CONTENTS

Page

ABSTRACT IN THAI				
ABST	ABSTRACT IN ENGLISHII			
ACKN	OWL	EDGEN	1ENTS	V
CONT	ENT	S		VI
LIST (OF T.	ABLES		.VIII
LIST (OF FI	GURES		IX
LIST (OF A	BBREVI	ATIONS	.XV
CHAF	PTER			
I	INT	RODUC	CTION	1
	1.1	Backgi	round	1
	1.2	Objec	tives and structure of this thesis	3
	1.3	Scope	and limitations	3
II	LITE	RATU	RE REVIEW	4
	2.1	Metal	Oxide Thin Films	4
		2.1.1	Silicon Dioxide Thin Film	4
		2.1.2	Titanium Dioxide Thin Film	. 12
		2.1.3	Other Metal Oxide Thin Film	. 19
	2.2	Thin F	ilms for Optical Applications	. 22
		2.2.1	Interference in thin films	. 22
		2.2.2	Multilayer thin films	. 23
		2.2.3	Anti - Reflective Coating	. 27
		2.2.4	High Reflection Coating	. 28

CONTENTS (Continued)

				Page
III	EXF	PERIME	NTAL AND TECHNIQUES	35
	3.1	Thin f	îlms preparation	35
		3.1.1	RF Magnetron Sputter Deposition	35
		3.1.2	Reactive Gas Timing Sputter Deposition	38
	3.2	Thin f	ilms characterization techniques	40
		3.2.1	X-ray diffraction (XRD)	40
		3.2.2	Scanning electron microscopy (SEM)	42
		3.2.3	X-ray Absorptions Spectroscopy (XAS)	44
		3.2.4	UV-Vis-NIR spectroscopy	47
		3.2.5	Spectroscopic ellipsometry	48
IV	RES	ULTS	AND DISCUSSION	51
	4.1	TiO ₂ t	hin films prepared by RF magnetron sputtering	51
	4.2 TiO ₂ thin films fabricated by Reactive Gas Timing (RGT) magnetron			
		sputte	ering	61
	4.3	SiO ₂ f	ilms fabricated by custom-built RF magnetron sputtering	
	4.4	TiO ₂ +	SiO ₂ Multilayer Thin Films	82
V	CO	NCLUS	IONSION	90
REFERENCES			92	
APPENDIX			103	
CURRICULUM VITAE			106	

LIST OF TABLES

Tabl	e	Page
2.1	Deposition parameters	6
2.2	Roughness values (Ra and rms) of the ${ m SiO}_{ m x}$ films obtained by AFM, their	
	thickness and density obtained by XRR)	7
2.3	Grain size (D), average surface roughness (R_{ave}) and thickness calculated	
	with the Sanepoel method of samples produced at various O_2/Ar + O_2	
	ratios	17
2.4	Light transmittance, refractive indices and thickness values of single layer	
	films and light transmittance values of multilayer films	21
3.1	Sputtering yields by 500 eV ions	34
4.1	Thickness of TiO_2 thin films prepared by RF magnetron sputtering at differ-	
	rent working pressure	57
4.2	Weight of TiO ₂ Anatase and Rutile in TiO ₂ thin films with different oxygen	
	flow timing and R-factor obtained from the linear combination fitting of	
	XANES data	71
4.3	EXAFS-derived structural parameters for TiO_2 thin films	74

LIST OF FIGURES

Figur	gure P		
2.1	Chemical Structure Model of silicon dioxide	5	
2.2	Surface morphology of the films deposited at different process pressures		
	(a) 0.27 Pa, (b) 0.53 Pa, (c) 0.80 Pa, (d) 1.33 Pa	7	
2.3	High-resolution Si 2p XPS spectra measured at the film surface referenced		
	to C 1s at 284.8 eV	8	
2.4	Refractive index of the films a as a function of the optical wavelength for		
	samples S2, S4, S6 and S10, and b at 632.8 nm as a function of film density .	9	
2.5	Optical transmittance of the glass substrate and systems glass/film	. 10	
2.6	Sputtering rate with added oxygen to that without oxygen for 1 mm film		
	thickness deposited at 8×10 ⁻² Pa as a function of oxygen partial pressure	. 10	
2.7	The surface roughness (nm) and deposition rate (nm /min) (Left) vs.		
	substrate temperature (K) (Right) vs. argon gas flow (sccm)	. 11	
2.8	The primitive cells of rutile, brookite and anatase	. 12	
2.9	Surface morphologies of the TiO_2 films with different post-annealing		
	temperature: (a) as-grown film, (b) film post-annealed at 550 °C, and (c) at		
	900 °C. (d) XRD patterns of the as-grown film and films post-annealed at		
	550 °C and 900 °C	. 14	
2.10	Optical transmission spectra of TiO_2 polymorph films	. 15	
2.11	Plot of refractive index versus wavelength for as-deposited and annealed		
	TiO ₂ thin films	. 16	
2.12	XRD patterns of various samples produced at different $O_2/Ar + O_2$ ratios	. 17	
2.13	Optical transmittance spectra of various samples produced at different ${\rm O}_2/$		
	Ar+ O ₂ ratios	. 17	
2.14	Ti2p (a) and O1s (b) XPS spectra of TiO $_{\rm 2}$ thin films	. 18	
2.15	Effect of hot-isostatic pressing and annealing treatment on optical constants	;	
	of HfO_2 and Ta_2O_5 films	. 20	

