thus implying that all

particles form at a ųxed temperature Tchem 70 MeV and corresponding chemical po-

tential µB,chem(T) (Andronic et al., 2018). This raises questions about the survival of

light clusters like the deuteron, with a binding energy of just a few MeV, in such an

environment and contrasts with the deuteron bottleneck concept in Big Bang Nucle-

osynthesis (Pospelov and Pradler, 2010), where cluster formation requires cooling to

match deuteron binding energies. Despite these challenges, the thermal model re-

mains widely used to estimate particle yields (Vovchenko et al., 2020), even as it is

difųcult to incorporate dependencies like wavefunctions which are crucial at lower en-

ergies where the internal structure of clusters matters (Juric et al., 1973; Abelev et al.,

2010; Adam et al., 2016; Dönigus, 2013; Andronic et al., 2018; Blaschke et al., 2020).

On the other hand, although the coalescence model is also based on sta-

tistical mechanics, it is closer in spirit to the microcanonical ensemble, allowing for

the study of medium dynamics. Here, coalescence occurs at the kinetic freeze-out;
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if two or more free nucleons, after their ųnal collisions and decays, are close enough

in phase-space, they will form a cluster. Typically, the temperature and volume of

the source size are smaller than in the thermal model making it possible for the clus-

ters to survive. In contrast to the thermal model’s limitations, the coalescence model

can accommodate various other factors and dynamical considerations. Distinguishing

between thermal and coalescence methods for cluster production becomes crucial.

In this chapter, we use these distinctions to investigate which mechanism is

realized in nature for cluster formation in heavy-ion collisions. In the thermal model,

occurring at chemical freeze-out, all hadrons, including clusters and resonances, are

generated at the same time before undergoing any decay processes. Consequently,

the ųnal yields of clusters may not experience any Ŵuctuations due to the stochastic

nature of the decays or uncorrelated. Conversely, the coalescence model operates at

kinetic freeze-out, occurring after all resonances have decayed, potentially allowing for

the effects of event-by-event Ŵuctuations from resonance decays to inŴuence the ųnal

yields.

In our study, we speciųcally consider isospin Ŵuctuations. Although the ther-

mal model adheres to conservation laws, it typically employs grand canonical ensem-

bles* (Cleymans and Satz, 1993; Becattini et al., 1998; Florkowski et al., 2002; Cleymans

et al., 2006; Andronic et al., 2011; Petrán et al., 2013; Vovchenko et al., 2016; An-

dronic et al., 2019). This implies that while the thermal model can indeed capture

isospin Ŵuctuations, it can only provide averaged values derived from these Ŵuctua-

tions (Vovchenko and Stoecker, 2019). Therefore, we will examine if there is any corre-

lation between isospin Ŵuctuations and light cluster yields in the coalescence approach,

knowing that the thermal model will always yield uncorrelated results.

7.2 Isospin triggering

Due to isospin conservation, the number (density) of nucleons is correlated

with the emitted charged pions at the kinetic freeze-out through ∆ decays (Reichert

et al., 2019; Reichert et al., 2021). While other charged particles, e.g. kaons, also carry

isospin, the freeze-out nucleons and charged pions are still the dominant species at all

*Even for the canonical ensemble (Vovchenko et al., 2018a), the total baryon number and isospin

are also ųxed (for a b = 0 collision they are identical to the initial state). The light nuclei, e.g., deuterons

with isospin zero, are therefore not correlated with the pion isospin Ŵuctuations. The main driver of pion

isospin Ŵuctuations are resonance decays after the ųxing of the deuteron (and other cluster) numbers
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energies. The correlation arises from the isospin content exchanges via,

ppart → nfr + π
+

npart → pfr + π
−,

where ppart and npart represent participating protons and nucleons, respectively, while

pfr and nfr denote protons and nucleons at kinetic freeze-out. It’s important to note

that we assume a ųxed volume where the participants Apart = NAu + ZAu and the

isospin ratio Npart/Zpart = NAu/ZAu do not Ŵuctuate to demonstrate a clear isospin

Ŵuctuation effect (Kittiratpattana et al., 2022). With this assumption, we can estimate

the number of light clusters using coalescence models.

To illustrate our argument, consider an initial scenario with head on Au+Au

collisions with ppart = 2 × ZAu = 2 × 79 = 158 participating protons. If we

trigger on an extreme event with 158 emitted π
+ and zero π

−, we would have a pure

nfr = 158 medium at kinetic freeze-out. According to the coalescence model, the

probability of forming other light nuclei should vanish in this scenario. Conversely, if

we trigger on an event with pure π
− and pfr, there should be no light nuclei present.

Therefore, we can deduce that the yields of light nuclei can be expressed in terms of

the relative difference in charged pion yields ∆Yπ≡(Yπ−−Yπ+) which should exhibit

a distinct maximum.

In summary, the presence of a local maximum in the deuteron yield at a

ųxed (or tightly constrained) Apart as a function of ∆Yπ serves as a distinguishing factor

between thermal deuteron production and the coalescence approach. Additionally,

we will also study higher mass clusters to validate this scenario.

7.2.1 Simple estimates

The simple coalescence model states that,

d = B̃2 · nfr · pfr , (7.1)

t = B̃3·n
2
fr · pfr , (7.2)

3He = B̃3·nfr · p
2
fr (7.3)

From the previous discussion, the total number of neutrons at kinetic freeze-out, de-

noted as nfr, is determined by the sum of initial neutrons from the nuclei, 2NAu, added
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to the number of π− responsible for newly produced neutrons, and then subtracted

by the number of π+ responsible for converting initial participant neutrons into pro-

tons at kinetic freeze-out. Similarly, the total number of protons at kinetic freeze-out,

denoted as pfr, can be expressed similarly. We write nfr and pfr in terms of the relative

difference in charged pions ∆Yπ ,

nfr = 2NAu − ∆Yπ , (7.4)

pfr = 2ZAu + ∆Yπ . (7.5)

Then, we can estimate the yields of light clusters based on the coalescence model,

which is expressed as:

d = B̃2 · (2NAu − ∆Yπ) · (2ZAu + ∆Yπ) (7.6)

t = B̃3 · (2NAu − ∆Yπ)
2 · (2ZAu + ∆Yπ) (7.7)

3He = B̃3 · (2NAu − ∆Yπ) · (2ZAu + ∆Yπ)
2 , (7.8)

where B̃A is a coalescence factor from (Kittiratpattana et al., 2022) which has been

discussed already in Ch. VI.

The results from Eq. (7.6)-(7.8) are shown in Fig. 7.1. The estimated yields

of deuterons (d) are represented by the solid pink line, tritons (t) by the blue dashed

line, and 3-Helium (3He) by the orange dotted line. As anticipated, all three show a

district maximum with respect to the ∆Yπ triggering. The local maximum of deuterons

occurs at ∆Yπ = 39. This arises from the fact that deuterons, consisting of one

proton and one neutron, will have the highest probability to form when the medium

is dominated by an equal number of protons and neutrons at kinetic freeze-out, i.e.,

∆Yπ = NAu − ZAu = 39.

For the tritons and 3He, their respective local maxima at ∆Yπ = 1
3
(2NAu −

4ZAu) = −80
3

for tritons and ∆Yπ = 1
3
(4NAu − 2ZAu) = 314

3
. Additionally,

at ∆Yπ = 39, where the proton and neutron content in the medium are evenly

distributed coupled with the symmetry between tritons and 3He, we expect their yields

to be equal.
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Figure 7.1 The theoretical estimation of the deuteron d (pink full line), triton t (blue

dashed line), and 3He (orange dotted line) production according to the Eq. (7.6)- (7.8)

for central Au+Au reactions as a function of ∆Yπ .

7.3 Qualitative Estimates

For the simpliųed theoretical model estimates, we assumed that the number

of participants as well as their isospin N/Z ratio do not Ŵuctuate, i.e., a ųxed volume

and N/Z = NAu/ZAu for the estimation of the deuteron (and higher mass cluster) yields.

However, this is not the case for a realistic situation. Thus, in this section, we will test

our toy model with a detailed microscopic simulation of the UrQMD model which does

not have such assumptions (even at the most central collisions). The results show

nearly the same behavior as our simpliųed toy model.

In UrQMD model (Bass et al., 1998; Bleicher et al., 1999; Bleicher and

Bratkovskaya, 2022) version v3.5, light clusters are produced by phase space coales-

cence from nucleons at kinetic freeze-out (see also (Sombun et al., 2019; Hillmann

et al., 2022; Kireyeu et al., 2022) for details).
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We focus on central Au+Au collisions with a center-of-mass energy range of√
sNN = 3 − 8 GeV, optimal for testing our concept, as pions and participating

nucleons are strongly correlated, with their numbers being nearly equal or at least in

the same order of magnitude. Moreover, at this energy range, both pions and nucleons

dominate the medium, and when the isospin is (or is trying to become) equilibrated,

the effects of isospin Ŵuctuations on pions and nucleon numbers are more apparent

than at higher energies. Although, at higher energies, the net charged pion Ŵuctuations

are stronger, it is compensated by the lesser deuteron yields and less correlation with

the nucleons, as various hadrons also participate in the isospin exchange.

7.3.1 Freeze-out time distributions

Figure 7.2 Freeze-out time distribution of nucleons (full black line), pions (dashed black

line), deuterons (dotted pink line), tritons (dotted blue line), and 3He (dotted orange

line).