Figur	e	Page
2.16	% light transmittance spectra of single layer films	22
2.17	Light paths through a thin film on glass	23
2.18	Schematic of a multilayer thin films	24
2.19	Schematics of (a) hydrophobic and (b) hydrophilic surfaces of the SiO_2 film	
	The R represents alkoxy group remained after sintering on the ${\rm SiO}_2$ film	
	surface. TiO $_2$ coating solution was applied to the SiO_2 film surfaces to fab-	
	ricate the multilayer structure	26
2.20	Examples of FE-SEM images of the 2nd TiO_2 250nm film surfaces for (a)	
	clear, (b) cracks, and (c) delamination morphologies. The inserted contact	
	angles were measured on the 1st ${\rm SiO}_2$ films before deposition of the 2nd	
	TiO ₂ film	26
2.21	Propagation of light rays through a single layer film on substrate $(n_s > n)$	27
2.22	Schematic representation of a metal multi-dielectric mirror	28
2.23	Reflectance spectra of one-, three-, five- and seven-DBR stacks with their	
	optical images	29
2.24	(Left) Schematic of a multilayer structure (Right) A FIB image (SEM) of a	
	multilayer structure	30
2.25	Optical constants (n and k) measured for (a) TiO ₂ and (b) SiO ₂ films	31
2.26	UV–Vis–NIR reflectance spectra from calculations and experimental	
	measurement at the quarter wave condition	32
3.1	Some calculated sputtering yields	35
3.2	Sputtering yield as a function of angle-of-incidence of the bombarding ion	36
3.3	Schematic diagram of mechanism of magnetron sputter coating machine	37
3.4	RF magnetron sputtering system at BL6, SLRI	38

Figur	re	Page
3.5	Schematic representation of argon and oxygen mass flow rate versutime	
	used for depositing TaO thin film by the conventional reactive sputtering	
	and RGT techniques	39
3.6	Reactive Gas Timing magnetron sputtering system at NECTEC	40
3.7	Schematic representation of Bragg's Law for XRD	41
3.8	XRD (BRUKER, D8 ADVANCE) at SUT	42
3.9	Schematic diagram of (a) basic SEM components and (b) different types of	
	SEM signals	43
3.10	SEM machine (Zeiss AURIGA FE-SEM/FIB/EDX) located at SUT	43
3.11	The principle for XAS spectra	44
3.12	Theoretical and algorithm for XANES and EXAFS spectra	45
3.13	Energy range of (a) XANES and EXAFS spectra (b) K-space spectra and (c)	
	R-space spectra	46
3.14	SUT-NANOTEC-SLRI beamline setup (BL5.2), SLRI	47
3.15	UV-vis spectrophotometer at SUT	48
3.16	Configuration in spectroscopic ellipsometry for a determined incidence	
	angle ($ heta$, degrees). The changes of amplitude ($arPsi$, degrees) and phase	
	($arDelta$, degrees) of the reflected elliptically polarized light are measured by	
	the detector	49
3.17	Schematic diagram of a polarizer-sample-rotating analyzer ellipsometer	50
4.1	XRD results of the titanium oxide thin films with different power	52
4.2	SEM (left) and AFM (right) images of the titanium oxide thin films with	
	different working pressure	54
4.3	Optical transmittance of the titanium oxide thin films deposited on	
	glass with different working pressure	56
4.4	Refractive index in the 250–1650 nm wavelength range for the tita-	
	nium oxide thin films with different working pressure	57