To begin and illustrate the idea, Fig. 7.2 shows the normalized freeze-out time

distribution of the nucleons (solid black line), pions (dashed black line), deuterons d

(dotted pink line), tritons t (dotted blue line) and 3-Helium 3He (dotted orange line) in

very central Au+Au collisions at
√

sNN = 3 GeV (left panel) and at
√

sNN = 7.7 GeV

(right panel).

It is evident that light nuclei freeze-out after the pions have decoupled from

the system, i.e., after isospin equilibration, as expected. Therefore, isospin Ŵuctuations

can indeed inŴuence cluster formation. Although at both energies pions appear to

decouple shortly before nucleons, this process is faster at higher energies (
√

sNN =
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7.7 GeV). This is due to the fact that, unlike our toy model, in themore realistic scenarios

simulated by UrQMD, other hadrons can still be emitted together with the nucleons

after the pions have decoupled. However, the overall assumption still holds true, as

pions decouple before the clusters.

7.4 Light cluster yields versus isospin Ŵuctuation

Figure 7.3 Deuteron yield as a function of ∆Yπ for Au+Au reactions. The UrQMD results

are shown by red circles. The estimated yield, Eq. (7.7), is represented by the full red

line. Left: Results at
√

sNN = 3 GeV. Right: Results at
√

sNN = 7.7 GeV.

Finally, we contrast the estimated deuteron yields from the toy model with

deuteron yields obtained from UrQMD simulations as a function of relative charged

pion difference ∆Yπ . The comparison at
√

sNN = 3.0 GeV is depicted in Fig. 7.3 (left

panel), and at
√

sNN = 7.7 GeV in Fig. 7.3 (right panel). We clearly observe a local

maximum in the deuteron yields at both energies around ∆Yπ = 39, consistent with

the expectation from the toy model.

The same comparison on light clusters with A = 3 is done and shown
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Figure 7.4 The ∆Yπ dependent of triton (blue squares and dashed blue line) and 3He

(orange triangles and dotted orange line) yields. The UrQMD results are shown by

symbols. The estimated yields, Eqs. (7.7) and (7.8), are represented by the lines. Left:

Results at
√

sNN = 3 GeV. Right: Results at
√

sNN = 7.7 GeV

in Fig. 7.4, depicting the simulated triton (blue crosses) and 3He (orange triangles)

yields from UrQMD at
√

sNN = 3 GeV (left panel) and
√

sNN = 7.7 GeV (right

panel) with the corresponding estimated yields from the toy model represented by the

blue dashed and orange dotted line, respectively. We observe that both the UrQMD

simulated tritons and 3He at both energies follow the estimated yields. Especially at√
sNN = 3.0 GeV, where the tritons exhibit the maximum yield at ∆Yπ = −26.67,

we observe a close resemblance between UrQMD and estimated values.

Finally, we provide the energy dependence of the cluster yields as a function

of ∆Yπ from Elab = 1.23A − 40A GeV. the cluster yields are normalized by their

respective yields at ∆Yπ = 39. We can clearly observe that the local maxima of the

deuteron yields and the A = 3 clusters are present and independent of the beam

energy.

Also, some deviation from the UrQMD simulation to the toy model is ob-

served as the distributions of light nuclei become broader along with the energies. This
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Figure 7.5 Distribution of cluster yields on the ∆Yπ spectrum is normalized to unity at

∆Yπ = 39. The symbols represent simulation results from various collision energies

ranging from Elab = 1.23A GeV to Elab = 40A GeV in ultra-central Au+Au reactions

from UrQMD. Left: Deuteron distribution. Right: Triton and 3He distribution.

deviation can be attributed to the fact that in the toy model, isospin equilibration is

assumed only between pions and nucleons. In a realistic scenario, some isospin is also

carried by other hadron species such as charged kaons, Σ, etc.

We conclude our chapter with the observation that the coalescence model

exhibits an energy-independent local maxima in cluster yields, e.g., the deuteron yields

at ∆Yπ = 39 (for Au+Au reactions). This distinct dependence on the isospin trig-

gering allows us to potentially resolve tensions between the thermal model and the

coalescence model. Since the thermal model usually uses grand canonical ensembles,

it does not show any dependence of the cluster yield on ∆Yπ . This is because the

isospin Ŵuctuations occur before kinetic freeze-out inducing the correlation between

cluster yields and the emitted charged pions (and nucleons). In the thermal model,

all hadron yields are generated or emitted simultaneously at the chemical freeze-out.

Consequently, the cluster yields from the thermal model do not correlate with any

isospin Ŵuctuations, or at most, have been accounted for only on an averaged basis.
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Our studies indicate that the cluster formation is governed by coalescence

at the kinetic freeze-out rather than a direct emission from the chemical freeze-out

by thermal productions. This approach can be measured in any ultra-central Au+Au

collision facilities at
√

sNN = 3 − 8 GeV.