Figu	re Pa	ge
4.5	XANES spectra of the titanium oxide thin films with different working	
	pressure compared with the standard spectra of Ti foil, rutile and anatase	
	TiO ₂	59
4.6	EXAFS spectra fitted using ARTEMIS in R-space of the titanium oxide	
	thin films with working pressure of 2.2 and 12.4 Pa	60
4.7	Cross-sectional and Top-view SEM images of the titanium oxide thin	
	films with oxygen flow timing	63
4.8	Optical transmittance of the titanium oxide thin films with different oxygen	
	flow timing	66
4.9	XRD results of the titanium oxide thin films with oxygen flow timing	67
4.10	Raman results of the Titanium Oxide thin films with different oxygen timing	
	sequence	68
4.11	The normalized Ti K-edge XANES spectra of TiO2 thin films prepared by	
	conventional reactive and RGT technique at different oxygen flow timing	
	(the enlarged view of spectra in pre-edge region showed in inset)	69
4.12	Ti K-edge EXAFS (weighted by k2) from experiment (blue line) and fitting	
	(red circle) of TiO2 thin films prepared by conventional reactive and RGT	
	technique at different oxygen flow timing. Model fits to the experimental	
	filtered EXAFS in the k-space are also shown (insets)	72
4.13	View of entire sputtering system (In the rack, A = Turbopump Controller,	
	B = RF Power Supply (600 W) and C = Matching Box	77
4.14	Transmittance of the Silicon Oxide thin films prepared by custom-built	
	RF magnetron sputtering with different sputtering pressure	78
4.15	Transmittance of the Silicon Oxide thin films with different sputtering	
	power	78
4.16	XRD Spectrum of the Silicon Oxide thin films deposited at 50W, 0.8 Pa for	
	90 min	79

Figur	e Page
4.17	SEM micrographs of the Silicon Oxide thin films deposited at 100 and
	150 W
4.18	SEM micrographs of the Silicon Oxide thin films with different sputtering
	pressure
4.19	SEM micrographs of the Silicon Oxide thin films with different sputtering
	time
4.20	Cross- section SEM micrograph of the Silicon Oxide thin films deposited on
	Si wafer shows the thickness of 100 nm
4.21	Optical transmittance of Silicon Oxide layers deposited on glass substrates
	with different deposition time
4.22	Transmittance of 15 min Silicon Oxide layers deposited on various $\rm TiO_2~films.83$
4.23	Transmittance of 30 min Silicon Oxide layers deposited on various TiO_2 films. 84
4.24	Transmittance of 45 min Silicon Oxide layers deposited on various $\rm TiO_2~films.84$
4.25	Transmittance of 60 min Silicon Oxide layers deposited on various $\rm TiO_2~films.85$
4.26	Optical transmittance of various deposition time Silicon Oxide layers
	deposited on various TiO ₂ films
4.27	The normalized Si K-edge XANES spectra of Silicon Oxide layers with
	different deposition time compared with $\ensuremath{\text{SiO}}_2$ powder standard
4.28	The normalized Si K-edge XANES spectra of 60 min Silicon Oxide layers
	deposited on various TiO ₂ films
4.29	The normalized Si K-edge XANES spectra of different deposition time ${\rm SiO}_2$
	layer coated on TiO_2 films prepared by conventional reactive sputtering
4.30	Si K-edge EXAFS (weighted by k^2) from experiment (black line) and fitting
	(red circle) of SiO_2 layers coated on TiO_2 films prepared by conventional
	reactive and RGT sputter technique at different oxygen flow timing

LIST OF ABBREVIATIONS

°C	Degree Celsius
Å	Angstrom
BL5.2	Beamline 5.2
EXAFS	Extended X-ray Absorption Fine Structure
E ₀	Absorption edge
E _B	Binding Energy
eV	Electron-Volt
GIXRD	Gracing Incident X-ray Diffraction
h	Plank's Constant
l _e	Electron Current
I _p	Photon Current
LCF	Linear Combination Fitting
RGT	Reactive Gas-Timing
SEM	Scanning Electron Microstructure
SLRI	Synchrotron Light Research Institute
UV	Ultraviolet
VIS	Visible
XANES	X-ray Absorption Near Edge Structure
XAS	X-ray Absorption Spectroscopy
XRD	X-ray Diffraction
λ	Wavelength
σ^2	Debye-Waller factor
S ₀ ²	Scale Factor